
Palestine Journal of Mathematics

Vol 13(4)(2024) , 972–982 © Palestine Polytechnic University-PPU 2024

RADICAL ANTI-INVARIANT LIGHTLIKE
SUBMANIFOLDS OF KAEHLAR STATISTICAL MANIFOLD

M. Ahmad and M. Alam

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 53C15, 53C40; Secondary 53C20.

Keywords and phrases: Riemannian manifold, Kaehlar manifold, statistical manifold.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that

improved the quality of our paper.

All authors would like to thank Integral University, Lucknow, India, for providing the manuscript number IU/R & D/2023-

MCN0002169 for the present research work.

Abstract In this paper, we introduce Kaehlar statistical manifold and investigated Radical
anti-invariant lightlike submanifolds of Kaehlar statistical manifold. One example related to
these concepts is also presented.

1 Introduction

The theory of submanifolds of a semi-Riemannian manifold is one of the most interesting topics
in differential geometry. Lightlike submanifolds were introduced and studied by Duggal and
Bejancu [1, 2, 3]. Kilic and Sahin [4] introduced radical anti-invariant lightlike submanifolds
of a semi-Riemannian product manifold. Ahmad [5] discussed submanifolds in a Riemannian
manifold with a golden structure. Qayyoom [6] investigated hypersurfaces immersed in a golden
Riemannian manifold with a golden structure. Acet et. al. [7] discussed lightlike submanifolds
of a para-Sasakian manifold admitting semi-metric connection.

A statistical manifold is a modern and fascinating subfield of manifolds that originated from
the study of geometric structures on sets of certain probability distributions. It is a differentiable
manifold where each point represents a probability distribution. The set of all probability mea-
sures is a statistical manifold with infinite dimensions where each point in parameter space is
connected to a probability density function. Many ideas from the Euclidean space can be gen-
eralised to the statistical manifold. Additionally, these manifolds are geometrically described
as Riemannian manifolds with a particular affine connection. Effron [8] first emphasized the
role of differential geometry in statistics in 1975. Aydin [9] obtained generalized Weingarten
inequalities for submanifolds of statistical manifolds of constant curvature. Rao [10] was the
one to relate geometry with statistics resulting in the formation of the statistical manifold. He
used Fisher information matrix to introduce the concept of Riemannian metric. Although vari-
ous researchers worked in this direction in the subsequent years, yet an appreciable amount of
work was done by Amari [11, 12, 13] and Simon [14] when they introduced statistical manifold
on the basis of information geometry which is the study of probability and information from
the view point of differential geometry having applications in the fields of statistics and applied
mathematics. Then, Vos [15] developed certain fundamental equations and structural formu-
lae for the statistical manifold. Thereafter, Kurose [16] developed the concept of holomorphic
statistical manifold which was further elaborated by Furuhata et.al [17, 18, 19, 20]. Balgeshir
[21, 22] introduced submanifolds of Sasakian statistical manifolds and semi-Riemannian sta-
tistical manifolds, Siddiqui et. al. [23] discusses the trans-Sasakian manifolds. Bahadir [24]
discussed lightlike geometry of indefinite Sasakian statistical manifolds, Ahmad et. al. [25] in-
troduced lightlike submanifolds of an indefinite LP-Sasakian statistical manifolds, Prasad [26]
dicussed conformal anti-invariant of Kaehlar maniolds and Kaur [27] introduces distributions in
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CR-lightlike submanifolds of Kaehler statistical manifold.
Almost Hermitian statistical manifolds have been the subject of a significant amount of effort

in recent years. Keeping in focus the above facts, in this paper we introduce radical anti-invariant
lightlike submanifolds of Kaehlar Statistical manifold.
In section 2, we define statistical manifolds from differential geometry point of view. Further,
Kaehlar statistical manifold is defined and some results are given for further use.
In section 3, we consider radical anti-invariant lightlike submanifolds of Kaehlar statistical man-
ifold. We characterize integrability and self adjoint of some distributions and also given one
examples on radical anti-invariant lightlike submanifolds.

2 Basic concepts

A submanifold Om immersed in a semi-Riemannian manifold (Õm+n, q̃) is called a lightlike
submanifold if it is a lightlike manifold with respect to the metric q induced from q̃ and the
radical distribution Rad TO is of rank r, where 1 ≤ r ≤ m. Let S(TO) be a screen distribution
which is a semi-Riemannian complementary distribution of Rad TO in TO, that is

TO = Rad TO⊥S(TO).

Consider a screen transversal vector bundle S(TO⊥), which is a semi-Riemannian complemen-
tary vector bundle of Rad TO in TO⊥. Since for any local basis {ζi} of Rad TO, there exists
a local null frame {Ji} of section with values in the orthogonal complement of S(TO⊥) in
[S(TO)]⊥ such that q̃(ζi, Jj) = δij , it follows that there exist a lightlike transversal vector bun-
dle ltr(TO) locally spanned by {Ji} [[3], pg-144]. Let tr(TO) be a complementary (but not
orthogonal) vector bundle to TO in T Õ|O. Then

tr(TO) = ltr(TO)⊥S(TO⊥),

T Õ|O = S(TO)⊥[Rad (TO)⊕ ltr(TO)]⊥S(TO⊥).

Following are four subcases of a lightlike submanifold (O, q, S(TO), S(TO⊥).
Case 1: r-lightlike if r < min{m,n},
Case 2: Co-isotropic if r = n < m; S(TO⊥) = 0,
Case 3: Isotropic if r = m < n; S(TO) = 0,
Case 4: Totally lightlike if r = m = n; S(TO) = 0 = S(TO⊥).

The Gauss and Weingarten equations are

∇̃GH = ∇GH + h(G,H), ∀ G, H ∈ Γ(TO), (2.1)

∇̃GJ = −APG+∇t
PG, ∀ P ∈ Γ(tr(TO)), (2.2)

where {∇GH, APG} and {h(G,H), ∇t
GP} belongs to Γ(TO) and Γ(tr(TO)), respectively, ∇

and ∇t are linear connections on O and on the vector bundle tr(TO), respectively. Moreover,
we have

∇̃GH = ∇GH + hl(G,H) + hs(G,H), (2.3)

∇̃GJ = −AJG+∇l
GJ +Ds(G, J), (2.4)

∇̃GW = −AWG+∇s
GW +Dl(G,W ) (2.5)

for every G, H ∈ Γ(TO), J ∈ Γ(ltr(TO)) and W ∈ Γ(S(TO⊥)). Then, by using (2.1),
(2.3)-(2.5) and the fact that ∇̃ is a metric connection, we get

q̃(hs(G,H), L) + q̃(H,Dl(G,L)) = q(ALG,H). (2.6)

[21] In general, the induced connection ∇ on O is not a metric connection, by using (2.3), we
have

(∇Gq)(H,L) = q̃(hl(G,H), L) + q̃(hl(G,L), H) (2.7)
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for anyG, H ∈ Γ(TO), where {∇GH,AJG,AWG} ∈ Γ(TO), {hl(G,H),∇l
GJ} ∈ Γ(ltr(TO))

and {hs(G,H),∇s
GJ} ∈ Γ(S(TO⊥)). If we set Bl(G,H) = q̃(hl(G,H), ζ), Bs(G,H) =

q̃(hs(G,H), ζ), τ l(G) = q̃(∇l
GJ, ζ) and τs(G) = q̃(∇s

GJ, ζ), then equation (2.3), (2.4) and
(2.5) become

∇̃GH = ∇GH +Bl(G,H)J +Bs(G,H)J, (2.8)

∇̃GJ = −AJG+ τ l(G)J + Es(G, J), (2.9)

∇̃GW = −AWG+ τs(G)W + El(G,W ) (2.10)

respectively.

Definition 2.1. [17, 24] Assume that Õ be a differentiable manifold. Ω̃ to be an affine connection
with the torsion tensor T Ω̃ and q̃ be a semi-Riemannian metric on Õ. Then the pair (Ω̃, q̃) is
called statistical structure on Õ if

(1) (Ω̃Gq̃)(H,L)− (Ω̃H q̃)(G,L) = q̃(T Ω̃(G,H), L) for all G, H, L ∈ Γ(T Õ)
and

(2) T Ω̃ = 0.

Definition 2.2. [17, 24] Assume that (Õ, q̃) to be a semi-Riemannian manifold. Ω̃ and Ω̃∗ are
two affine connections on Õ are said to be dual with respect to the metric q̃, if

Lq̃(G,H) = q̃(Ω̃LG,H) + q̃(G, Ω̃∗
LH) (2.11)

for all G, H, L ∈ Γ(T Õ).
A statistical manifold is denoted by (Õ, q̃, Ω̃, Ω̃∗). If ∇̃ is Levi-Civita connection of q̃, then

∇̃ =
1
2
(Ω̃ + Ω̃

∗). (2.12)

In (2.12), by choosing Ω̃∗ = Ω̃, Levi-Civita connection can be obtained.

Lemma 2.3. [18, 24] For statistical manifold (Õ, q̃, Ω̃, Ω̃∗), we set

F̃ = Ω̃ − ∇̃. (2.13)

Then, we have
F̃(G,H) = F̃(H,G), q̃(F̃((G,H), L) = q̃(F̃((G,L), H) (2.14)

for all G, H, L ∈ Γ(T Õ).
Conversely, for a Riemannian metric q̃, if F̃ satisfies (2.14), the pair (Ω̃ = ∇̃+ F̃, q̃) is statistical
structure on Õ.

Definition 2.4. [27] Let (Õ, ψ, q̃) be almost Hermitian manifold with an almost complex struc-
ture ψ and Hermitian metric q̃ such that for all G, H ∈ Γ(T Õ),

ψ2 = −I, q̃(ψG,ψH) = q̃(G,H). (2.15)

Let ∇ be the Levi-Civita connection of Õ with respect to metric q̃, then the covariant derivative
of ψ is defined by

(∇Gψ)H = ∇GψH − ψ∇GH. (2.16)

Almost Hermitian manifold Õ is called Kaehler manifold if ψ is parallel with respect to ∇,i.e.

(∇Gψ)H = 0. (2.17)

Definition 2.5. Let (q̃, ψ) be Kaehlar structure on Õ. A quadruplet (Ω̃ = ∇̃+ F̃, q̃, ψ) is called
Kaehlar statistical structure on Õ if (Ω̃, q̃) is a statistical structure on Õ and the formula

F̃(G,ψH) = −ψF̃(G,H) (2.18)

holds for any G, H ∈ Γ(T Õ), then (Õ, Ω̃, q̃, ψ) is said to Kaehlar statistical manifold.
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Let (O, q) be a lightlike submanifold of a statistical manifold (Õ, q̃, Ω̃, Ω̃∗), then Gauss and
Weingarten formulas with respect to dual connections are given by

Ω̃GH = ΩGH +Bl(G,H)J +Bs(G,H)J, (2.19)

Ω̃GJ = −AJG+ τ l(G)J + Es(G, J), (2.20)

Ω̃GW = −AWG+ τs(G)W + El(G,W ), (2.21)

Ω̃
∗
GH = Ω

∗
GH +Bl∗(G,H)J +Bs∗(G,H)J, (2.22)

Ω̃
∗
GJ = −A∗

JG+ τ l
∗
(G)J + Es

∗
(G, J), (2.23)

Ω̃
∗
GW = −A∗

WG+ τs
∗
(G)W + El

∗
(G,W ) (2.24)

for all G,H ∈ Γ(TO), J ∈ Γ(ltrTO) and W ∈ Γ(S(TO⊥)).
Here, Ω ,Ω∗, B, Bl∗ , Bs, Bs∗ , AJ , and A∗

J are called the induced connections on O, the
second fundamental forms and the Weingarten mappings with respect to Ω̃ and Ω̃∗, respectively.

3 Radical anti-invariant lightlike submanifolds of Kaehlar statistical
manifold

Definition 3.1. Let O be a lightlike submanifold of a semi-Riemannian Kaehlar statistical man-
ifold (Õ, q̃). We say that O is a radical anti-invariant lightlike submanifold if ψ(Rad(TO)) =
ltr(TO). Moreover, we say that a radical anti-invariant submanifold is proper if there exists a
subbundle D

′ ⊂ S(TO) such that D
′

is anti-invariant with respect to ψ, i.e. ψ(D
′
) ⊂ S(TO⊥)

and D
′ ̸= S(TO).

Now, we denote the orthogonal complementary to D′ in S(TO) by D0. Thus we have the
decompositions

TO = D0 ⊕D, S(TO) = D0 ⊕D
′
, D = Rad(TO)⊕D

′
. (3.1)

Similarly, if we denote the orthogonal complementary to ψ(D
′
) in S(TO⊥) by E, we have

S(TO⊥) = ψ(D
′
)⊥E.

Since S(TO) is non-degenerate, for any G ∈ Γ(D0), we have q̃(ψG,L) = q̃(G,ψL) = 0,∀ L ∈
Γ(D

′
) and

q̃(ψG, J) = q̃(G,ψJ) = 0,∀ J ∈ Γ(tr(TO)),

due to ψJ ∈ Γ(Rad(TO)). Similarly, we get

q̃(ψG, ζ) = q̃(G,ψζ) = 0, ∀ ζ ∈ Γ(Rad(TO))

and
q̃(ψG,W ) = q̃(G,ψW ) = 0, ∀ W ∈ Γ(S(TO⊥)).

Hence we conclude that D0 is an invariant distribution with respect to ψ.
Similarly, it is easy to check that, E is an invariant distribution with respect to ψ.

Let O be a radical anti-invariant lightlike submanifold of Kaehlar statistical manifold Õ. Then,
for any G ∈ Γ(TO), we can write

ψG = fG+ wG, (3.2)

where fG ∈ Γ(D0) and wG ∈ Γ(tr(TO)).
Similarly, for any H ∈ Γ(tr(TO)), we can write

ψH = BH + CH, (3.3)

where BH ∈ Γ(O) and CH ∈ Γ(E).
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Now, we denote the projections on D0, D
′
, Rad(TO) in TO by S1, S2, S3 respectively. Then,

for any G ∈ Γ(TO)
ψG = ψS1G+ ψS2G+ ψS3G, (3.4)

where ψS1G ∈ Γ(D0), ψS2G ∈ Γ(S(TO⊥)) and ψS3G ∈ Γ(ltr(TO). Hence we have ψS1G =
kG, ψS2G = wS2G, ψS3G = wS3G. Similarly, we denote the projections on S(TO⊥) and
ltr(TO) in tr(TO) by F1 and F2, respectively. Then, we obtain

ψH = BF1H + CF2H + ψF2H (3.5)

for H ∈ Γ(tr(TO)), where BF1H ∈ Γ(D
′
), CF1H ∈ Γ(E) and BF2H ∈ Γ(Rad(TO)).

Theorem 3.2. Suppose (O, q,Ω,Ω∗) be a radical anti-invariant lightlike submanifold of Kaehlar
statistical manifold (Õ, q̃, Ω̃, Ω̃∗). Then the induced connections Ω, Ω∗ are the metric connec-
tions iff

AψζG, A∗
ψζG ∈ Γ(D

′
) (3.6)

and
Es(G,ψζ), Es

∗
(G,ψζ) ∈ Γ(E) (3.7)

for any G ∈ Γ(TO) and ζ ∈ Γ(Rad(TO)).

Proof. From (2.12), (2.16) and (2.17), we have Ω̃GψH = ψΩ̃GH for any G, H ∈ Γ(TO). Then
using (3.2) and (3.3), we have

−AψζG+ τ l(G)ψζ + Es(G,ψζ) = ψΩGζ + ψEl(G, ζ) +BEs(G, ζ) + CEs(G, ζ)

for any G ∈ Γ(TO) and ζ ∈ Γ(Rad(TO)). Applying ψ to this equation and using (3.2) and
(3.3), we have

−kAψζG+ ψτ l(G)ψζ +BEs(G,ψζ) = −ΩGζ

Thus, ΩGζ ∈ Γ(Rad(TO)) if and only if AψζG ∈ Γ(D
′
) and Es(G,ψζ) ∈ Γ(E). Similarily,

from (2.12), (2.16) and (2.17), we have Ω̃∗
GψH = ψΩ̃∗

GH for any G, H ∈ Γ(TO). Then using
(3.2) and (3.3), we have

−A∗
ψζG+ τ l

∗
(G)ψζ + Es

∗
(G,ψζ) = ψΩ

∗
Gζ + ψEl

∗
(G, ζ) +BEs

∗
(G, ζ) + CEs

∗
(G, ζ)

for any G ∈ Γ(TO) and ζ ∈ Γ(Rad(TO)). Applying ψ to this equation and using (3.2) and
(3.3), we have

−kA∗
ψζG+ ψτ l

∗
(G)ψζ +BEs

∗
(G,ψζ) = −Ω

∗
Gζ

Thus, Ω∗
Gζ ∈ Γ(Rad(TO)) if and only if AψζG ∈ Γ(D

′
) and Es(G,ψζ) ∈ Γ(E). This way we

get our result.
Now, using (3.3), (3.4) and (3.5) and taking the tangential and transversal parts, we get

(ΩGψS1)H = AψS2HG+AψS2HG+ ψBl(G,H) + ψBs(G,H), (3.8)

ψS3ΩGH = Bl(G,ψS1H) + El(G,ψS2H) + τ l(G)ψS3H, (3.9)

Bs(G,ψS1H) + Es(G,ψS3H) + τs(G)ψS2H = ψS2ΩGH + CBs(G,H) (3.10)

and
(Ω∗

GψS1)H = A∗
ψS2H

G+A∗
ψS2H

G+ ψBl∗(G,H) + ψBs∗(G,H), (3.11)

ψS3Ω
∗
GH = Bl∗(G,ψS1H) + El

∗
(G,ψS2H) + τ l

∗
(G)ψS3H, (3.12)

Bs∗(G,ψS1H) + Es
∗
(G,ψS3H) + τs

∗
(G)ψS2H = ψS2Ω

∗
GH + CBs∗(G,H) (3.13)

for any G, H ∈ Γ(TO).

Theorem 3.3. Suppose (O, q,Ω,Ω∗) be a radical anti-invariant lightlike submanifold of Kaehlar
statistical manifold (Õ, q̃, Ω̃, Ω̃∗). Then, the distribution D0 is integrable if and only if for any
G ∈ Γ(D0)
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B(G, kH) = B(H, kG) (3.14)

and
B∗(G, kH) = B∗(H, kG). (3.15)

Proof. From (3.9), for G, H ∈ Γ(D0), we obtain

Bl(G,ψS1H) = ψS3ΩGH.

From equation (3.4), ψS1 = k, then above equation will be

Bl(G, kH) = ψS3ΩGH. (3.16)

Interchanging G and H , we get

Bl(H, kG) = ψS3ΩHG. (3.17)

From equation (3.16) and (3.17),

Bl(G, kH)−Bl(H, kG) = ψS3[G,H]. (3.18)

Now, from (3.10), we get

Bs(G,ψS1H) = ψS2ΩGH + CBs(G,H).

From equation (3.4), ψS1 = k, ψS2 = wS2, then above equation will be

Bs(G, kH) = wS2ΩGH + CBs(G,H). (3.19)

Interchanging the role of G and H , we get

Bs(H, kG) = wS2ΩHG+ CBs(H,G). (3.20)

From equation (3.19) and (3.20), we get

Bs(G, kH)−Bs(H, kG) = kS2[G,H], (3.21)

this way we get equation (3.14).
From (3.12), for G, H ∈ Γ(D0), we obtain

Bl∗(G,ψS1H) = ψS3Ω
∗
GH.

From equation (3.4), ψS1 = k, then above equation will be

Bl∗(G, kH) = ψS3Ω
∗
GH. (3.22)

Interchanging G and H , we get

Bl∗(H, kG) = ψS3Ω
∗
HG. (3.23)

From equation (3.22) and (3.23),

Bl∗(G, kH)−Bl∗(H, kG) = ψS3[G,H]. (3.24)

Now, from (3.13), we get

Bs∗(G,ψS1H) = ψS2Ω
∗
GH + CBs∗(G,H).

From equation (3.4), ψS1 = k, ψS2 = wS2, then above equation will be

Bs∗(G, kH) = wS2Ω
∗
GH + CBs∗(G,H). (3.25)

Interchanging the role of G and H , we get

Bs∗(H, kG) = wS2Ω
∗
HG+ CBs∗(H,G). (3.26)

From equation (3.25) and (3.26), we get

Bs∗(G, kH)−Bs∗(H, kG) = kS2[G,H]. (3.27)

This way we get equation (3.15).
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Theorem 3.4. Suppose (O, q,Ω,Ω∗) be a radical anti-invariant lightlike submanifold of Kaehlar
statistical manifold (Õ, q̃, Ω̃, Ω̃∗), then
(i) the distribution D is integrable if and only if

AwGH = AwHG and A∗
wGH = A∗

wHG, for any G, H ∈ Γ(D).
(ii) the distribution D defines a totally geodesic foliation in O if and only if AwHG, A∗

wHG ∈
Γ(D) , G ∈ Γ(TO), H ∈ Γ(D).

Proof. (i). For any G, H ∈ Γ(D), from equation (2.12), (2.17) and (2.19), we obtain

ψ(Ω̃GH) = Ω̃GψH,

ψ(ΩGH) + CBl(G,H) + CBs(G,H) = −AψHG+ τ l(G)ψH + Es(G,ψH).

On taking tangential parts of the above equation, we have

ψΩGH +BBl(G,H) + CBs(G,H) = −AwHG. (3.28)

Interchanging the role of G and H , we get

ψΩHG+BBl(H,G) + CBs(H,G) = −AwGH. (3.29)

From (3.30) and (3.31), we get

ψ[G,H] = AwHG−AwGH.

Thus, [G,H] ∈ Γ(D) if and only if AwHG = AwGH.
Now, from equation (2.12), (2.17) and (2.22), we obtain

ψ(Ω̃∗
GH) = Ω̃

∗
GψH,

ψ(Ω∗
GH) +BBl∗(G,H) + CBs∗(G,H) = −A∗

ψHG+ τ l
∗
(G)ψH + Es

∗
(G,ψH).

On taking tangential parts of the above equation, we have

ψΩ
∗
GH +BBl∗(G,H) + CBs∗(G,H) = −A∗

wHG. (3.30)

Interchanging the role of G and H , we get

ψΩ
∗
HG+BBl∗(H,G) + CBs∗(H,G) = −A∗

wGH. (3.31)

From (3.30) and (3.31), we get

ψ[G,H] = A∗
wHG−A∗

wGH.

Thus, [G,H] ∈ Γ(D) if and only if A∗
wHG = A∗

wGH.
(ii). Now we will show that q(ΩGH,ψL) = q(Ω∗

GH,ψL) = 0
for any G ∈ Γ(TO), H ∈ Γ(D) and L ∈ Γ(D0).
Since,

q(ΩGH,ψL) = q̃(Ω̃GH,ψL),

= q̃(ψΩ̃GH,L),

= q̃(Ω̃GψH,L),

q(ΩGH,ψL) = −q(AψHG,L).

Similarily, we get
q(Ω∗

GH,ψL) = −q(A∗
ψHG,L).

Theorem 3.5. Suppose (O, q,Ω,Ω∗) be a radical anti-invariant lightlike submanifold of Kaehlar
statistical manifold (Õ, q̃, Ω̃, Ω̃∗). Then the distribution D0 defines a totally geodesic foliation
in O if and only if
B(G,H), B∗(G,H) ∈ Γ(E) for any G, H ∈ Γ(D0).
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Proof. For any G, H ∈ Γ(D0), L ∈ Γ(D
′
) and J ∈ Γ(ltr(TO)), then

q(ΩGψH,L) = q̃(Ω̃GψH,L),

= q̃(ψΩ̃GH,L),

= q̃(Ω̃GH,ψL),

on using equation (2.19), we obtain

q(ΩGψH,L) = q̃(Bs(G,H), ψL).

Now,
q(ΩGψH, J) = q̃(Ω̃GψH, J),

= q̃(ψΩ̃GH,J),

= q̃(Ω̃GH,ψJ),

on using equation (2.19), we obtain

q(ΩGψH, J) = q̃(Bl(G,H), ψJ).

Similarily, on using equation (2.22), we have

q(Ω∗
GψH,L) = q̃(Bs∗(G,H), ψL)

and
q(Ω∗

GψH, J) = q̃(Bl∗(G,H), ψJ).

These results shows that B(G,H), B∗(G,H) ∈ Γ(E),

Theorem 3.6. Suppose (O, q,Ω,Ω∗) be a radical anti-invariant lightlike submanifold of Kaehlar
statistical manifold (Õ, q̃, Ω̃, Ω̃∗). Then O is locally Kaehlar statistical if and only if k is parallel
with respect to the induced connections Ω and Ω∗.

Proof. Let us have O as locally Kaehlar statistical manifold then the leaves of the distributions
D0 and D are totally geodesic in O.
Now, for any Z ∈ Γ(TO) and G ∈ Γ(D0), ΩZkG and Ω∗

ZkG ∈ Γ(D0). Moreover, for any
G ∈ Γ(D0), ψS2G = 0, ψS3G = 0. From (3.8) and (3.11), we get

(ΩZk)G = ψBl(Z,G) + ψBs(Z,G), (Ω∗
Zk)G = ψBl∗(Z,G) + ψBs∗(Z,G).

Since (ΩZk)G ∈ Γ(D0), (Ω∗
Zk)G, we have

(ΩZk)G = (Ω∗
Zk)G = 0.

For H ∈ Γ(D) and Z ∈ Γ(TO), from (3.8) and (3.11) we get

(ΩZk)H = AψS2HZ +AψS3HZ + ψBl(Z,H) + ψBs(Z,H)

and
(Ω∗

Zk)H = A∗
ψS2H

Z +A∗
ψS3H

Z + ψBl∗(Z,H) + ψBs∗(Z,H).

Since kH = 0, for H ∈ Γ(D), we get

−kΩZH = AψS2HZ +AψS3HZ, −kΩ
∗
ZH = A∗

ψS2H
Z +A∗

ψS3H
Z.

We get kΩZH = kΩ∗
ZH = 0 by Theorem (3.4), Thus we obtain

(ΩZk)H = (Ω∗
Zk)H = 0.

Conversely, let Ωk = Ω∗k = 0, then we have

kΩGH = ΩGkH, kΩ
∗
GH = Ω

∗
GkH

for any G, H ∈ Γ(D0) and

kΩZL = ΩZkL, kΩ
∗
ZL = Ω

∗
ZkL

for any Z, L ∈ Γ(D). Then it shows that ΩGkH, Ω∗
GkH ∈ Γ(D0) and ΩZL, Ω∗

ZL ∈ Γ(D),
respectively. Thus the leaves of the distributions D0 and D are totally geodesic in O.
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Theorem 3.7. Suppose (O, q,Ω,Ω∗) be a totally umbilical radical anti-invariant lightlike sub-
manifold of Kaehlar statistical manifold (Õ, q̃, Ω̃, Ω̃∗). Then the radical distribution Rad(TO)
is integrable if and only if

Bl(ζ1, kL) = Bl(ζ2, kL),

Bl∗(ζ1, kL) = Bl∗(ζ2, kL).

Proof. From (2.19) and (2.22), we have

q([ζ1, ζ2], L) = q̃(Ω̃ζ1ζ2, L)− q̃(Ω̃ζ2ζ1, L) = q̃(Ω̃∗
ζ1
ζ2, L)− q̃(Ω̃∗

ζ2
ζ1, L).

For all ζ1, ζ2 ∈ Rad(TO), L ∈ Γ(D0).
Using (2.15), we get

q([ζ1, ζ2], L) = −q̃(ψζ2,B
l(ζ1, ψL) + q̃(ψζ1,B

l(ζ2, ψL)

= −q̃(ψζ2,B
l∗(ζ1, ψL) + q̃(ψζ1,B

l∗(ζ2, ψL).

Since
Bl(ζ1, kL) = Bl(ζ2, kL) = 0,

Bl∗(ζ1, kL) = Bl∗(ζ2, kL) = 0.

Thus,
q([ζ1, ζ2], L) = 0.

Conversely,
q([ζ1, ζ2], L) = 0.

This implies that
Bl(ζ1, kL) = Bl(ζ2, kL) = 0,

Bl∗(ζ1, kL) = Bl∗(ζ2, kL) = 0.

This way we get our proof.
Example 3.8. Let Õ = (R8

4, q̃, ψ) be a Kaehlar manifold. q̃ is of the signature (+,−,+,−,+,−,+,−)
with respect to the canonical basis {∂s1, ∂s2, ∂s3, ∂s4, ∂s5, ∂s6, ∂s7, ∂s8}. If (s1, s2, s3, s4, s5, s6, s7, s8)
be the standard co-ordinate system of R8

4 then by setting

ψ(s1, s2, s3, s4, s5, s6, s7, s8) = (is1,−is2, is3,−is4, is5,−is6, is7,−is8)

i and −i are the roots of Kaehlar structure. From definition (2.5), the triplet (Ω̃ = ∇̃+ F̃, q̃, ψ̃),
where F̃ satisfies (2.18), defines Kaehlar statistical structure on Õ.
Consider submanifold O of R8

4, given by the equation

s1 = sinht2, s2 = cosht2, s3 = t1,

s4 = t3 −
1
2
t4, s5 = t2, s6 = t5,

s7 = t1, s8 = t3 +
1
2
t4.

Here, TO is spanned by
Z1 = ∂s3 + ∂s7,

Z2 = sinht2∂s1 − cosht2∂s2 + ∂s5,

Z3 = ∂s4 + ∂s8,

Z4 =
1
2
{−∂s4 + ∂s8},

Z5 = ∂s6,
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we see that O is 1-lightlike with Rad(TO) spanned by Z1. S(TO) spanned by {Z2, Z3, Z4, Z5}
and ltr(TO) is spanned by

J =
1
2
{∂s3 + ∂s7}.

Then it can be easily seen that ψ(Z1) = iJ , which shows that ψ(Rad(TO)) = ltr(TO). Now,
we obtain screen transversal bundle S(TN⊥) = span{W}, where

W = isinht2∂s1 + icosht2∂s2 + i∂s5.

We can see that D0 = span{Z3, Z4, Z5} and ψZ2 = W which shows that D0 is invariant and
D

′
= span{Z2} is anti-invariant. Thus, O is radical anti-invariant lightlike submanifold of

Kaehlar statistical manifold (Õ, q̃, Ω̃, Ω̃∗).

4 Conclusion remarks

This paper aims is to introduces the concept of a Kaehlar statistical manifold and discusses Radi-
cal anti-invariant lightlike submanifolds of this manifold. Additionally, the mention of presenting
an example related to these concepts suggests that the paper likely delves into specific mathe-
matical structures and their properties. Therefore, the results of this work are variant, significant
and so it is interesting and capable to develop its study in the future.
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