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Abstract This paper embodies the algebraic structures of q−k−abelian rings are investigated
using the concept of non-zero k-potent elements in a ring. A k-potent element a in a ring R is
called quater − k − central or (q − k − central) if aR(1 − ak−1)Ra = 0 and the ring R is
called q − k − abelian if all the elements of R are q − k − central. We have presented various
characterizations of q − k − abelian rings and some associated concepts. It is prove that an
element x in a q − k − abelian ring R is Von Neumann regular, then x is strongly regular.
Moreover, we have established that the property a[ak−1, R][R, ak−1]a = 0 for all k-potents
a ∈ R can be used to describe q − k − abelian rings, where [x, y] := xy − yx is the additive
commutator of a ring.

1 Introduction

In this article R is a ring consisting identity unless otherwise specified. We refer to the set of all
idempotents, nilpotents, and units in R, respectively, as I(R), N(R) and U(R). Also, we denote
Tn(S), as the upper triangular matrix ring over any ring S. If for some natural number k, ak = a,
then an element a is said to be k-potent. We denote K(R) as set of all k-potent elements of R.
According to [2], an element e ∈ I(R) is called left (right) semicentral if ere = re(ere = er)
for each r ∈ R and e is called central if re = er for each r ∈ R. Whenever every idempotent e
is central in a ring R, then the ring is said to be abelian. For all idempotent e in a ring R, either
er = ere or re = ere for all r in R, then the ring R was considered to be semiabelian according
to Chen [3] (2007). Following that, the concept of semicentral idempotents and semiabelian
rings was extensively researched by numerous researchers and extended in a variety of ways
(refer to [2], [4], [9], [6], [14], [16], [15] and [17]). A k-potent a ∈ R is called left (right)
semicentral k-potent if (a− 1)Ra = 0 (aR(1 − a) = 0) or ara = ar (ara = ar) for all r ∈ R.

Recently, the concept of semicentral idempotents in a ring was further extended by T. Y. Lam.
According to T. Y. Lam [12], if eR(1−e)Re = 0 for all e ∈ I(R) then e is referred to be quarter-
central, and if all of the idempotent elements in a ring R are q-central, then the ring is said to
be quarter-abelian (simply, a q-abelian ring). Though T2(S)(the set of all n× n upper triangular
matrices over S) is q-abelian if and only if S is abelian, they demonstrated that for n ≥ 3, Tn(S)
is not q-abelian ring. They gave equivalent definitions of q− abelian rings based on the concept
of additive commutators of the ring [x, y] := xy − yx. Moreover, they studied and discussed the
notion of q-central idempotents in relation to the idea of regular, unit-regular as well as strongly
regular elements in arbitrary rings and various associated concepts. It is observed that abelian
rings sits inside q − abelian rings. In [[11], Ex. 12.8C] we get, when for all a in R, ak = a for
some k ∈ N then R is a commutative ring. But in this article, we are only interested in those
k-potent elements a ∈ R which are quarter central k-potent.
In this article, we further generalise as well as extend the concept of q-abelian rings by introduc-
ing the concept of q − k − abelian rings using non-zero k-potent elements of the ring and we
have established various properties associated with this concepts.
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2 Preliminaries

In this section, we have presented some basic results which are needed in the following sections.

Following [7] for a ring R, define a binary operation ◦ on R as a ◦ b = a + b − ab for each
a, b ∈ R. Then it can be easily proved that (R, ◦) is a monoid. An element x ∈ R is said to be
quasi-regular if x has an inverse i.e., there exists x′ ∈ R such that x′ ◦ x = x ◦ x′ = 0. q(R)
denotes the set of all quasi-regular elements in R. It is proved that N(R) ⊆ q(R).

The following lemma is derived from [7].

Lemma 2.1. The subsequent claims are identical for a ring R and a ∈ K(R):

(1) ak−1 is central.

(2) rak−1 = ak−1rak−1 whenever r is in K(R).

(3) rak−1 = ak−1rak−1 whenever r is Von Neumann regular element.

(4) rak−1 = ak−1rak−1 whenever r is in N(R).

(5) rak−1 = ak−1rak−1 whenever r ∈ R and r2 = 0.

(6) rak−1 = ak−1rak−1 whenever r is in q(R).

Proposition 2.2. The subsequent claims are identical for a ring R and a ∈ K(R):

(1) ar = arak−1 for all r ∈ R or, aR(1 − ak−1) = 0.

(2) ar = arak−1 whenever r is in K(R).

(3) ar = arak−1 whenever r is Von neumann regular element.

(4) ar = arak−1 whenever r is in N(R).

(5) ar = arak−1 whenever r is in R and r2 = 0.

(6) ar = arak−1 whenever r is in q(R).

Proof. We can clearly see, (1) =⇒ ((2), (3), (4), (5), (6)) are obvious. For (2) =⇒ (1). Let
us consider r = ak−1 − ak−1x + ak−1xak−1 which is a k-potent element for any x ∈ R. So,
arak−1 = ar =⇒ a(ak−1 − ak−1x+ ak−1xak−1)ak−1 = a(ak−1 − ak−1x+ ak−1xak−1) =⇒
a = a − ax + axak−1 =⇒ ax = axak−1. (3) =⇒ (2) is also clear, as every k-potent
is regular. For (5) =⇒ (1). Let us consider y = ak−1xak−1 − ak−1x then y2 = 0. Now
ayak−1 = ay =⇒ a(ak−1xak−1 − ak−1x)ak−1 = a(ak−1xak−1 − ak−1x) =⇒ 0 = axak−1 −
ax =⇒ ax = axak−1 for all x ∈ R. Again we notice that (6) =⇒ (4) as N(R) ⊆ q(R). Also,
(4) =⇒ (5) is clear.

We have the next proposition, which is similar to Proposition 2.2.

Proposition 2.3. The subsequent claims are identical for a ring R and a ∈ K(R):

(1) ra = ak−1ra for all r is in R or, aR(1 − ak−1) = 0.

(2) ra = ak−1ra whenever r is in K(R).

(3) ra = ak−1ra where r is an element which is Von neumann regular.

(4) ra = ak−1ra whenever r is in N(R).

(5) ra = ak−1ra whenever r is in R and r2 = 0.

(6) ra = ak−1ra whenever r is in q(R).
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3 q − k−Abelian Rings

We begin with the definition of q − k − central elements and various characteristics of q − k −
abelian rings using k-potent elements in a ringR. Moreover we discuss the relationship between
regular elements and q − k − central elements of R.

Definition 3.1. A k-potent element a in R is called quater− k− central or (q− k− central) if
aR(1 − ak−1)Ra = 0 or aRa′Ra = 0 with the complimentary k-potent a′ = 1 − ak−1. The set
of all q − k − central elements of R which is represented by q −K(R).

Definition 3.2. A ring R is said to be q − k−abelian if all the k- potents of the ring are q − k −
central or K(R) = q −K(R).

Lemma 3.3. A ring R is q − k − abelian ⇐⇒ axya = axak−1ya for any a ∈ K(R); x, y ∈ R.

Proof. Let x, y ∈ R and a ∈ K(R). Let R be a q − k − abelian ring then by Definition 3.1 we
get, aR(1 − ak−1)Ra = 0. Thus, ax(1 − ak−1)ya = 0 =⇒ axya = axak−1ya for all x, y ∈ R.
The converse part is clear.

Theorem 3.4. If a is q − k − central, the subsequent claims are identical for a ring R and
a ∈ K(R) :

(1) ar(1 − ak−1)sa = 0 for all r, s ∈ R or a ∈ q − k(R);

(2) ar(1 − ak−1)sa = 0 whenever r, s ∈ U(R);

(3) ar(1 − ak−1)sa = 0 whenever r, s ∈ I(R);

(4) ar(1 − ak−1)sa = 0 whenever r2 = s2 = 0, k ≥ 2;

(5) ar(1 − ak−1)sa = 0 whenever r ∈ ak−1Ra′ and s ∈ a′Rak−1. Where a′ = 1 − ak−1.

Proof. It is clear that (1) =⇒ (2), (3), (4) and (5).
(3) =⇒ (1) Let x, y ∈ R. Let us consider r = ak−1 − ak−1x + ak−1xak−1 and s = ak−1 −
yak−1 + ak−1yak−1 Then we see r2 = (ak−1 − ak−1x + ak−1xak−1) = r and s2 = (ak−1 −
yak−1 + ak−1yak−1) = s. So, r, s ∈ I(R). Now let, a′ = 1 − ak−1. By assumption ara′sa = 0
=⇒ ar(1 − ak−1)sa = 0 =⇒ arsa = arak−1sa =⇒ a(ak−1 − ak−1x+ ak−1xak−1)(ak−1 −
yak−1 + ak−1yak−1)a = a(ak−1 − ak−1x + ak−1xak−1)ak−1(ak−1 − yak−1 + ak−1yak−1)a
=⇒ axya = axak−1ya =⇒ ax(1 − ak−1)ya = 0 =⇒ axa′ya = 0 ∀x, y ∈ R.
(2) =⇒ (4) Let r, s ∈ R such that r2 = s2 = 0. Then 1 + r, 1 + s ∈ U(R). So by assumption
a(1 + r)a′(1 + s)a = 0 =⇒ (a + ar)(1 − ak−1)(a + sa) = 0 =⇒ arsa − arak−1sa = 0
=⇒ ara′sa = 0.
(4) =⇒ (1) Let, r, s ∈ R we see (ak−1ra′)2 = ak−1ra′aak−2ra′ = 0 and (a′sak−1)2 =
a′sak−2aa′sak−1 = 0. So, by assumption a(ak−1ra′)a′(a′sak−1)a = 0 =⇒ ara′sa = 0.
(5) =⇒ (1) Let, r, s ∈ R then ak−1ra′ is in ak−1Ra′ and a′sak−1 is in a′Rak−1. So, by
assumption a(ak−1ra′)a′(a′sak−1) = 0 =⇒ ara′a′a′sa = 0 =⇒ ara′sa = 0. Hence the
proof.

Remark 3.5. For any ring R if a is left semicentral/right semicentral k-potent then a is q − k −
central. As, 0 = (1 − a)Ra = (1 + a + a2 + ... + ak−2)(1 − a)Ra = (1 − ak−1)Ra =
aR(1 − ak−1)Ra. Similarly for right semicentral k-potent.

The following result is a modified Ánh-Birkenmeier-Van Wyk Theorem [[10], Lemma 3.4].

Theorem 3.6. The subsequent claims are identical for the ring R and a ∈ K(R) with comple-
mentary k-potent a′ = 1 − ak−1:

(1) a ∈ q −K(R).

(2) The map ψ : R → ak−1Rak−1 defined by ψ(r) = ak−1rak−1 for k ≥ 2 is a ring homomor-
phism that sends unity to unity. Where ak−1 is the unity element in ak−1Rak−1.

(3) aRa′ is a right ideal in R.

(4) a′Ra is a left ideal in R.
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Proof. (1) ⇐⇒ (2) Let a ∈ q −K(R) then ψ(1) = ak−1.1.ak−1 = ak−1

Let, r1, r2 ∈ R then

ψ(r1 + r2) = ak−1(r1 + r2)a
k−1

= ak−1r1a
k−1 + ak−1r2a

k−1

= ψ(r1) + ψ(r2).

Agian,

ψ(r1r2) = ak−1r1r2a
k−1

= ak−2(ar1r2a)a
k−2

= ak−2(ar1a
k−1r2a)a

k−2 ⇐⇒ a ∈ q −K(R)

= ak−1r1a
k−1.ak−1r2a

k−1 ⇐⇒ a ∈ q −K(R)

= ψ(r1)ψ(r2) ⇐⇒ a ∈ q −K(R).

Therefore, ψ is a ring homomorphism that sends unity to unity if and only if a ∈ q −K(R).

(1) ⇐⇒ (3) Let, a ∈ q −K(R) then for any r, s ∈ R
ara′sa = 0 =⇒ ara′sak−1 = 0 =⇒ ara′s(1 − a′) = 0 =⇒ (ara′)s = a(ra′s)a′ ∈ aRa′.
So, aRa′ is a right ideal.
conversely, let aRa′ is a right ideal.
So, we have (ara′)s ∈ aRa′ for any r, s ∈ R. So, ara′s = ar′a′ for some r′ ∈ R and hence
ara′sa = (ara′s)a = ar′a′a = 0. So, a ∈ q −K(R).
Similarly, we can prove (1) ⇐⇒ (4).

Remark 3.7. It is observed that if both a, b ∈ K(R) so that a, b ∈ q −K(R) then aRb is not an
ideal in R by following example.

Example 3.8. Let, R = T2(S) and a = b =

(
−1 0
0 0

)
then, a, b ∈ q − K(R) for k = 3, as

1 − a2 =

(
1 0
0 1

)
−

(
−1 0
0 0

)2

=

(
0 0
0 1

)
. Therefore,(

−1 0
0 0

)(
t s

0 p

)(
0 0
0 1

)(
t′ s′

0 p′

)(
−1 0
0 0

)
=

(
0 0
0 0

)
for any t, s, p, t′, s′, p′ ∈ S.

But aRb = {

(
t 0
0 0

)
: t ∈ S} is not an ideal.

Corollary 3.9. Suppose R is a ring and a ∈ q−K(R) then the map ψ defined in Theorem 3.6(2)
takes

(1) unit elements of R to unit elements of ak−1Rak−1;

(2) nilpotent elements of R to nilpotent elements of ak−1Rak−1;

(3) idempotent elements of R to idempotent elements of ak−1Rak−1;

(4) right (left) semicental idempotents ofR to right (left) semicentral idempotents of ak−1Rak−1;

(5) q − k − central elements of R to q − k − central elements of ak−1Rak−1.

Proof. As ψ is a unital ring homomorphsim so (1) to (4) are clear.
For (5) let, g ∈ q −K(R) for any r, s ∈ R we have

(ak−1gak−1)(ak−1rak−1)(1 − (ak−1gak−1)k−1)(ak−1sak−1)(ak−1gak−1)
= ψ(g)ψ(r)(ψ(1)− ψ(g)k−1)ψ(s)ψ(g) = ψ(g)ψ(r)(ψ(1)− ψ(gk−1))ψ(s)ψ(g)
= ψ(gr(1 − gk−1)sg) = ψ(0) = 0.
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Remark 3.10. It is observed that from Corollary 3.9(5), when R is q − k − abelian ring, conse-
quently each ring of the type ak−1Rak−1 ⊆ R is also q − k − abelian.

Corollary 3.11. For any a ∈ q−K(R) if r ∈ N(R) then {rak−1, ak−1r, ak−1rak−1, ara, rar, rak−1r} ∈
N(R).

Proof. Let rn = 0 then we see

(rak−1)n+1 = rak−1.rak−1...rak−1

= rak−2(arak−1ra)ak−2....rak−1

= rak−2(ar2a)ak−2....rak−1

In this way we will reach a certain stage where we have rn and thus (rak−1)n+1 = 0. Similarly
we can check the others.

Remark 3.12. It is observed from Theorem 3.6 that R is q − k − abelian if and only if for all
aR(1 − ak−1) is a right ideal or (1 − ak−1)Ra is a left ideal for every a ∈ K(R). If k = 2
then q − k − abelian and q − abelian rings coincide. In general q − abelian rings sit inside
q− k− abelian rings. Further, it is apparent that a ring is q− k− abelian if it is abelian. As, for
any a ∈ K(R) we have, ak−1 ∈ I(R) also, 1 − ak−1 ∈ I(R). But q − k − abelain ring need not
be abelian by the following example.

Example 3.13. Let us consider the abelian ring S = Z6 and thus R = T2(S) is a q−k−abelian
ring for k = 2 by [[12], Theorem 3.5].
Now we show that R = T2(S) is not semi abelian ring and hence not abelian.

we take A =

(
3 0
0 4

)
∈ K(T2(S)) but,

(
3 0
0 4

)(
0 1
0 0

)(
4 0
0 3

)
=

(
0 3
0 0

)
̸=

(
0 0
0 0

)
.

Also,

(
4 0
0 3

)(
0 1
0 0

)(
3 0
0 4

)
=

(
0 4
0 0

)
̸=

(
0 0
0 0

)
. So, A is not semicentral.

Proposition 3.14. For a ring R and r ∈ N(R), if a ∈ q −K(rR) then a = 0. It also holds if rR
is replaced by Rr.

Proof. We consider a nilpotent element r of index m. Let a ∈ q − K(rR) then a = rs
for some s ∈ R then we have a = ak = a(ak−2)a = a((rs)k−2)a = ar(s(rs)k−3)a =
arak−1(s(rs)k−2)a = ara(ak−2(s(rs)k−2))a = ar2s(ak−2(s(rs)k−2))a = . . . . In this way
after a finite number of steps we obtain, rm which is 0 and thus a = 0.

Following results are extension of Wei and Li’s [[17], Theorems (2.4), (2.8) and (2.9)].

Proposition 3.15. (1) For any ring R and a ∈ q −K(R) such that RaR = R then ak−1 = 1.

(2) q − k − abelian ring is Dedekind finite. But the converse is not true.

Proof. (1) aR(1 − ak−1)Ra = 0 =⇒ RaR(1 − ak−1)RaR = 0 =⇒ R(1 − ak−1)R = 0.
As, 1 ∈ R. So, ak−1 = 1.

(2) Let R be q − k − abelian ring and xy = 1. We consider a = yx then a2 = yxyx = yx = a
so, a ∈ I(R) ⊆ K(R). So, ak = a for all k ≥ 2. Now, xay ∈ RaR also, xay = xyxy =
1 ∈ R. So, RaR = R. Therefore by part (1) ak−1 = 1 =⇒ (yx)k−1 = 1 =⇒
(yxy...xyx)(k−1)copies = 1 =⇒ yx = 1.

For the converse part we consider T3(R) upper triangular matrix ring which is Dedekind

finite. But A = diag(1, 0, 1) =

1 0 0
0 0 0
0 0 1

 /∈ q −K(R) for k = 2.
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From Proposition 3.15(1), for any a ∈ K(R) we obtain ak−1 ∈ I(R) so any simple ring R
has only trivial q − k − central elements. Thus as a consequences we obtain the subsequent
results.

Proposition 3.16. For a ring R and M is a maximal ideal of R. If a ∈ q − K(R) then a or
a′ = 1 − ak−1 ∈M

Proof. We have R
M is a simple ring if M is a maximal ideal of R. Therefore R

M has only trivial
k-potent elements and consequently q − k − central elements.

Proposition 3.17. For a ring R and a ∈ q − K(R). If M ⊆ R is a maximal right ideal, or a
maximal left ideal then a ∈M or a′ = 1 − ak−1 ∈M.

Proof. Considering that, a, a′ /∈ M which is maximal right ideal. As 1 ∈ R, so there exists
m,m′ ∈ M and r, s ∈ R such that 1 = ar +m = a′s +m′. Now, a = 1.a = (a′s +m′)a =
a′sa+m′a = (ar +m)a′sa+m′a = ara′sa+ma′sa+m′a = m(a′sa) +m′a ∈M which is
a contradiction. So, a ∈M or a′ = 1 − ak−1 ∈M . Similarly for maximal left ideal.

Proposition 3.18. For a ring R and a ∈ q −K(R) and ar(1 − ak−1) ̸= 0 for some r ∈ R.

(1) If aR is minimal left ideal then a2 = 0.

(2) If aR is minimal right ideal then a2 = 0.

Proof. (1) Let a′ = 1 − ak−1. We have ara′ ̸= 0 for some r is in R and consider aR is minimal
left ideal. Then 0 ⊂ ara′R ⊆ aR =⇒ aR = ara′R =⇒ aR ⊆ aRa′R =⇒ aRa ⊆
aRa′Ra = 0. Since, 1 ∈ R we have a2 = 0. Similarly we can prove (2).

We note that for any 2 × 2 upper triangular matrix

(
t s

0 p

)
to be k-potent we must have t, p

also k-potent. This is because,

(
t s

0 p

)k

=

(
t s

0 p

)
=⇒ tk = t and pk = p.

Proposition 3.19. Let S be any arbitrary ring and R = T2(S). Consider A =

(
t s

0 p

)
∈ K(R),

where necessarily t, p ∈ K(S). If tS(1 − tk−1) = 0 and (1 − pk−1)Sp = 0 then T ∈ q −K(R).

Proof. Let A′ = 1 −Ak−1 =

(
1 − tk−1 ∗

0 1 − pk−1

)
then for any X =

(
a1 a2

0 a3

)
,

Y =

(
b1 b2

0 b3

)
we have

AXA′ =

(
t s

0 p

)(
a1 a2

0 a3

)(
1 − tk−1 ∗

0 1 − pk−1

)

=

(
ta1(1 − tk−1) ∗

0 pa3(1 − pk−1)

)

=

(
t s

0 p

)(
a1 a2

0 a3

)(
1 − tk−1 ∗

0 1 − pk−1

)

=

(
ta1(1 − tk−1) ∗

0 pa3(1 − pk−1)

)

=

(
0 ∗
0 pa3(1 − pk−1

)
(since, tS(1 − tk−1) = 0)
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Again

A′Y A =

(
1 − tk−1 ∗

0 1 − pk−1

)(
b1 b2

0 b3

)(
t s

0 p

)

=

(
(1 − tk−1)b1t ∗

0 (1 − pk−1)b3p

)

=

(
(1 − tk−1)b1t ∗

0 0

)
(Since, (1 − pk−1)Sp = 0)

Now, AXA′Y A = AXA′.A′Y A =

(
0 0
0 0

)
Therefore, A ∈ q −K(R).

Proposition 3.20. Let R = T2(S). If R is q − k − abelian then S is q − k − abelian .

Proof. Let a ∈ K(S) and A =

(
1 0
0 a

)
∈ K(R) then the complimentary k-potent A′ =(

0 0
0 1 − ak−1

)
∈ K(R). We consider X = sE12, Y = rE22. Then, AXA′Y A = 0 =⇒

(E11 + aE22)sE12A
′rE22(E11 + aE22) = 0 =⇒ as(1 − ak−1)ra = 0, as s, r ∈ S are arbitrary.

So, a ∈ q −K(S). Therefore, S is q − k − abelian.

Proposition 3.21. Let S be a ring. If S is abelian and aSb = 0 for all a, b ∈ K(S), where both
a, b non trivial then R = T2(S) is q − k − abelian.

Proof. Let S be an abelian ring. We consider A =

(
a s

0 b

)
∈ K(T2(S)) , where necessarily

a, b ∈ K(S) and the complimentary k-potent of A is A′ =

(
a′ s′

0 b′

)
where, a′ = 1 − ak−1,

b′ = 1 − bk−1 and for some s′ ∈ S.
Now, we show T2(S) is q − k − abelian, for this we have to prove AXA′Y A = 0 for any
X,Y ∈ T2(S).

Let X =

(
a1 a2

0 a3

)
and Y =

(
b1 b2

0 b3

)
∈ T2(S).

Now, AXA′ =

(
a s

0 b

)(
a1 a2

0 a3

)(
a′ s′

0 b′

)
=

(
aa1a

′ aa1s
′ + (aa2 + sa3)b′

0 ba3b
′

)
=

(
0 ∗
0 0

)
,

as S is abelian so aa1a
′ = aa′a1 = 0, ba3b

′ = bb′a3 = 0.

Again, Y A =

(
b1 b2

0 b3

)(
a s

0 b

)
=

(
b1a b1s+ b1b

0 b3b

)

Therefore, AXA′Y A =

(
0 ∗
0 0

)(
b1a b1s+ b1b

0 b3b

)
=

(
0 ∗b3b

0 0

)
Here, ∗b3b = (aa1s

′ + (aa2 + sa3)b′)b3b = aa1s
′b3b+ aa2p

′b3b+ sa3b
′b3b = 0, as aSb = 0, S

is abelian and b′b = 0. Therefore, AXA′Y A = 0.

Remark 3.22. Abelian condition of S in the above proposition can not be ignored. For example
we take the non abelian ring S = H/(Z13), Quaternion ring with co-efficients from Z13. Con-
sider, t = 7+4i which is an idempotent and its complimentary idempotent for t′ = 1−t = −6−

4i = 7−4i = t̄ thus

(
t 0
0 t̄

)
∈ K(T2(S)) But,

(
t 0
0 t̄

)(
j 0
0 0

)(
t̄ 0
0 t

)(
0 1
0 0

)(
t 0
0 t̄

)
=
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(
0 tjt̄t̄

0 0

)
̸=

(
0 0
0 0

)
As, tjt̄t̄ = 7j + 4k. Therefore, T2(S) is not k − abelian for k = 2.

Theorem 3.23. For any non zero ring S. Then R = Tn(S) is not q− k− abelian ring for n ≥ 3.

Proof. Since, we have a corner ring of R which is isomorphic to T3(S). For any A ∈ K(R) we
have the corner ring of the type Ak−1RAk−1 is isomorphic to T3(S). So, by Remark 3.10 it is
enough to prove T3(S) is not q − k − abelian.

Let A =

a 0 0
0 0 0
0 0 a

, a ̸= 0 with the complimentary idempotent A′ =

a′ 0 0
0 1 0
0 0 a′

, where

a′ = 1−ak−1. Let us considerX = E12, Y = E23 ∈ R, so we have,AXA′Y A = AE12A
′E23A =

a2E13 ̸= 0. Therefore, A is not q − k − central consequently T3(S) is not q − k − abelian. So,
R is not q − k − abelian.

4 Some applications

In accordance with [13], an element x in a ringR is said to as π-regular if there exists y inR such
that xn = xnyxn; n ⩾ 1 and for n = 1, x is referred to as Von Neumann regular. If xn = yxn+1

then x is called strongly π-regular and x is said to be strongly regular if n = 1. A ring R is said
to be Von Neumann regular, strongly regular, π-regular and strongly π-regular if every elements
of R is Von Neumann regular, strongly regular, π-regular and strongly π-regular respectively. A
ring R is referred to as a unit-regular, if for any a ∈ R such that a = aua, where u is in U(R).
We have unit regular implies Von Neumann regular. It is well known that a ring R is said to be
strongly regular if and only if it is reduced and Von Neumann regular [[11], Ex. 12.6A].

As an immediate consequence of Theorem 4.6, we obtain the subsequent remark.

Remark 4.1. Let us consider R be a ring and x ∈ R is a regular element (Von Neumann) such
that lR(x) = Rxn−1, n ≥ 3 then we have R is not a q − k − abelian ring by [[5], Theorem 2.4].
Here, lR(x) = {a ∈ R : ax = 0}

Lemma 4.2. Let us consider a q − k − abelian ring R and x is in R. Then x is strongly regular
whenever x is Von Neumann regular.

Proof. For some y ∈ R we get, x = xyx if x is Von Neumann regular. Let a ∈ K(R) and let
a = yx, then ak = (yxyx...yx)(k)copies = yxyx = yx = a, ak−1 = (yxyx...yx)(k−1)copies =

yx = a and x = xa. Since, a = ak = ak−1aak−1 = ayxa = ayak−1xa, by Lemma 3.3. Thus,
a = ayak−1xa = ayaxa = ayyxxa = ayyxx = ay2x2. Thus, we get x = xa = xay2x2 =
xy2x2. In a similar way, we can prove that x = x2y2x. Hence x is strongly regular.

Corollary 4.3. If x is an unit π-regular then there is a k-potent, a ∈ K(R) so that ax and xa are
Von Neumann regular.

Proof. If x is an unit π-regular then there exists n ⩾ 1, such that xn = xnuxn, where u ∈ U(R),
this implies that xn is Von Neumann regular. So by Lemma 4.2, xn is strongly regular. Let a =
xnu then ak = (xnuxnu...xnu)(k)copies = xnuxnu = xnu = a. Thus, ak = a and so a is a k-
potent. Also, xn = axn and ak−1 = (xnuxnu...xnu)(k−1)copies = xnu =⇒ xn = ak−1u−1 =

ak−1v, for v = u−1. Since, (ax)(xn−1u)(ax) = axnuax = aak−1vuax = akvuax = ak1ax =
akx = ax, as ak−1 = xnu = a. This shows that ax is Von Neumann regular.

Similarly, it can be proved that xa is also Von Neumann regular by letting a = uxn.

In the following results we have tried to build a new criteria for a k-potent element to be
q − k − central in terms of additive commutators.
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Proposition 4.4. The subsequent claims are identical for a ring R and a ∈ K(R):

(1) aR.[ak−1, R] = 0;

(2) a.[ak−1, R] = 0;

(3) ar − arak−1 = 0 for all r ∈ R.

Proof. (1) =⇒ (2) trivial as 1 ∈ R.
(2) =⇒ (3) Assume, a[ak−1, R] = 0 then a(ak−1r − rak−1) = 0 for all r ∈ R. Therefore,
ar − arak−1 = 0 for all r ∈ R as, ak = a.
(3) =⇒ (1) For all r ∈ R, we assume, ar − arak−1 = 0 .
Now, aR[ak−1, R] = ar(ak−1s − sak−1) = (arak−1)s − arsak−1 = (ar)s − arsak−1 = 0 =
a(rs)− a(rs)ak−1 = 0 for all r, s ∈ R.

Similar to Proposition 4.4, we have the next proposition.

Proposition 4.5. The subsequent claims are identical for a ring R and a ∈ K(R):

(1) [R, ak−1].aR = 0;

(2) [R, ak−1].a = 0;

(3) ra− ak−1ra = 0 for all r ∈ R.

Based on the Propositions 4.4 and 4.5, we demonstrate the subsequent result.

Theorem 4.6. For a ring R and a ∈ K(R). Then a ∈ q−K(R) ⇐⇒ a[ak−1, R][R, ak−1]a = 0

Proof. Let a ∈ K(R) then a[ak−1, R][R, ak−1]a = 0
⇐⇒ a(ak−1r − rak−1)(sak−1 − ak−1s)a = 0
⇐⇒ (ar − arak−1)(sa− ak−1sa) = 0
⇐⇒ arsa− arak−1sa− arak−1sa+ arak−1sa = 0
⇐⇒ arsa− arak−1sa = 0 for all r, s ∈ R
⇐⇒ a ∈ q −K(R).

Corollary 4.7. A ring R is q − k − abelian ⇐⇒ a[ak−1, R][R, ak−1]a = 0 for all a ∈ K(R).
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