A Study of $q - k -$ Abelian Rings

Saurav J. Gogoi, H. M. Imdadul Hoque and Helen K. Saikia

Communicated by Manoj Kumar Patel

MSC 2010 Classifications: 16E50; 16D30; 16N40; 16U60; 16U80.

Keywords and phrases: $q - k - abelian$ rings, $q - k - central$ elements, k-potent elements.

The authors like to express their sincere gratitude to the referee for reading the manuscript with great attention and making numerous insightful suggestions to improve the article.

Abstract This paper embodies the algebraic structures of $q-k-abelian$ rings are investigated using the concept of non-zero k-potent elements in a ring. A k-potent element a in a ring R is called $quater - k - central$ or $(q - k - central)$ if $aR(1 - a^{k-1})Ra = 0$ and the ring R is called $q - k - abelian$ if all the elements of R are $q - k - central$. We have presented various characterizations of $q - k - abelian$ rings and some associated concepts. It is prove that an element x in a $q - k - abelian$ ring R is Von Neumann regular, then x is strongly regular. Moreover, we have established that the property $a[a^{k-1},R][R,a^{k-1}]a = 0$ for all k-potents $a \in R$ can be used to describe $q - k - abelian$ rings, where $[x, y] := xy - yx$ is the additive commutator of a ring.

1 Introduction

In this article R is a ring consisting identity unless otherwise specified. We refer to the set of all idempotents, nilpotents, and units in R, respectively, as $I(R)$, $N(R)$ and $U(R)$. Also, we denote $\mathbb{T}_n(S)$, as the upper triangular matrix ring over any ring S. If for some natural number k, $a^k = a$, then an element a is said to be k-potent. We denote $K(R)$ as set of all k-potent elements of R. According to [\[2\]](#page-8-1), an element $e \in I(R)$ is called left (right) semicentral if $ere = re(ere = er)$ for each $r \in R$ and e is called central if $re = er$ for each $r \in R$. Whenever every idempotent e is central in a ring R, then the ring is said to be abelian. For all idempotent e in a ring R, either $er = ere$ or $re = ere$ for all r in R, then the ring R was considered to be semiabelian according to Chen [\[3\]](#page-8-2) (2007). Following that, the concept of semicentral idempotents and semiabelian rings was extensively researched by numerous researchers and extended in a variety of ways (refer to [\[2\]](#page-8-1), [\[4\]](#page-8-3), [\[9\]](#page-8-4), [\[6\]](#page-8-5), [\[14\]](#page-8-6), [\[16\]](#page-9-0), [\[15\]](#page-9-1) and [\[17\]](#page-9-2)). A k-potent $a \in R$ is called left (right) semicentral k-potent if $(a-1)Ra = 0$ $(aR(1-a) = 0)$ or $ara = ar$ $(ara = ar)$ for all $r \in R$.

Recently, the concept of semicentral idempotents in a ring was further extended by T. Y. Lam. According to T. Y. Lam [\[12\]](#page-8-7), if $eR(1-e)Re = 0$ for all $e \in I(R)$ then e is referred to be quartercentral, and if all of the idempotent elements in a ring R are q-central, then the ring is said to be quarter-abelian (simply, a q-abelian ring). Though $\mathbb{T}_2(S)$ (the set of all $n \times n$ upper triangular matrices over S) is q-abelian if and only if S is abelian, they demonstrated that for $n > 3$, $\mathbb{T}_n(S)$ is not q-abelian ring. They gave equivalent definitions of $q - abelian$ rings based on the concept of additive commutators of the ring $[x, y] := xy - yx$. Moreover, they studied and discussed the notion of q-central idempotents in relation to the idea of regular, unit-regular as well as strongly regular elements in arbitrary rings and various associated concepts. It is observed that abelian rings sits inside $q - abelian$ rings. In [[\[11\]](#page-8-8), Ex. 12.8C] we get, when for all a in R, $a^k = a$ for some $k \in \mathbb{N}$ then R is a commutative ring. But in this article, we are only interested in those k-potent elements $a \in R$ which are quarter central k-potent.

In this article, we further generalise as well as extend the concept of q-abelian rings by introducing the concept of $q - k - abelian$ rings using non-zero k-potent elements of the ring and we have established various properties associated with this concepts.

2 Preliminaries

In this section, we have presented some basic results which are needed in the following sections.

Following [\[7\]](#page-8-9) for a ring R, define a binary operation \circ on R as $a \circ b = a + b - ab$ for each $a, b \in R$. Then it can be easily proved that (R, \circ) is a monoid. An element $x \in R$ is said to be quasi-regular if x has an inverse i.e., there exists $x' \in R$ such that $x' \circ x = x \circ x' = 0$. $q(R)$ denotes the set of all quasi-regular elements in R. It is proved that $N(R) \subset q(R)$.

The following lemma is derived from [\[7\]](#page-8-9).

Lemma 2.1. *The subsequent claims are identical for a ring* R *and* $a \in K(R)$ *:*

- (1) a^{k-1} *is central. (2)* $ra^{k-1} = a^{k-1}ra^{k-1}$ *whenever r is in K*(*R*).
- (3) $ra^{k-1} = a^{k-1}ra^{k-1}$ whenever r is Von Neumann regular element.
- *(4)* $ra^{k-1} = a^{k-1}ra^{k-1}$ *whenever r is in N*(*R*)*.*
- *(5)* $ra^{k-1} = a^{k-1}ra^{k-1}$ whenever $r \in R$ and $r^2 = 0$.
- *(6)* $ra^{k-1} = a^{k-1}ra^{k-1}$ *whenever r is in q*(*R*).

Proposition 2.2. *The subsequent claims are identical for a ring* R *and* $a \in K(R)$ *:*

(1)
$$
ar = ara^{k-1}
$$
 for all $r \in R$ or, $aR(1 - a^{k-1}) = 0$.

- *(2)* $ar = ara^{k-1}$ *whenever r is in* $K(R)$ *.*
- *(3)* $ar = ara^{k-1}$ whenever *r is Von neumann regular element.*
- *(4)* $ar = ara^{k-1}$ *whenever r is in* $N(R)$ *.*
- *(5)* $ar = ara^{k-1}$ *whenever r is in R* and $r^2 = 0$.
- *(6)* $ar = ara^{k-1} whenever r is in q(R)$.

Proof. We can clearly see, $(1) \implies ((2), (3), (4), (5), (6))$ are obvious. For $(2) \implies (1)$. Let us consider $r = a^{k-1} - a^{k-1}x + a^{k-1}xa^{k-1}$ which is a k-potent element for any $x \in R$. So, $ara^{k-1} = ar \implies a(a^{k-1} - a^{k-1}x + a^{k-1}xa^{k-1})a^{k-1} = a(a^{k-1} - a^{k-1}x + a^{k-1}xa^{k-1}) \implies$ $a = a - ax + axa^{k-1} \implies ax = axa^{k-1}$. (3) \implies (2) is also clear, as every k-potent is regular. For (5) \implies (1). Let us consider $y = a^{k-1}xa^{k-1} - a^{k-1}x$ then $y^2 = 0$. Now $aya^{k-1} = ay \implies a(a^{k-1}xa^{k-1} - a^{k-1}x)a^{k-1} = a(a^{k-1}xa^{k-1} - a^{k-1}x) \implies 0 = axa^{k-1} - a^{k-1}x$ $ax \implies ax = axa^{k-1}$ for all $x \in R$. Again we notice that $(6) \implies (4)$ as $N(R) \subseteq q(R)$. Also, $(4) \implies (5)$ is clear.

 \Box

We have the next proposition, which is similar to Proposition [2.2.](#page-1-0)

Proposition 2.3. *The subsequent claims are identical for a ring* R and $a \in K(R)$ *:*

- *(1)* $ra = a^{k-1}ra$ *for all* r *is in* R *or,* $aR(1 a^{k-1}) = 0$ *.*
- (2) $ra = a^{k-1}ra$ whenever *r* is in $K(R)$.
- *(3)* $ra = a^{k-1}ra$ where r *is an element which is Von neumann regular.*
- (4) $ra = a^{k-1}ra$ whenever *r* is in $N(R)$.
- *(5)* $ra = a^{k-1}ra$ whenever *r is in R* and $r^2 = 0$.
- (6) $ra = a^{k-1}ra$ whenever *r* is in $q(R)$.

3 $q - k -$ Abelian Rings

We begin with the definition of $q - k - central$ elements and various characteristics of $q - k$ abelian rings using k -potent elements in a ring R . Moreover we discuss the relationship between regular elements and $q - k - central$ elements of R.

Definition 3.1. A k-potent element a in R is called quater $-k$ – central or $(a - k - central)$ if $aR(1 - a^{k-1})Ra = 0$ or $aRa'Ra = 0$ with the complimentary k-potent $a' = 1 - a^{k-1}$. The set of all $q - k - central$ elements of R which is represented by $q - K(R)$.

Definition 3.2. A ring R is said to be $q - k$ –abelian if all the k- potents of the ring are $q - k$ – central or $K(R) = q - K(R)$.

Lemma 3.3. A ring R is $q - k - abelian \iff axya = axa^{k-1}ya$ for any $a \in K(R)$; $x, y \in R$.

Proof. Let $x, y \in R$ and $a \in K(R)$. Let R be a $q - k - abelian$ ring then by Definition [3.1](#page-2-0) we get, $aR(1 - a^{k-1})Ra = 0$. Thus, $ax(1 - a^{k-1})ya = 0 \implies axya = axa^{k-1}ya$ for all $x, y \in R$. The converse part is clear.

Theorem 3.4. *If* a *is* $q - k - central$ *, the subsequent claims are identical for a ring* R and $a \in K(R)$:

- *(1)* $ar(1 a^{k-1})sa = 0$ *for all* $r, s ∈ R$ *or* $a ∈ q k(R)$ *;*
- *(2)* $ar(1 a^{k-1})sa = 0$ *whenever r*, *s* ∈ *U*(*R*)*;*
- *(3)* $ar(1 a^{k-1})sa = 0$ *whenever r*, *s* ∈ *I*(*R*)*;*
- *(4)* $ar(1 a^{k-1})sa = 0$ *whenever* $r^2 = s^2 = 0$, $k ≥ 2$ *;*
- *(5)* $ar(1 a^{k-1})sa = 0$ *whenever* $r \in a^{k-1}Ra'$ *and* $s \in a'Ra^{k-1}$ *. Where* $a' = 1 a^{k-1}$ *.*

Proof. It is clear that $(1) \implies (2), (3), (4)$ and (5) . (3) \implies (1) Let $x, y \in R$. Let us consider $r = a^{k-1} - a^{k-1}x + a^{k-1}xa^{k-1}$ and $s = a^{k-1} - a^{k-1}x + a^{k-1}x$ $ya^{k-1} + a^{k-1}ya^{k-1}$ Then we see $r^2 = (a^{k-1} - a^{k-1}x + a^{k-1}xa^{k-1}) = r$ and $s^2 = (a^{k-1} - a^{k-1}x + a^{k-1}x + a^{k-1}x^2)$ $ya^{k-1} + a^{k-1}ya^{k-1}$ = s. So, $r, s \in I(R)$. Now let, $a' = 1 - a^{k-1}$. By assumption $ara'sa = 0$ $\implies ar(1-a^{k-1})sa = 0 \implies arsa = ara^{k-1}sa \implies a(a^{k-1}-a^{k-1}x+a^{k-1}xa^{k-1})(a^{k-1}-a^{k-1}x)$ $ya^{k-1} + a^{k-1}ya^{k-1}$) $a = a(a^{k-1} - a^{k-1}x + a^{k-1}xa^{k-1})a^{k-1}(a^{k-1} - ya^{k-1} + a^{k-1}ya^{k-1})a$ $\implies axya = axa^{k-1}ya \implies ax(1 - a^{k-1})ya = 0 \implies axa'ya = 0 \forall x, y \in R.$ (2) \implies (4) Let $r, s \in R$ such that $r^2 = s^2 = 0$. Then $1 + r, 1 + s \in U(R)$. So by assumption $a(1+r)a'(1+s)a = 0 \implies (a+ar)(1-a^{k-1})(a+sa) = 0 \implies \ar{sa-arab}^{-1}sa = 0$ \implies ara'sa = 0. (4) \implies (1) Let, $r, s \in R$ we see $(a^{k-1}ra')^2 = a^{k-1}ra'aa^{k-2}ra' = 0$ and $(a'sa^{k-1})^2 =$ $a'sa^{k-2}aa'sa^{k-1} = 0$. So, by assumption $a(a^{k-1}ra')a'(a'sa^{k-1})a = 0 \implies ara'sa = 0$. (5) \implies (1) Let, $r, s \in R$ then $a^{k-1}ra'$ is in $a^{k-1}Ra'$ and $a'sa^{k-1}$ is in $a'Ra^{k-1}$. So, by

assumption $a(a^{k-1}ra')a'(a'sa^{k-1}) = 0 \implies ara'a'sa = 0 \implies ara'sa = 0$. Hence the proof.

Remark 3.5. For any ring R if a is left semicentral/right semicentral k-potent then a is $q - k$ − central. As, $0 = (1 - a)Ra = (1 + a + a^2 + ... + a^{k-2})(1 - a)Ra = (1 - a^{k-1})Ra$ $aR(1 - a^{k-1})Ra$. Similarly for right semicentral k-potent.

The following result is a modified Ánh-Birkenmeier-Van Wyk Theorem [[\[10\]](#page-8-10), Lemma 3.4].

Theorem 3.6. *The subsequent claims are identical for the ring* R *and* $a \in K(R)$ *with complementary* k -potent $a' = 1 - a^{k-1}$:

$$
(1) \ a \in q - K(R).
$$

- *(2) The map* $\psi : R \to a^{k-1}Ra^{k-1}$ *defined by* $\psi(r) = a^{k-1}ra^{k-1}$ *for* $k \ge 2$ *is a ring homomor*phism that sends unity to unity. Where a^{k-1} is the unity element in $a^{k-1}Ra^{k-1}$.
- *(3)* aRa′ *is a right ideal in R.*
- *(4)* a ′Ra *is a left ideal in R.*

Proof. (1) \iff (2) Let $a \in q - K(R)$ then $\psi(1) = a^{k-1} \cdot 1 \cdot a^{k-1} = a^{k-1}$ Let, $r_1, r_2 \in R$ then

$$
\psi(r_1 + r_2) = a^{k-1}(r_1 + r_2)a^{k-1}
$$

= $a^{k-1}r_1a^{k-1} + a^{k-1}r_2a^{k-1}$
= $\psi(r_1) + \psi(r_2)$.

Agian,

$$
\psi(r_1r_2) = a^{k-1}r_1r_2a^{k-1}
$$

= $a^{k-2}(ar_1r_2a)a^{k-2}$
= $a^{k-2}(ar_1a^{k-1}r_2a)a^{k-2} \iff a \in q - K(R)$
= $a^{k-1}r_1a^{k-1}a^{k-1}r_2a^{k-1} \iff a \in q - K(R)$
= $\psi(r_1)\psi(r_2) \iff a \in q - K(R)$.

Therefore, ψ is a ring homomorphism that sends unity to unity if and only if $a \in q - K(R)$.

(1) \iff (3) Let, $a \in q - K(R)$ then for any $r, s \in R$ $ara'sa = 0 \implies ara'sa^{k-1} = 0 \implies ara's(1 - a') = 0 \implies (ara')s = a(rx's)a' \in aRa'.$ So, aRa' is a right ideal.

conversely, let aRa' is a right ideal.

So, we have $(ara')s \in aRa'$ for any $r, s \in R$. So, $ara's = ar'a'$ for some $r' \in R$ and hence $ara'sa = (ara's)a = ar'a'a = 0.$ So, $a \in q - K(R)$. Similarly, we can prove $(1) \iff (4)$. \Box

Remark 3.7. It is observed that if both $a, b \in K(R)$ so that $a, b \in q - K(R)$ then aRb is not an ideal in R by following example.

Example 3.8. Let,
$$
R = \mathbb{T}_2(S)
$$
 and $a = b = \begin{pmatrix} -1 & 0 \ 0 & 0 \end{pmatrix}$ then, $a, b \in q - K(R)$ for $k = 3$, as
\n
$$
1 - a^2 = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} - \begin{pmatrix} -1 & 0 \ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}.
$$
 Therefore,
\n
$$
\begin{pmatrix} -1 & 0 \ 0 & 0 \end{pmatrix} \begin{pmatrix} t & s \ 0 & p \end{pmatrix} \begin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix} \begin{pmatrix} t' & s' \ 0 & p' \end{pmatrix} \begin{pmatrix} -1 & 0 \ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}
$$
 for any $t, s, p, t', s', p' \in S$.
\nBut $aRb = \left\{ \begin{pmatrix} t & 0 \ 0 & 0 \end{pmatrix} : t \in S \right\}$ is not an ideal.

Corollary 3.9. Suppose R is a ring and $a \in q - K(R)$ then the map ψ defined in Theorem [3.6\(](#page-2-1)2) *takes*

- *(1)* unit elements of R to unit elements of $a^{k-1}Ra^{k-1}$;
- *(2)* nilpotent elements of R to nilpotent elements of $a^{k-1}Ra^{k-1}$;
- *(3) idempotent elements of R to idempotent elements of* $a^{k-1}Ra^{k-1}$;
- (4) $\;$ right (left) semicental idempotents of R to right (left) semicentral idempotents of $a^{k-1}Ra^{k-1};$
- *(5)* $q k central$ *elements of* R *to* $q k central$ *elements of* $a^{k-1}Ra^{k-1}$.

Proof. As ψ is a unital ring homomorphsim so (1) to (4) are clear. For (5) let, $g \in q - K(R)$ for any $r, s \in R$ we have

 $(a^{k-1}ga^{k-1})(a^{k-1}ra^{k-1})(1-(a^{k-1}ga^{k-1})^{k-1})(a^{k-1}sa^{k-1})(a^{k-1}ga^{k-1})$ $=\psi(g)\psi(r)(\psi(1)-\psi(g)^{k-1})\psi(s)\psi(g)=\psi(g)\psi(r)(\psi(1)-\psi(g^{k-1}))\psi(s)\psi(g)$ $=\psi(gr(1-g^{k-1})sg)=\psi(0)=0.$

 \Box

Remark 3.10. It is observed that from Corollary [3.9\(](#page-3-0)5), when R is $q - k - abelian$ ring, consequently each ring of the type $a^{k-1}Ra^{k-1} \subseteq R$ is also $q - k - abelian$.

Corollary 3.11. *For any* $a \in q - K(R)$ *if* $r \in N(R)$ *then* { ra^{k-1} , $a^{k-1}r$, $a^{k-1}ra^{k-1}$, $ara, rar, ra^{k-1}r$ } ∈ N(R)*.*

Proof. Let $r^n = 0$ then we see

$$
(ra^{k-1})^{n+1} = ra^{k-1} \cdot ra^{k-1} \cdot \dots ra^{k-1}
$$

$$
= ra^{k-2}(ara^{k-1}ra)a^{k-2} \dots \dots ra^{k-1}
$$

$$
= ra^{k-2}(ar^2a)a^{k-2} \dots \dots ra^{k-1}
$$

In this way we will reach a certain stage where we have r^n and thus $(r a^{k-1})^{n+1} = 0$. Similarly we can check the others.

Remark 3.12. It is observed from Theorem [3.6](#page-2-1) that R is $q - k - abelian$ if and only if for all $aR(1 - a^{k-1})$ is a right ideal or $(1 - a^{k-1})Ra$ is a left ideal for every $a \in K(R)$. If $k = 2$ then $q - k - abelian$ and $q - abelian$ rings coincide. In general $q - abelian$ rings sit inside $q - k - abelian$ rings. Further, it is apparent that a ring is $q - k - abelian$ if it is abelian. As, for any $a \in K(R)$ we have, $a^{k-1} \in I(R)$ also, $1 - a^{k-1} \in I(R)$. But $q - k - abelian$ ring need not be abelian by the following example.

Example 3.13. Let us consider the abelian ring $S = \mathbb{Z}_6$ and thus $R = \mathbb{T}_2(S)$ is a $q - k - abelian$ ring for $k = 2$ by [[\[12\]](#page-8-7), Theorem 3.5].

Now we show that $R = \mathbb{T}_2(S)$ is not semi abelian ring and hence not abelian.

we take
$$
A = \begin{pmatrix} 3 & 0 \ 0 & 4 \end{pmatrix} \in K(\mathbb{T}_2(S))
$$
 but, $\begin{pmatrix} 3 & 0 \ 0 & 4 \end{pmatrix} \begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix} \begin{pmatrix} 4 & 0 \ 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 3 \ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$.
Also, $\begin{pmatrix} 4 & 0 \ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 \ 0 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 4 \ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$. So, A is not semicentral.

Proposition 3.14. *For a ring* R and $r \in N(R)$, if $a \in q - K(rR)$ *then* $a = 0$. It also holds if rR *is replaced by* Rr*.*

Proof. We consider a nilpotent element r of index m. Let $a \in q - K(rR)$ then $a = rs$ for some $s \in R$ then we have $a = a^k = a(a^{k-2})a = a((rs)^{k-2})a = ar(s(rs)^{k-3})a =$ $ara^{k-1}(s(rs)^{k-2})a = ara(a^{k-2}(s(rs)^{k-2}))a = ar^2s(a^{k-2}(s(rs)^{k-2}))a = \dots$. In this way after a finite number of steps we obtain, r^m which is 0 and thus $a = 0$. \Box

Following results are extension of Wei and Li's $[[17]$ $[[17]$, Theorems (2.4) , (2.8) and (2.9)].

Proposition 3.15. *(1) For any ring* R and $a \in q - K(R)$ *such that* $RaR = R$ *then* $a^{k-1} = 1$ *.*

- *(2)* q − k − abelian *ring is Dedekind finite. But the converse is not true.*
- *Proof.* (1) $aR(1 a^{k-1})Ra = 0 \implies RaR(1 a^{k-1})RaR = 0 \implies R(1 a^{k-1})R = 0.$ As, $1 \in R$. So, $a^{k-1} = 1$.
- (2) Let R be $q k abelian$ ring and $xy = 1$. We consider $a = yx$ then $a^2 = yxyx = yx = a$ so, $a \in I(R) \subseteq K(R)$. So, $a^k = a$ for all $k \ge 2$. Now, $xay \in RaR$ also, $xay = xyxy =$ $1 \in R$. So, $RaR = R$. Therefore by part (1) $a^{k-1} = 1 \implies (yx)^{k-1} = 1 \implies$ $(yxy...xyx)_{(k-1)conies} = 1 \implies yx = 1.$

For the converse part we consider $\mathbb{T}_3(R)$ upper triangular matrix ring which is Dedekind $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$

finite. But
$$
A = diag(1, 0, 1) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \notin q - K(R)
$$
 for $k = 2$.

 \Box

From Proposition [3.15\(](#page-4-0)1), for any $a \in K(R)$ we obtain $a^{k-1} \in I(R)$ so any simple ring R has only trivial $q - k - central$ elements. Thus as a consequences we obtain the subsequent results.

Proposition 3.16. For a ring R and M is a maximal ideal of R. If $a \in q - K(R)$ then a or $a' = 1 - a^{k-1} \in M$

Proof. We have $\frac{R}{M}$ is a simple ring if M is a maximal ideal of R. Therefore $\frac{R}{M}$ has only trivial k-potent elements and consequently $q - k - central$ elements.

Proposition 3.17. For a ring R and $a \in q - K(R)$. If $M \subseteq R$ is a maximal right ideal, or a *maximal left ideal then* $a \in M$ *or* $a' = 1 - a^{k-1} \in M$.

Proof. Considering that, $a, a' \notin M$ which is maximal right ideal. As $1 \in R$, so there exists $m, m' \in M$ and $r, s \in R$ such that $1 = ar + m = a's + m'$. Now, $a = 1.a = (a's + m')a$ $a'sa + m'a = (ar + m)a'sa + m'a = ara'sa + ma'sa + m'a = m(a'sa) + m'a \in M$ which is a contradiction. So, $a \in M$ or $a' = 1 - a^{k-1} \in M$. Similarly for maximal left ideal. \Box

Proposition 3.18. For a ring R and $a \in q - K(R)$ and $ar(1 - a^{k-1}) \neq 0$ for some $r \in R$.

- *(1)* If aR is minimal left ideal then $a^2 = 0$.
- *(2)* If aR is minimal right ideal then $a^2 = 0$.

Proof. (1) Let $a' = 1 - a^{k-1}$. We have $ara' \neq 0$ for some r is in R and consider aR is minimal left ideal. Then $0 \text{ }\subset ar a' R \subseteq a R \implies aR = ar a' R \implies aR \subseteq aRa' R \implies aRa \subseteq$ $aRa'Ra = 0$. Since, $1 \in R$ we have $a^2 = 0$. Similarly we can prove (2). \Box

We note that for any 2 \times 2 upper triangular matrix $\begin{pmatrix} t & s \\ s & t \end{pmatrix}$ $0\quad p$ \setminus to be k -potent we must have t, p also k-potent. This is because, $\begin{pmatrix} t & s \\ o & \end{pmatrix}$ $0\quad p$ \setminus^k = $\int t$ s $0 \mid p$ \setminus $\implies t^k = t \text{ and } p^k = p.$

Proposition 3.19. Let S be any arbitrary ring and $R = \mathbb{T}_2(S)$. Consider $A = \begin{pmatrix} t & s \\ 0 & s \end{pmatrix}$ $0\quad p$ \setminus ∈ K(R)*, where necessarily* $t, p \in K(S)$ *. If* $tS(1-t^{k-1}) = 0$ and $(1-p^{k-1})Sp = 0$ then $T \in q - K(R)$ *.*

Proof. Let
$$
A' = 1 - A^{k-1} = \begin{pmatrix} 1 - t^{k-1} & * \\ 0 & 1 - p^{k-1} \end{pmatrix}
$$
 then for any $X = \begin{pmatrix} a_1 & a_2 \\ 0 & a_3 \end{pmatrix}$,
\n
$$
V = \begin{pmatrix} b_1 & b_2 \end{pmatrix}
$$

 $Y =$ $0 \t b_3$ we have

$$
AX A' = \begin{pmatrix} t & s \\ 0 & p \end{pmatrix} \begin{pmatrix} a_1 & a_2 \\ 0 & a_3 \end{pmatrix} \begin{pmatrix} 1 - t^{k-1} & * \\ 0 & 1 - p^{k-1} \end{pmatrix}
$$

=
$$
\begin{pmatrix} ta_1(1 - t^{k-1}) & * \\ 0 & pa_3(1 - p^{k-1}) \end{pmatrix}
$$

=
$$
\begin{pmatrix} t & s \\ 0 & p \end{pmatrix} \begin{pmatrix} a_1 & a_2 \\ 0 & a_3 \end{pmatrix} \begin{pmatrix} 1 - t^{k-1} & * \\ 0 & 1 - p^{k-1} \end{pmatrix}
$$

=
$$
\begin{pmatrix} ta_1(1 - t^{k-1}) & * \\ 0 & pa_3(1 - p^{k-1}) \end{pmatrix}
$$

=
$$
\begin{pmatrix} 0 & * \\ 0 & pa_3(1 - p^{k-1}) \end{pmatrix} (since, tS(1 - t^{k-1}) = 0)
$$

Again

Therefore, $A \in$

$$
A'YA = \begin{pmatrix} 1 - t^{k-1} & * \\ 0 & 1 - p^{k-1} \end{pmatrix} \begin{pmatrix} b_1 & b_2 \\ 0 & b_3 \end{pmatrix} \begin{pmatrix} t & s \\ 0 & p \end{pmatrix}
$$

$$
= \begin{pmatrix} (1 - t^{k-1})b_1 t & * \\ 0 & (1 - p^{k-1})b_3 p \end{pmatrix}
$$

$$
= \begin{pmatrix} (1 - t^{k-1})b_1 t & * \\ 0 & 0 \end{pmatrix} (Since, (1 - p^{k-1})Sp = 0)
$$
Now, $AX A'YA = AXA' . A'YA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
Therefore, $A \in q - K(R)$.

Proposition 3.20. *Let* $R = \mathbb{T}_2(S)$ *. If* R *is* $q - k - abelian$ *then* S *is* $q - k - abelian$ *.*

 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 &$ \setminus $\in K(R)$ then the complimentary k-potent $A' =$ *Proof.* Let $a \in K(S)$ and $A =$ $0 \quad a$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ \setminus $\in K(R)$. We consider $X = sE_{12}$, $Y = rE_{22}$. Then, $AXA'YA = 0 \implies$ 0 $1 - a^{k-1}$ $(E_{11} + aE_{22})sE_{12}A'rE_{22}(E_{11} + aE_{22}) = 0 \implies as(1 - a^{k-1})ra = 0$, as $s, r \in S$ are arbitrary. So, $a \in q - K(S)$. Therefore, S is $q - k - abelian$. \Box

 \Box

Proposition 3.21. *Let* S *be a ring. If* S *is abelian and* $aSb = 0$ *for all* $a, b \in K(S)$ *, where both* a, b non trivial then $R = \mathbb{T}_2(S)$ is $q - k - abelian$.

Proof. Let S be an *abelian* ring. We consider $A =$ $\int a$ s $0 \quad b$ $\Big) \in K(\mathbb{T}_2(S))$, where necessarily $a, b \in K(S)$ and the complimentary k-potent of A is $A' =$ $\int a' \quad s'$ $0 \quad b'$ \setminus where, $a' = 1 - a^{k-1}$, $b' = 1 - b^{k-1}$ and for some $s' \in S$. Now, we show $\mathbb{T}_2(S)$ is $q - k - abelian$, for this we have to prove $AXA'YA = 0$ for any $X, Y \in \mathbb{T}_2(S)$. Let $X =$ $\int a_1 \quad a_2$ $0 \quad a_3$ \setminus and $Y =$ $\begin{pmatrix} b_1 & b_2 \end{pmatrix}$ $0 \t b_3$ $\Big\} \in \mathbb{T}_2(S).$ Now, $AXA' =$ $\int a$ s $0 \quad b$ $\bigwedge a_1 \quad a_2$ $0 \quad a_3$ $\bigwedge a'$ s' $0 \quad b'$ \setminus = $\int a a_1 a' \, a a_1 s' + (a a_2 + s a_3) b'$ 0 ba_3b' \setminus = $\begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix}$ as *S* is abelian so $aa_1a' = aa'a_1 = 0$, $ba_3b' = bb'a_3 = 0$. Again, $YA =$ $\begin{pmatrix} b_1 & b_2 \end{pmatrix}$ $0 \quad b_3$ $\bigwedge a$ s $0 \t b$ \setminus = $\int b_1a \quad b_1s + b_1b$ 0 b_3b \setminus Therefore, $AXA'YA =$ $\begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b_1a & b_1s + b_1b \\ 0 & b_3b \end{pmatrix}$ \setminus = $\begin{pmatrix} 0 & *b_3b \\ 0 & 0 \end{pmatrix}$ Here, $*b_3b = (aa_1s' + (aa_2 + sa_3)b')b_3b = aa_1s'b_3b + aa_2p'b_3b + sa_3b'b_3b = 0$, as $aSb = 0$, S is abelian and $b'b = 0$. Therefore, $AXA'YA = 0$.

Remark 3.22. Abelian condition of S in the above proposition can not be ignored. For example we take the non abelian ring $S = \mathbb{H}/(\mathbb{Z}_{13})$, Quaternion ring with co-efficients from \mathbb{Z}_{13} . Consider, $t = 7+4i$ which is an idempotent and its complimentary idempotent for $t' = 1-t = -6 4i = 7-4i = \bar{t}$ thus $\begin{pmatrix} t & 0 \\ 0 & \bar{t} \end{pmatrix}$ $0 \quad t$ $\mathcal{E} \left(\mathbb{T}_2(S) \right)$ But, $\begin{pmatrix} t & 0 \\ 0 & \bar{t} \end{pmatrix}$ $0 \quad \bar{t}$ $\begin{pmatrix} j & 0 \ 0 & 0 \end{pmatrix} \begin{pmatrix} \bar{t} & 0 \ 0 & t \end{pmatrix}$ $\left(\begin{matrix} 0 & 1 \ 0 & 0 \end{matrix}\right) \left(\begin{matrix} t & 0 \ 0 & \bar{t} \end{matrix}\right)$ \setminus =

 $\begin{pmatrix} 0 & t j \bar{t} \bar{t} \\ 0 & 0 \end{pmatrix} \neq$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $t j \bar{t} \bar{t} = 7j + 4k$. Therefore, $\mathbb{T}_2(S)$ is not $k - abelian$ for $k = 2$.

Theorem 3.23. For any non zero ring S. Then $R = \mathbb{T}_n(S)$ is not $q - k - abelian ring$ for $n \geq 3$.

Proof. Since, we have a corner ring of R which is isomorphic to $\mathbb{T}_3(S)$. For any $A \in K(R)$ we have the corner ring of the type $A^{k-1}RA^{k-1}$ is isomorphic to $\mathbb{T}_3(S)$. So, by Remark [3.10](#page-4-1) it is enough to prove $\mathbb{T}_3(S)$ is not $q - k - abelian$.

Let $A =$ $\sqrt{ }$ $\overline{ }$ a 0 0 0 0 0 $0 \quad 0 \quad a$ ¹ , $a \neq 0$ with the complimentary idempotent $A' = \emptyset$ $\sqrt{ }$ $\overline{\mathcal{L}}$ a' 0 0 0 1 0 $0 \quad 0 \quad a'$ \setminus $\Big\}$, where

 $a' = 1 - a^{k-1}$. Let us consider $X = E_{12}$, $Y = E_{23} \in R$, so we have, $AXA'YA = AE_{12}A'E_{23}A =$ $a^2E_{13} \neq 0$. Therefore, A is not $q - k - central$ consequently $\mathbb{T}_3(S)$ is not $q - k - abelian$. So, R is not $q - k - abelian$.

4 Some applications

In accordance with [\[13\]](#page-8-11), an element x in a ring R is said to as π -regular if there exists y in R such that $x^n = x^n y x^n$; $n \ge 1$ and for $n = 1$, x is referred to as Von Neumann regular. If $x^n = y x^{n+1}$ then x is called strongly π -regular and x is said to be strongly regular if $n = 1$. A ring R is said to be Von Neumann regular, strongly regular, π -regular and strongly π -regular if every elements of R is Von Neumann regular, strongly regular, π -regular and strongly π -regular respectively. A ring R is referred to as a unit-regular, if for any $a \in R$ such that $a = au$, where u is in $U(R)$. We have unit regular implies Von Neumann regular. It is well known that a ring R is said to be strongly regular if and only if it is reduced and Von Neumann regular [[\[11\]](#page-8-8), Ex. 12.6A].

As an immediate consequence of Theorem [4.6,](#page-8-12) we obtain the subsequent remark.

Remark 4.1. Let us consider R be a ring and $x \in R$ is a regular element (Von Neumann) such that $l_R(x) = Rx^{n-1}$, $n \ge 3$ then we have R is not a $q - k - abelian$ ring by [[\[5\]](#page-8-13), Theorem 2.4]. Here, $l_R(x) = \{a \in R : ax = 0\}$

Lemma 4.2. Let us consider a $q - k - abelian ring R$ and x is in R. Then x is strongly regular *whenever* x *is Von Neumann regular.*

Proof. For some $y \in R$ we get, $x = xyx$ if x is Von Neumann regular. Let $a \in K(R)$ and let $a = yx$, then $a^k = (yxyx...yx)_{(k)copies} = yxyx = yx = a, a^{k-1} = (yxyx...yx)_{(k-1)copies} = a$ $yx = a$ and $x = xa$. Since, $a = a^k = a^{k-1}aa^{k-1} = a yxa = aya^{k-1}xa$, by Lemma [3.3.](#page-2-2) Thus, $a = aya^{k-1}xa = ayaxa = ayyxx = ay^2x^2$. Thus, we get $x = xa = xay^2x^2 =$ xy^2x^2 . In a similar way, we can prove that $x = x^2y^2x$. Hence x is strongly regular.

Corollary 4.3. *If* x *is an unit* π *-regular then there is a k-potent,* $a \in K(R)$ *so that* ax *and* x a *are Von Neumann regular.*

Proof. If x is an unit π -regular then there exists $n \geq 1$, such that $x^n = x^n u x^n$, where $u \in U(R)$, this implies that x^n is Von Neumann regular. So by Lemma [4.2,](#page-7-0) x^n is strongly regular. Let $a =$ $x^n u$ then $a^k = (x^n u x^n u \dots x^n u)_{(k) copies} = x^n u x^n u = x^n u = a$. Thus, $a^k = a$ and so a is a kpotent. Also, $x^n = ax^n$ and $a^{k-1} = (x^n u x^n u ... x^n u)_{(k-1) copies} = x^n u \implies x^n = a^{k-1} u^{-1} =$ $a^{k-1}v$, for $v = u^{-1}$. Since, $(ax)(x^{n-1}u)(ax) = ax^n uax = aa^{k-1}v uax = a^k v uax = a^k 1ax =$ $a^k x = ax$, as $a^{k-1} = x^n u = a$. This shows that ax is Von Neumann regular.

Similarly, it can be proved that xa is also Von Neumann regular by letting $a = ux^n$.

 \Box

 \Box

In the following results we have tried to build a new criteria for a k -potent element to be $q - k - central$ in terms of additive commutators.

Proposition 4.4. *The subsequent claims are identical for a ring* R and $a \in K(R)$ *:*

 (l) $aR.[a^{k-1}, R] = 0;$ (2) $a.[a^{k-1},R]=0;$ *(3)* $ar - ara^{k-1} = 0$ *for all* $r \in R$ *. Proof.* (1) \implies (2) trivial as $1 \in R$. (2) \implies (3) Assume, $a[a^{k-1}, R] = 0$ then $a(a^{k-1}r - ra^{k-1}) = 0$ for all $r \in R$. Therefore, $ar - ara^{k-1} = 0$ for all $r \in R$ as, $a^k = a$. (3) \implies (1) For all $r \in R$, we assume, $ar - ara^{k-1} = 0$. Now, $aR[a^{k-1}, R] = ar(a^{k-1}s - sa^{k-1}) = (ara^{k-1})s - arsa^{k-1} = (ar)s - arsa^{k-1} = 0$ $a(rs) - a(rs)a^{k-1} = 0$ for all $r, s \in R$.

Similar to Proposition [4.4,](#page-8-14) we have the next proposition.

Proposition 4.5. *The subsequent claims are identical for a ring* R and $a \in K(R)$ *:*

 (I) [R, a^{k-1}]. $aR = 0$; (2) [R, a^{k-1}]. $a = 0$; *(3)* $ra - a^{k-1}ra = 0$ *for all* $r \in R$ *.*

Based on the Propositions [4.4](#page-8-14) and [4.5,](#page-8-15) we demonstrate the subsequent result.

Theorem 4.6. For a ring R and $a \in K(R)$. Then $a \in q - K(R) \iff a[a^{k-1}, R][R, a^{k-1}]a = 0$

Proof. Let $a \in K(R)$ then $a[a^{k-1}, R][R, a^{k-1}]a = 0$ $\Leftrightarrow a(a^{k-1}r - ra^{k-1})(sa^{k-1} - a^{k-1}s)a = 0$ $\iff (ar - ara^{k-1})(sa - a^{k-1}sa) = 0$ $\iff \ar{s}a - \ar{a}^{k-1}s a - \ar{a}^{k-1}s a + \ar{a}^{k-1}s a = 0$ $\iff \ar{s}a - \ar{a}^{k-1}s$ a = 0 for all $r, s \in R$ $\iff a \in q - K(R).$ \Box

Corollary 4.7. *A ring* R *is* $q - k - abelian \iff a[a^{k-1}, R][R, a^{k-1}]a = 0$ *for all* $a \in K(R)$ *.*

References

- [1] A. Badawi, On Abelian π-regular Rings, *Comm. Algebra* 25 (4) (1997) 1009–1021.
- [2] G. F. Birkenmeier, Idempotents and Completely Semiprime Ideals, *Comm. Alg.*, 11(1983), 567–580.
- [3] W. Chen (2007), On semiabelian π -regular rings, Int. J. Math. Math. Sci. 2007:63171.
- [4] W. Chen and S. Y. Cui (2010), On π-regularity of general rings. Commun. Math. Research 26:313–320
- [5] D. R. Goyal and D. Khurana, A characterisation of matrix rings, Bulletin of the Australian Mathematical Society 107.1 (2023): 95-101.
- [6] J. Han, Y. Lee and S. Park (2014), Semicentral idempotents in a ring. J. Korean Math. Soc. 51:463–472
- [7] H. Heatherly and R. P. Tucci, Central and Semicentral Idempotents, *Kyungpook Math. J.* 40(2000), 255– 258
- [8] H. M. I Hoque and H. K. Saikia, A study on weakly tri normal and quasi tri normal rings, *Palestine Journal of Mathematics,* vol. 12 (2), (2023), 125–132
- [9] P. Kanwar, A. Leroy and J. Matczuk, (2013). Idempotents in ring extensions. J. Algebra 389:128–136
- [10] P. N. Ánh, G. F. Birkenmeier and L. V. Wyk, (2016). Idempotents and structures of rings. Linear Multilinear Algebra 64:2002–2029.
- [11] Lam, Tsit-Yuen. Exercises in classical ring theory. Springer Science & Business Media, 2006.
- [12] T. Y. Lam (2022): An introduction to q-central idempotents and q-abelian rings, Communications in Algebra, DOI: 10.1080/00927872.2022.2123921
- [13] J. Lambek, Lectures on rings and modules, *AMS Chelsea Publishing.*
- [14] Lomp, C., Matczuk, J. (2017). A note on semicentral idempotents. Commun. Algebra 45:2735–2737
- [15] A. Sahan (2019), Elementary reduction of idempotent matrices over semiabelian rings. In Proceedings, XII International Algebraic Conference in Ukraine.
- [16] J. Wei and L. Li (2010), Quasi-normal rings. Commun. Algebra 38:1855–1868.
- [17] J. Wei and N. Li (2011), Some notes on semiabelian rings. Int. J. Math. Math. Sci. 2011:154636

Author information

Saurav J. Gogoi, Department of Mathematics, Gauhati University, Guwahati-781014, India. E-mail: sauravjyoti53@gmail.com

H. M. Imdadul Hoque, Department of Mathematics, Gauhati University, Guwahati-781014, India. E-mail: imdadul298@gmail.com

Helen K. Saikia, Department of Mathematics, Gauhati University, Guwahati-781014, India. E-mail: hsaikia@yahoo.com

Received: 2023-09-09 Accepted: 2024-07-10