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Abstract In this paper, we are interested in the probabilistic traveling salesman problem
(PTSP) as a variant of the well-known traveling salesman problem (TSP), where city distances
follow a probability distribution. The goal is to find a tour that visits all cities with the minimum
expected length. To solve this combinatorial problem, we consider four ant colony optimization
(ACO) variants: Ant System (AS), Max-Min Ant System (MMAS), a Novel Max-Min System
(NMMAS) and Ant Colony System (ACS). The performance of the algorithms is evaluated,
considering different examples from the literature, based on the quality of the obtained solution
and the computation time. The experiment results show that MMAS is more efficient compared
to the other algorithms.

1 Introduction

Optimization problems often involve uncertainty or randomness, such as traffic delays, weather
conditions, or breakdowns. Stochastic Combinatorial Optimization (SCOP) studies these prob-
lems, which are challenging due to both combinatorial and stochastic complexity. SCOP is
important for planning optimal decisions under uncertainty and finding robust and adaptive solu-
tions with economic, environmental, or social impacts. One of the most studied SCOP problems
is the Probabilistic Traveling Salesman Problem (PTSP) introduced by Jaillet [1]. The PTSP is
a variant of the Traveling Salesman Problem (TSP) where distances between cities are random
variables. The objective is to reduce the expected or variance of the total length.

To solve the PTSP, we propose the use of the Ant Colony Optimization (ACO) which is a
technique based on the behavior of real ants. ACO builds candidate solutions using pheromone
and heuristic information, simulating the process of ants to find short paths between their nest
and a food source. The concept of ant algorithms originated in 1959 when Pierre-Paul Grasse
introduced stigmergy to explain termite nest building in [2]. Ants use stigmergy to communicate
with pheromones and coordinate with each other indirectly. In 1988, Moyson et al presented a
paper [3] on self-organization in ants for solving TSP. In 1989, Goss et al studied in [4] the col-
lective behavior of Argentine ants and proposed a mathematical model to describe ant behavior
and optimization ability. In 1991, M. Dorigo proposed the Ant System in [5], which was the first
algorithm applied to TSP. It uses a population of artificial agents that construct solutions by trav-
eling on the graph of the problem. The algorithm updates the pheromones globally at the end of
each iteration, promoting the best solutions found. In 1996, Stützle and Hoos in [6] invented the
Max-Min Ant System, which improves the Ant System by a more effective global pheromone
update. In 1997, Gambaredlla and Dorigo published the Ant Colony System [7], which improves
the Ant System by a local pheromone update and a more effective transition rule.

Several works have been done to improve the ant colony algorithms for the PTSP, using local
search techniques, learning mechanisms, variants of pheromone, or hybrid approaches with other
methods. Bianchi et al. introduced in [8] an Ant Colony Optimization (ACO) algorithm for the
PTSP. This algorithm employs a cost function that factors in the probabilities of city presence
and a transition rule that favors cities with high presence probabilities. In addition, it uses a
local search to enhance the solutions. Guntsch and Middendorf proposed in [9] a population-
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based approach for ACO, utilizing several ant colonies that work together to discover solutions.
Their mechanism of information exchange between colonies is based on natural selection and
ant migration. Branke and Guntsch proposed in [10] an enhanced ACO algorithm for the PTSP,
utilizing an approximate evaluation and new heuristics. Weyland et al. in [11] presented an ACO
algorithm for the PTSP by combining ACS with a local search based on variable neighborhood
search.

In this work, to solve the PTSP, we consider four ant colony algorithms based on ACO:
Ant System (AS), Max-Min Ant System (MMAS), Novel Max-Min system (NMMAS) and Ant
Colony System (ACS). These algorithms differ in how they select the edges to add to the solution,
how they update pheromones and how they manage solution diversity. So, A comparative study
is done to evluate their performance.

The paper is organized as follows: in section 2, we present the mathematical formulation of
the PTSP. we present the four ant algorithms. A comparative study of the considered algorithms
is performed in section 3. Experimental results obtained by the algorithms for different instances
of the PTSP are discussed in section 4.

2 Mathematical Model

In the probabilistic traveling salesman problem (PTSP), we have V a set of n cities, each with a
probability of presence and a distance. d : V × V → R+ the distance function gives the distance
between any pair of cities, and the probability function p : V → [0, 1] gives the probability that
a city is present. The presence of different cities are independent events.

The PTSP belongs to the class of a priori optimization problems, where we have to determine
the order of the cities before knowing which ones are present. An a priori solution is a tour that
visits all cities exactly once, as in the TSP, which is a permutation τ : ⟨n⟩ → V of the cities.
Then, we obtain an a posteriori solution by removing the absent cities from the a priori tour,
while keeping the order given by it. The goal is to find an a priori tour that minimizes the
average length of the a posteriori tours, according to the given probabilities.

Thus, the problem can be defined as follows [12]:

Let V be a set of size n, d : V × V → R+ be a distance function and p : V → [0, 1] be a
probability function. The problem is to find a permutation τ∗ : ⟨n⟩ → V that minimizes the

function fptsp(τ) over all permutations τ : ⟨n⟩ → V .

The function fptsp(τ) is calculated as the sum of the product of the length Lτ (S) and the
probability P (S) for each subset S ⊂ V of cities [8]:

fptsp(τ) =
∑
S⊆V

P (S)Lτ (S) (2.1)

where P (S) is the product of probabilities pi for the cities in S and (1− pi) for cities outside
of S [8]:

P (S) =
∏
i∈S

pi
∏

i∈V−S
(1 − pi) (2.2)

The PSTP can be solved using mathematical models that estimate the probability and ex-
pected cost of each possible arc (i, j) in the circuit, depending on whether or not the cities i
and j are present, and the possible absence of the cities k between them (k = i + 1, ..., j − 1).
Such a model is considered the Campbell equation in [13], which adds three terms for different
scenarios in the sequence:

n∑
j=1

pjd0j

j−1∏
k=1

(1 − pk) +
n−1∑
i=1

n∑
j=i+1

pipjdij

j−1∏
k=i+1

(1 − pk) +
n∑
i=1

pid0i

n∏
k=i+1

(1 − pk) (2.3)

The equation (2.3) allows us to find the optimal circuit that minimizes the total expected cost.
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3 Variants of Ant Colony Optimization for PTSP

In this section, we examines four ant algorithms: Ant system (AS), Ant Colony System (ACS),
Max-Min Ant System (MMAS)and Novel Max-Min Ant System (NMMAS). These algorithms
use Ant Colony Optimization (ACO) to generate candidate solutions by utilizing pheromone
levels and heuristic information through a probabilistic rule. Pheromone is a chemical substance
that artificial ants deposit on graph edges, reflecting the quality of solutions that employ these
edges. Heuristic information measures edge attractiveness based on the problem at hand. Arti-
ficial ants construct solutions by selecting edges based on these two factors. The focus is on the
effectiveness of these algorithms in resolving the PTSP, a probabilistic combinatorial optimiza-
tion problem.

3.1 Ant System principle for the PTSP

At each iteration t (1 ≤ t ≤ tmax), each ant k (k = 1, ...,m) builds a full path of n = |V |
steps by traversing the graph. The choice of the next city to visit depends on several factors,
including the set of feasible cities Ski , the visibility or heuristic value between cities ψij = 1

dij
,

and the amount of pheromones on the connecting edge θij . We use stochastic transition rules
to determine the probability that an ant moves from one city to another, which is given by the
formula mentioned in [14]:

rkij(t) =

0 if j /∈ Ski
(θij(t))

α(ψij)
β∑

l∈Sk
i
(θil(t))α(ψil)β

if j ∈ Ski
(3.1)

The parameters α and β control the relative importance of pheromone trail θij(t) and visibil-
ity ψij . A balance between these two criteria must be found to avoid premature selection of a
path, affecting diversification and intensification behaviors. If α = 0, only visibility is consid-
ered, while if β = 0, only pheromone trails influence the decision.

After building a complete path, each ant deposits pheromones on the edges of its path [15]:

∆θkij(t) =

{
0 if (i, j) /∈ P k(t)
R

fk
ptsp(τ)

if (i, j) ∈ P k(t)
(3.2)

where the route of ant k at step t is P k(t), R is a standard value in the literature. The evap-
oration process then takes place, allowing the system to "forget" bad solutions. The pheromone
update rule is applied at every step by this equation in [15] :

θij(t+ 1) = (1 − ρ)θij(t) + ∆θij(t) (3.3)

where ∆θij(t) =
∑m
k=1 ∆θkij(t), and ρ ∈ [0; 1] is the evaporation parameter.

The Ant Colony Optimization (ACO) algorithm operates in cycles. At the beginning, m ants
are randomly placed at city 0 (depot). Each ant’s memory list contains only its starting city.
The pheromone trails are initialized to a small positive constant c, where θij(0) = c. All ants
complete their trip and return to their starting city (0) based on Equation (3.1). Each ant com-
putes its expected path length fkptsp(τ) and the pheromone variables θkij(t) are calculated. The
pheromone variables θij(t) are updated based on formula (3.3), where the ant retraces its trip in
reverse while leaving pheromone. The ant with the minimum expected path length is identified,
and its trip is memorized if it is better than the best trip so far. The ants’ memories (list of visited
cities) are erased, and they start a new tour from city 0. The algorithm stops after a fixed number
of cycles NCmax or when all ants make the same tour (stagnation). The algorithm returns the
best memorized tour.

The global complexity of the algorithm isO(n2·m). If we assume thatm = n, the complexity
becomes O(NCmax · n3).
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3.2 Ant Colony System principle for the PTSP

The Ant Colony System (ACS) algorithm was proposed by Grambardella and Dorigo in 1996 to
enhance the performance of Ant Colony Optimization (ACO) [14]. The ACS algorithm balances
exploration and exploitation using state transition and pheromone updating rules, allowing ants
to construct tours influenced by both heuristic and pheromone information. The ACS algorithm
introduces several modifications to ACO:

• ACS introduces a transition rule that depends on a parameter q0 (0 ≤ q0 ≤ 1), which defines
a trade-off between diversification and intensification. An ant k on a city i will choose a
city j by the rule as we can find in [14]:

j =

{
arg maxl∈Sk

i
{θil(t)αψβil} if q ≤ q0

rkij(t) otherwise
(3.4)

where, Ski is the set of cities that ant k can visit from city i, θil(t) is the amount of
pheromone on the edge (i, l) at time t, ψil is the reciprocal of the distance among cities
i and l (heuristic value). q is a random variable uniformly distributed over [0, 1].

• The control of trails is divided into two levels: local update and global update. During the
local update, each ant leaves a trail according to the rule [14]:

θij(t+ 1) = (1 − ρ)θij(t) + ρθ0 (3.5)

where θ0 is the initial value of the trail. At each visit, the edges that are visited see their
amount of pheromone decrease, favoring diversification by considering unexplored paths.
At each iteration, the global update is performed as follows [14]:

θij(t+ 1) = (1 − ρ)θij(t) + ρ∆
bestθij(t) (3.6)

In the ACS algorithm, only the best path is updated, which contributes to an intensification
by selecting the best solution, as [14] show:

∆θbestij (t) =

{
R

fbest
ptsp (t)

if edge (i, j) belongs to the best tour

0 otherwise

The initial amount of pheromones on each edge is a uniform distribution of a small amount and
ρ ≥ 0.

3.3 Max-Min Ant System principle for the PTSP

The Max-Min Ant System (MMAS) algorithm is a variation of the ACO algorithm that aims to
improve its performance in combinatorial optimization problems. It was suggested by Stützle
and Hoos in 1997 [16]. MMAS exploits the best solutions, avoids stagnation, enhances explo-
ration, prevents dominance, and delays convergence, in the three way aspects:

• Exploitation of Best Solutions: MMAS updates the pheromone trails only with the best
ant in each iteration or overall, enhancing the exploitation of promising solutions.

• Pheromone Trail Limits: MMAS bounds the pheromone values by θmax and θmin, main-
taining pheromone diversity and preventing premature convergence.

• Pheromone Trail Initialization: MMAS initializes the pheromone values to θmax after
the first iteration, encouraging exploration in the early stages. The probabilistic choice rule
for choosing a solution component is the same as in the Ant System algorithm ,see equation
(3.1)
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The pheromone update rule for MMAS is different from AS in two aspects: First, MMAS
only updates the pheromone with best solution discovered until now, either the iteration-best or
the global-best solution. Second, MMAS limits the pheromone values to a range of [θmin , θmax]
to avoid stagnation. The update rule given in [17] is defined as follows:

θij = (1 − ρ)θij + ∆θbest
ij (3.7)

where ρ is the evaporation rate and ∆θbest
ij = R/fptsp(τbest) if edge (i, j) belongs to the best solu-

tion Sbest, and 0 otherwise. fptsp(τbest) is the expected path length of the best solution.

The lower and upper bounds of the pheromone values are determined in [17] by:

θmax =
1

1 − ρ

1
fptsp(τgb)

(3.8)

θmin =
θmax(1 − n

√
pbest)

(avg − 1) n
√
pbest

(3.9)

Where fptsp(τgb) is the value of the global-best solution, avg = n/2, and pbest is a parameter
that controls the convergence speed.

The maximum possible pheromone value asymptotically converges to:

Proposition:[17]

lim
t→∞

θij(t) = τij ≤
1

1 − ρ

1
fptsp(τopt)

where fptsp(τopt) is the optimal solution value for a specific problem.

3.4 Novel Max-Min Ant System principle for the PTSP

The Novel Max-Min Ant System (NMMAS) algorithm enhances the performance of the Ant
Colony Optimization (ACO) algorithm in combinatorial optimization problems. NMMAS dif-
fers from the previous ACO variants in its pheromone management, which has two phases. We
explore these differences in detail, emphasizing key aspects that underline NMMAS innovation:

• Pheromone Bounds: In contrast to traditional methods in MMAS, NMMAS dynamically
determines pheromone bounds θmax and θmin based on the sampled tour lengths, offering
adaptability to problem complexity and solution progress using a formula [18]:

θmax =


0.1 if fptsp ≤ 2000
0.01 if 2000 < fptsp ≤ 20000
. . .

and θmin = m1θmax, where m1 is a real number between 0 and 1.

• Adaptive Pheromone Management: NMMAS consists of two stages: in the first one, sev-
eral solutions are used to update the pheromones, enhancing the exploration; in the second
one, only the best solution is used, improving the exploitation. Based on this, we use the
following rule given in [18] to update the pheromones by stages:

If NC ≥ m2Nmax, where NC is the current iteration number, m2 is a real number between
0 and 1, and Nmax is the maximum number of iterations, then the first l solutions of the
iteration are used to update the pheromones, using Equation (3.3) (m is replaced by l in
Equation (3.3)), where:

∆θkij(t) =

{
ρθmax

k if ant k travels on edge (i, j)

0 otherwise
.
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If NC > m2Nmax, then only the best solution of the iteration is used to update the
pheromones, using Equation (3.6), where ∆θbestij (t) is the amount of pheromone deposited
by the best ant on edge (i, j) at time t, defined as:

∆θbestij (t) =

{
R

fptsp(τbest)
if edge (i, j) belongs to the best tour

0 otherwise
.

This dynamic balance between exploration and exploitation elevates NMMAS’s effective-
ness in navigating complex solution landscapes.

The probabilistic selection process for choosing a solution component follows the same ap-
proach as the Ant System algorithm, as depicted in equation (3.1).

4 Computation experiment

In this section, we evaluate the performance of the four considered ACO algorithms for PTSP.
We use different instances that are given in [13]. We generate the probabilities of the customers
according to four scenarios: random between 0 and 1, random between 0.1 or 1, fixed at 0.9, and
fixed at 0.1.

We set the evaporation rate to 0.5 for all algorithms, which ensures a good balance between
exploration and exploitation. We set the beta to 2 which gives a moderate importance to the
distance between cities. We set the number of ants to 7, wich is reasonable for the PTSP. We set
the constant R to 1 for all algorithms. We set the q0 to 0.9 for ACS, which favors the pseudo-
random proportional rule, which is more deterministic and exploits more the best solutions. We
set the l to 3 for NMMAS, which means that we use three best local solutions per iteration.
We set the m2 to 0.3 for NMMAS, which means that we consider that an edge is part of a best
local solution if it is chosen by at least 30% of the ants. We fixed the N-max in 30 which seems
suitable for the PTSP.

The initial value of the pheromone in ACO algorithms is varied between 1 and 0.01 depending
on the instances of the PTSP. A value of 1 is used for instances with high probabilities (0.9) as
it does not influence the choice of ants at the beginning of the search. A value of 0.01 is used
for instances with low or random probabilities (0.1 and between 0.1 or 1) to favor exploration of
new solutions at the beginning of the search.

We measured the computation time (CPU in seconds) required to run each algorithm, and
evaluated the quality (expected values [E.V]) of the obtained solutions. Our approach is de-
veloped entirely in Python and executed on a machine equipped with an Intel Core i5-7200U
processor at 2.50 GHZ, 8GB of RAM, and a 64-bit operating system with an x64 processor.

Table 1. Comparative analysis of ACO variants for the PTSP by probability Range.

Probability Range

AS MMAS N-MMAS ACS

Data set E.V CPU E.V CPU E.V CPU E.V CPU

22 110.1561 0 106.6246 2 106.5561 0 157.75202 0

42 127.8422 3 127.4942 7 141.7978 3 374.6267 3

62 286.0540 9 202.6307 16 241.4319 9 840.3254 62

102 322.4177 38 334.3339 49 411.8957 36 1197.1593 40

152 578.73705 117 550.6243 134 710.1083 131 1116.7980 128

Table 1 shows that, using the Range probability, MMAS and AS are more efficient than ACS
by 10% and 5% respectively, based on the average E.V. However, MMAS and ACS use more
CPU than AS and N-MMAS by 15% and 4% respectively, based on the average CPU.
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Table 2. Comparative analysis of ACO variants for the PTSP by probability Mixed.

Probability Mixed

AS MMAS N-MMAS ACS

Data set E.V CPU E.V CPU E.V CPU E.V CPU

22 58.02704 0 55.1686 2 57.1969 0 125.2669 0

42 94.6141 3 97.8969 4 125.3496 3 302.4840 3

62 176.75912 6 150.4233 6 171.8438 5 645.6415 5

102 298.2707 20 324.5693 23 393.77123 22 1166.9133 19

152 442.7206 64 487.5452 66 671.6842 67 1074.6954 59

According to Table 2, using the mixed probability, MMAS and AS are more efficient than
ACS by 9% and 7% respectively, based on the average E.V. However, MMAS and ACS use less
CPU than AS and N-MMAS by 30% and 25% respectively, based on the average CPU.

Table 3. Comparative analysis of ACO variants for the PTSP by probability 0.1.

Probability 0.1

AS MMAS N-MMAS ACS

Data set E.V CPU E.V CPU E.V CPU E.V CPU

22 86.7580 0 86.7520 0 87.90634 0 90.6209 0

42 156.1326 3 152.76 7 157.8014 3 173.9035 3

62 177.1796 9 177.1742 17 182.6541 10 209.0126 9

102 269.6032 44 260.2483 56 287.1617 44 311.3016 41

152 379.0038 138 368.0143 157 395.5722 137 428.7441 129

We can observe in Table 3, based on the average E.V, MMAS and AS outperform ACS by
12% and 9% respectively when using the probability 0.1. However, based on the average CPU,
MMAS and ACS consume more CPU than AS and N-MMAS by 4% and 2% respectively.

Table 4. Comparative analysis of ACO variants for the PTSP by probability 0.9.

Probability 0.9

AS MMAS N-MMAS ACS

Data set E.V CPU E.V CPU E.V CPU E.V CPU

22 262.1323 0 242.045 2 268.0041 0 416.7409 0

42 530.4527 2 522.2926 3 565.7910 2 989.5463 2

62 733.8831 5 668.4563 8 882.8770 5 1330.6987 5

102 1245,3260 21 1139.6283 26 1381.3755 21 2124.0433 20

152 1708.7006 64 1674.9990 89 2062.8824 67 2935.6452 62

Table 4 reveals that, using the probability 0.9, MMAS and AS achieve a higher average E.V
than ACS by 42% and 39% respectively. However, MMAS and ACS have a lower average CPU
than AS and N-MMAS by 44% and 43% respectively.
This results show that MMAS and AS are the most efficient algorithms for different probabilities.
ACS has the highest average E.V, but it also consumes the most CPU time.



A Comparative Study of Ant Colony Optimization Variants 111

Figure 1. A Comparative Analysis of ACO Variants for the PTSP Based on Expected Values.

Figure 2. A Comparative Analysis of ACO Variants for the PTSP Based on CPU values.

Figure 1 and figure 2 show the results of a comparative analysis of ACO variants for the PTSP
by probability Range, Mixed, 0.1, and 0.9. The analysis indicates that MMAS and AS are the
most efficient variants for the PTSP, regardless of the type of probability used. They achieve the
best expected values while using a reasonable amount of CPU time. In contrast, ACS is the least
efficient variant, as it achieves the worst expected values. N-MMAS is an intermediate variant,
achieving average expected values while using a low amount of CPU time.

5 Conclusion

In this this paper, we have compared four algorithms inspired by ant colonies to solve the proba-
bilistic traveling salesman problem (PTSP), which consists of finding the best route to visit cities
whose demand is random. The algorithms are evaluated according to the expected value of the
total cost of the trip and the computation time. we have analyzed the effect of the probability
distribution of the cities on the difficulty of the problem and the performance of the algorithms.
The results show that the Max-Min Ant System (MMAS) and Ant System (AS) algorithms are
more efficient than the Ant Colony System (ACS) and Novel Max-Min Ant System (N-MMAS)
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algorithms in all cases, because they have a better balance between exploration and exploitation.
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