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Abstract The aim of this paper is to compute the inverse of the Tridiagonal Quasi-Toeplitz
matrix by direct method. The proposed algorithm constructs a decomposition of the given ma-
trix, thanks to the special structure of the considered matrix, into a sum of a band Toeplitz matrix
and the rest of size n × n. Then, the inverse of the matrix turns into the inverse of the obtained
band matrix using the well known Schur complement and Sherman–Morrison–Woodbury for-
mula. Illustrative example describing the different steps of the algorithm and numerical results
are performed to show the effectiveness and accuracy of the algorithm.

1 Introduction

The structure of matrices is frequently brought about by the use of an approximation strategy or
just by physics-related characteristics of the underlying problem. We can list the symmetrical
matrices, bands, Toeplitz, circular, Hankel, Gauss and Vandermonde [1]. Quasi-Toeplitz matrix
has a special structure and make up an intriguing class of Toeplitz matrices which can be encoun-
tered in many different applications. The objective of this paper is to propose a fast algorithm to
reverse this very interesting type of Toeplitz matries. Then, we take advantage of these results to
calculate the solutions of linear systems with Tridiagonal Quasi-Toeplitz matrices.

Different studies have researched Toeplitz matrices in great detail and they appear in a wide
variety of problems, including image processing, control theory, integral equations, the orthog-
onal polynomials, partial differential equations (elliptical or parabolic), Padé’s approximation,
and other branches of numerical analysis.

In recent years, a number of quick inversion methods for Toeplitz matrices have been re-
ported. Friedlander et al. use the generalized Levinson-Szego method [2], in addition to the
multichannel Levinson algorithm [3], to create effective inversion recursions for the sums of
Toeplitz and Hankel matrix products [4]. A system of linear equations with a strongly regular
symmetric coefficient matrix, which is the sum of a real Toeplitz matrix and a real Hankel ma-
trix, was solved using an approach provided by Gohberg et al. [5].The split Levinson and Schur
algorithms are used to strongly regular Toeplitz-plus-Hankel matrices [6, 7, 8, 9].

The banded-Toeplitz matrix is an intriguing class of matrices that can be used to create quick
algorithms [10, 11, 12, 13, 14, 15, 16, 17]. Over time, some extremely quick numerical tech-
niques have been created for the resolution of a Toeplitz type system, which is crucial in many
applications such that, numerical solutions of differential equations [18], digital solutions of mul-
tiple Markov chains from the modelling of girl waiting problems [19, 20], and the problem of
image processing[21], where the Toeplitz matrix band is used as a preconditioned to accelerate
the convergence of preconditioned conjugate gradient (PGC) techniques [22, 23, 24].

The main objective of this study is to calculate the inverse of the Tridiagonal Quasi-Toeplitz
matrix and then take advantage of this results to solve the corresponding linear systems. It con-
sists to take advantage of the special structure of Quasi-Toeplitz matrix and decompose it as a
sum of two matrices where one of the two is a band matrix. Thus, the calculation of the inverse
of the considered matrix amounts to the calculation of the inverse of this band matrix which
will be carried out by an algorithm consisting in introducing the latter into a larger special tri-
angular matrix and then use the Shur complement. Subsequently, the use of the well known
Sherman–Morrison–Woodbury formula will make it possible to calculate the inverse of the spe-
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cial Toeplitz matrix considered.
The rest of this paper is organized as follows: In the second section we present some defini-

tions of the Toeplitz matrix and the particular cases of them and the mathematical model of the
considered problem. The third section is a general explanation and details to a very important
algorithm, which is called Schur complement. In the fourth section, we present a Triangular
method to calculate the inverse of the band-Toeplitz matrix. The fifth section is devoted to the
proposed method of reversing the Quasi-Toeplitz matrix. Illustrative example describing the
different steps of the algorithm, in addition to nmerical results for the resolution of a system
with Quasi-Toeplitz symmetrical and asymmetrical, using the new approach, are presented and
discussed in the sixth section.

2 Mathematical formulation

2.1 Definitions and notations

Definition 2.1. A matrix T ∈ Rn×n is called Toeplitz, if T = (tij) = (ti−j), ∀i, j = 1, . . . , n.
i.e

T =



t0 t−1 . . . . . . t2−n t1−n

t1 t0 t−1
. . . . . . t2−n

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

tn−2
. . . . . . t1 t0 t−1

tn−1 tn−2 . . . . . . t1 t0


If the element located at the intersection of row i and column j of T is noted Ti,j , we have:

Ti,j = Ti+1,j+1 = Ti−j , ∀i, j = 1, . . . , n

Definition 2.2. A lower triangular matrix Tinf ∈ Rn×n of type Toeplitz is defined as:

Tinf =



t0 0 . . . . . . 0 0

t1 t0 0
. . . . . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

tn−2
. . . . . . t1 t0 0

tn−1 tn−2 . . . . . . t1 t0


tj ∈ K, ∀j = 0, . . . , n− 1 and t0 ̸= 0

Definition 2.3. Tbande ∈ Rn×n, is a 2k + 1-banded-Toeplitz matrix with t−k ̸= 0, tk ̸= 0 and
k ∈ N, if it is in the form:

Tbande =



t0 t−1 . . . t−k 0 . . . 0 0

t1 t0 t−1
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . . . .

...

tk
. . . . . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . . . . . t−k

...
. . . . . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . t1 t0 t−1

0 0 . . . 0 tk . . . t1 t0


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2.2 Mathematical model

We are interested in computing the iverse of a very important class of Toeplitz matrix, it’s the
Tridiagonal Quasi-Toeplitz matrix. A matrix QT ∈ Rn×n is called Quasi-Toeplitz, if QT =
ti,j = ti−j , ∀i, j = 1, . . . , n, where, QT = ti,j = ti−j = 0, ∀i−j = −3, . . . , 2−n and i−j =
3, . . . , n− 2
i.e :

QT =



t0 t−1 t−2 0 . . . 0 γ

t1 t0 t−1 t−2
. . . . . . 0

t2
. . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . t−2

0
. . . . . . t2 t1 t0 t−1

γ 0 . . . 0 t2 t1 t0


where, γ ̸= 0

Remark 2.4. Following the form of the Toeplitz matrix in general, we will notice that we can
define the Quasi-Toeplitz matrix by its first row and its first column. Then we can replace QT
with the matrix Mat(l, c), where l = [t0, t−1, t−2, 0, . . . , . . . , 0, γ] ∈ R1,n is the first line of
matrix QT , and c = [t0, t1, t2, 0, . . . , . . . , 0, γ]T ∈ Rn,1 its first colon.

3 Schur complement

In linear algebra and the theory of matrices, the Schur complement of a block matrix is defined
as follows:

Definition 3.1. Let M be a block matrix, and p, q are non-negative integers, and suppose A1, A2, A3, A4
are respectively p× p, p× q, q × p and q × q matrices of complex numbers.

M =

A1 A2

A3 A4


So, M is a (p+ q)× (p+ q) matrix.
If A1 is invertible, the Schur complement of the block A1 of the matrix M is the q × q matrix
defined by :

M/A1 = A4 −A3A
−1
1 A2

If A2 is invertible, the Schur complement of the block A2 of the matrix M is the q × q matrix
defined by :

M/A2 = A3 −A4A
−1
2 A1

If A3 is invertible, the Schur complement of the block A3 of the matrix M is the q × q matrix
defined by:

M/A3 = A2 −A1A
−1
3 A4

If A4 is invertible, then the Schur complement of the block A4 of the matrix M is the p×p matrix
defined by:

M/A4 = A1 −A2A
−1
4 A3

3.1 Schur’s complement role to reverse the block matrix.

Block matrices can be inverted with the use of Schur complements.
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Proposition 3.2. Let M be a block matrix

M =

A1 A2

A3 A4


If A4 and its Schur complement M/A4 are invertible, then M is invertible and

M−1 =

 (M/A4)
−1 − (M/A4)

−1
A2A

−1
4

−A−1
4 A3 (M/A4)

−1
A−1

4 +A−1
4 A3 (M/A4)

−1
A2A

−1
4


Proof.

M =

A1 A2

A3 A4

 =

I A2A
−1
4

0 I


A1 −A2A

−1
4 A3 0

0 A4


 I 0

A−1
4 A3 I


where I are identity matrices and 0 are matrices of zeros. As a result, the Schur complement

M/A4 = A1 −A2A
−1
4 A3 appears in the upper-left p× p block.

Then, the inverse of M may be expressed involving A−1
4 and the inverse of Schur’s complement,

assuming it exists, as:

M−1 =

A1 A2

A3 A4


−1

=


I −A2A

−1
4

0 I


A1 −A2A

−1
4 A3 0

0 A4


 I 0

A−1
4 C I




−1

=

 I 0

−A−1
4 A3 I



(
A1 −A2A

−1
4 A3

)−1
0

0 A−1
4


I −A2A

−1
4

0 I



=


(
A1 −A2A

−1
4 A3

)−1
−
(
A1 −A2A

−1
4 A3

)−1
A2A

−1
4

−A−1
4 A3

(
A1 −A2A

−1
4 A3

)−1
A−1

4 +A−1
4 A3

(
A1 −A2A

−1
4 A3

)−1
A2A

−1
4



M−1 =

 (M/A4)
−1 − (M/A4)

−1
A2A

−1
4

−A−1
4 A3 (M/A4)

−1
A−1

4 +A−1
4 A3 (M/A4)

−1
A2A

−1
4


3.2 Factorization of a block matrix

A block matrix is frequently factorized into a combination of smaller block matrices using the
Schur complements.

Proposition 3.3. Let M be a block matrix

M =

A1 A2

A3 A4


If A4 is invertible, then

M =

I A2A
−1
4

0 I


M/A4 0

0 A4


 I 0

A−1
4 A4 iI


where I are identity matrices and 0 are matrices of zeros.
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Proof.
M/A4 = A1 −A2A

−1
4 A3

Consequently, the three matrices product isI A2A
−1
4

0 I


A1 −A2A

−1
4 A3 0

0 A4


 I 0

A−1
4 A3 I



=

I A2A
−1
4

0 I


A1 −A2A

−1
4 A3 0

A3 A4



=

A1 −A2A
−1
4 A3 +A2A

−1
4 A3 A2

A3 A4

 =

A1 A2

A3 A4



3.3 Factorization of the inverse of a block matrix

The inverse of a block matrix can be effectively factorized when the Schur complements are
invertible.

Proposition 3.4. Let M be a block matrix

M =

A1 A2

A3 A4


If A4 is invertible, then

M−1 =

 I 0

−A−1
4 A3 I


(M/A4)−1 0

0 A−1
4


I −A2A

−1
4

0 I


where I are identity matrices and 0 are matrices of zeros.

Proof. If we multiply the factorization of M into three matrices derived above by the factoriza-
tion of M−1 proposed here, we obtain the identity matrix becauseI −A2A

−1
4

0 I


I A2A

−1
4

0 I

 =

I 0

0 I


(M/A4)−1 0

0 A−1
4


(M/A4) 0

0 A4

 =

I 0

0 I


 I 0

−A−1
4 A3 I


 I 0

−A−1
4 A3 I

 =

I 0

0 I


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3.4 Determinants of block matrices

Proposition 3.5. [25] Let’s

M =

A1 A2

A3 A4


A1 is non-singular matrix. So we have :

detM = detA1.det(A4 −A4A
−1
1 A2) (3.1)

and
rank(A4 −A3A

−1
1 A2) = rank(M)− rank(A1) (3.2)

First, we develop a formula for the determinant:

Theorem 3.6. Let M,N,Q be matrix, where, M = N +Q.

If N =

N1,1 N1,2

N2,1 N2,2

 and Q =

Q1,1 Q1,2

Q2,1 Q2,2


Are conformal partition and N1,1, Q2,2 are maximal, then

det(M) =

det

N1,1 N1,2

N2,1 N2,2

 det

Q1,1 Q1,2

Q2,1 Q2,2


detN1,1detQ2,2

(3.3)

Proof. By (3.2) and maximality of N1,1 and Q2,2

N1,1 = N2,1N
−1
1,1 N1,2 Q1,1 = Q1,2Q

−1
2,2Q2,1

Thus, I1 and I2 denoting identity matrices of appropriate sizes.

N =

N1,1 0

N2,1 I2


I1 N−1

1,1 N1,2

0 0


 I1 0

−N−1
2,2 N2,1 N−1

2,2


 I1 0

N2,1 N2,2



Q =

N1,1 0

N2,1 I2


 N−1

1,1 0

−N2,1N
−1
1,1 I2


0 Q1,2Q−1

2,2

0 I2


 I1 0

Q2,1 Q2,2


So, that

M =

N1,1 0

N2,1 I2


I1 −N−1

1,1 N1,2N
−1
2,2 N2,1 N−1

1,1 (N1,2 +Q1,2)Q
−1
2,2

0 I2 −N2,1N
−1
1,1 Q1,2Q

−1
2,2


 I1 0

Q2,1 Q2,2


(3.4)

Since,

det(I1 −N−1
1,1 N1,2Q

−1
2,2Q2,1) =

det(N1,1 −N2,1Q
−1
2,2Q2,1)

detN1,1
=

det

N1,1 N1,2

Q2,1 Q2,2


detN1,1detQ2,2

By (3.1) and

det(I2 −N2,1N
−1
1,1 Q1,2Q

−1
2,2) =

det

N1,1 Q1,2

N2,1 Q2,2


detN1,1detQ2,2

(3.3) followes from (3.4).
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Remark 3.7. From (3.4), we can also obtain a formula for M−1.

Remark 3.8. In view of (3.1) can be written in other forms :

detM = det(N1,1 −Q1,2Q
−1
2,2N2,1)det(Q2,2 −Q2,1N

−1
1,1 Q1,2) (3.5)

detM = det(N1,1 −N1,2Q
−1
2,2Q2,1)det(Q2,2 −N2,1N

−1
1,1 Q1,1) (3.6)

Thus, if

M =

A1 A2

A3 A4


We can choose :

N =

A1 A2

0 0

 , Q =

 0 0

A3 A4


We obtain (3.3) Schur’s formula (3.1)

4 Inverse of a banded Toeplitz matrix

In the following, we present an algorithm which computes the inverse of 5-banded Toeplitz
matrix T5 ∈ Rn×n, given as follow:

T5 =



t0 t−1 t−2 0 . . . 0 0

t1 t0 t−1 t−2
. . . . . . 0

t2
. . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . t−2

0
. . . . . . t2 t1 t0 t−1

0 0 . . . 0 t2 t1 t0


The approach consist in embedding the banded Toeplitz matrix in a larger triangular Toeplitz

matrix [26]. Specifically, we embed T5 in a lower triangular Toeplitz matrix M of size (n+ 2)×
(n+ 2) where the first column of M is given by:

r = [t−2, t−1, t0, t1, t2, 0, . . . , . . . , 0, 0]T ∈ Rn+2,1

More precisely, if we note S a matrix of size 2 × 2 given by:

S =

t−2 0

t−1 t−2


We can write M as follows:

M =



t−2 0 . . . . . . . . . . . . 0 0

t−1 t−2
. . . . . . . . . . . . . . . 0

t0 t−1 t−2
. . . . . . . . . . . .

...

t1
. . . . . . . . . . . . . . . . . .

...

t2
. . . . . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . . . . . 0

...
. . . t2 t1 t0 t−1 t−2 0

0 . . . 0 t2 t1 t0 t−1 t−2



=


S 0 . . . 0

...
T5 0

S

 (4.1)
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To compute the inverse of the matrix T5, we present the following result:

Proposition 4.1. [26]
Let M be the matrix defined in (4.1); So, the matrix M−1 is a lower triangular matrix,

defined by its first column: [a1, a2, a3, . . . , . . . , an−1, an, an+1, an+2]T . In addition, M−1 can be
partitioned as follows:

M−1 =



a1 0 0 . . . . . . . . . . . . 0 0

a2 a1
. . . . . . . . . . . . . . . . . . 0

a3 a2 a1
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . . . . . . .

...

an−1
. . . . . . . . . . . . . . . . . . . . .

...

an an−1
. . . . . . . . . . . . a1 0 0

an+1 an an−1
. . . . . . a3 a2 a1 0

an+2 an+1 an an−1 . . . . . . a3 a2 a1



=

A1 A2

A3 A4



where,

A1 =



a1 0
a2 a1
...

. . .
...

. . .
...

. . .

an−1
. . .

an an−1


A2 =



0 0 . . . . . . . . . 0 0

0
. . . . . . . . . . . . . . . 0

a1
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...

an−3
. . . . . . . . . . . . . . .

...
an−2 an−3 . . . . . . a1 0 0



A3 =

an+1 an

an+2 an+1

 A4 =

[
an−1 an−2 . . . . . . . . . a1 0
an an−1 an−2 . . . . . . a2 a1

]

are matrices of size n× 2, n× n, 2 × 2, 2 × n, respectively.

Then, we investigate the structure of the matrix M−1 to compute the inverse of the banded
Toeplitz matrix T5. This result is presented in Theorem (4.2)

Theorem 4.2. [26] Let T5 be a non-singular banded Toeplitz matrix and M its associated lower
triangular matrix. Suppose that M−1 is partitioned as follows:

M−1 =

A1 A2

A3 A4


where A1, A2, A3, and A4 are matrices of size n × 2, n × n, 2 × 2, 2 × n, respectively. If T5 is
non-singular, then A−1

3 is also non-singular and the Schur complement of the block A3 for the
matrix M−1 is defined by:

T−1
5 = A2 −A1A

−1
3 A4 (4.2)

Proof. See [26] and section 3.
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5 Main algorithm

In this section, we present our approach to calculate the inverse of matrix QT . This technique is
based on a new decomposition of this Quasi-Toeplitz matrix and the application of the Sherman-
Morrison-Woodbury formula. Indeed, the considered decomposition consists to express the ma-
trix QT in the form of a 5-banded Toepliz matrix and the rest which will be decomposed in a
well-determined form. Then, the application of the Sherman-Morrison-Woodbury formula re-
duced the computation of the inverse of QT to the inverse of T5 as a banded Toeplitz matrix
given on the decomposition (5.1) defined as follows:

QT = T5 +R (5.1)

where,

T5 =



t0 t−1 t−2 0 . . . 0 0

t1 t0 t−1 t−2
. . . . . . 0

t2
. . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . t−2

0
. . . . . . t2 t1 t0 t−1

0 0 . . . 0 t2 t1 t0


R =



0 0 0 0 . . . 0 γ

0 0 0 0
. . . . . . 0

0
. . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . 0

0
. . . . . . 0 0 0 0

γ 0 . . . 0 0 0 0


T5 ∈ Rn×n is a 5-band Toeplitz matrix and R ∈ Rn×n.
To apply the Sherman-Morrison-Woodbury formula on equation (5.1).
We consider U,C ∈ Rn×n such that R = UCT ; with,

U =



1 0 0 0 . . . 0 0

0 0 0 0
. . . . . . 0

0
. . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . 0

0
. . . . . . 0 0 0 0

0 0 . . . 0 0 0 γ


and CT =



0 0 0 0 . . . 0 γ

0 0 0 0
. . . . . . 0

0
. . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . 0

0
. . . . . . 0 0 0 0

1 0 . . . 0 0 0 0


Then, we apply the formula of Sherman-Morrison-Woodbury to get:

QT−1 = (T5 + UCT )−1 = T−1
5 − T−1

5 U(In + CTT−1
5 U)−1T−1

5 (5.2)

where, In is an identity matrix of size n× n.

The different steps of the proposed algorithm to calculate the inverse of a Quasi-Toeplitz
matrix are given as follows:
Step 1. Input: n, t0, t−1, t−2, t1, t2, and γ
Step 2. Recover T5 and R from QT .
Step 3. Recover U and C from R.
Step 4. Give the matrix M as defined in (4.1).
Step 5. Calculate the inverse M−1.
Step 6. Recover A1, A2, A3 et A4 from M−1.
Step 7. Calculate T−1

5 , applying the expression (4.2)

T−1
5 = A2 −A1A

−1
3 A4
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.
Step 8. Output: Calculate QT−1, applying the expression (5.2)

QT−1 = (T5 + UCT )−1 = T−1
5 − T−1

5 U(In + CTT−1
5 U)−1T−1

5

6 Numerical results

In this section, three examples are considered to show the efficiency of the proposed algorithm.
The first example is a typical test of a matrix of size (8, 8) illustrating the different steps of
the proposed algorithm. However, examples 2 and 3 are numerical tests carried out on Matlab
on symmetric and asymmetric Quasi-Toeplitz matrices, of different sizes, implemented on an
Intel(R) Core(TM) i3− 3110M CPU @ with a 2.40 GHz processor and 4 GO of RAM, to show
the efficiency of the algorithm in terms of CPU-time and the solution of the considered system.

6.1 Example 1:

In this first example, we consider a symmetrical quasi-Toeplitz matrix of size 8 × 8 to illustrate
the different steps of the proposed algorithm.
Step 1. The considred matrix is given by:

l = [t0 = 1, t1 = 2, t2 = 1, 0, . . . , . . . , 0, γ = 7]T

i.e

QT = Mat(l) =



1 2 1 0 0 0 0 7
2 1 2 1 0 0 0 0
1 2 1 2 1 0 0 0
0 1 2 1 2 1 0 0
0 0 1 2 1 2 1 0
0 0 0 1 2 1 2 1
0 0 0 0 1 2 1 2
7 0 0 0 0 1 2 1


Step 2. In this step, we recover T5 and R from the matrix QT . We obtain:

T5 =



1 2 1 0 0 0 0 0
2 1 2 1 0 0 0 0
1 2 1 2 1 0 0 0
0 1 2 1 2 1 0 0
0 0 1 2 1 2 1 0
0 0 0 1 2 1 2 1
0 0 0 0 1 2 1 2
0 0 0 0 0 1 2 1


, R =



0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0


Step 3. Factorisation of R in the form UCT

U =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 7


, CT =



0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0


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Step 4. The triangular matrix M of size 8 + 2 = 10 obtained as defined in (4.1) is given by:

M =



1 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0
2 1 2 1 0 0 0 0 0 0
1 2 1 2 1 0 0 0 0 0
0 1 2 1 2 1 0 0 0 0
0 0 1 2 1 2 1 0 0 0
0 0 0 1 2 1 2 1 0 0
0 0 0 0 1 2 1 2 1 0
0 0 0 0 0 1 2 1 2 1


Step 5. In this step, we compute the inverse of M , where we obtain:

M−1 =



1 0 0 0 0 0 0 0 0 0
−2 1 0 0 0 0 0 0 0 0
3 −2 1 0 0 0 0 0 0 0
−6 3 −2 1 0 0 0 0 0 0
12 −6 3 −2 1 0 0 0 0 0
−22 12 −6 3 −2 1 0 0 0 0
41 −22 12 −6 3 −2 1 0 0 0
−78 41 −22 12 −6 3 −2 1 0 0
147 −78 41 −22 12 −6 3 −2 1 0
−276 147 −78 41 −22 12 −6 3 −2 1


Step 6. We recover the matrices A1, A2, A3 and A4 from the matrix M−1 as defineded in
Theorem 4.1.

A1 =



1 0
−2 1
3 −2
−6 3
12 −6
−22 12
41 −22
−78 41


A2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
−2 1 0 0 0 0 0 0
3 −2 1 0 0 0 0 0
−6 3 −2 1 0 0 0 0
12 −6 3 −2 1 0 0 0
−22 12 −6 3 −2 1 0 0


A3 =

[
147 −78
−276 147

]
; A4 =

[
41 −22 12 −6 3 −2 1 0
−78 41 −22 12 −6 3 −2 1

]
Step 7. We compute the inverse of T5 from the considered matries in step 6, using the formula:
T−1

5 = A2 −A1A
−1
3 A4, to obtain the following result:

T−1
5 =



0.7037 0.4444 −0.5926 −0.6667 0.3333 0.7407 0.1111 −0.9630
0.4444 −0.3333 0.2222 0.0000 −0.0000 −0.1111 −0.0000 0.1111
−0.5926 0.2222 0.1481 0.6667 −0.3333 −0.5185 −0.1111 0.7407
−0.6667 −0.0000 0.6667 0.0000 −0.0000 −0.3333 −0.0000 0.3333
0.3333 0.0000 −0.3333 −0.0000 0.0000 0.6667 0.0000 −0.6667
0.7407 −0.1111 −0.5185 −0.3333 0.6667 0.1481 0.2222 −0.5926
0.1111 −0.0000 −0.1111 −0.0000 0.0000 0.2222 −0.3333 0.4444
−0.9630 0.1111 0.7407 0.3333 −0.6667 −0.5926 0.4444 0.7037


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Step 8. Compute QT−1 using the Sherman-Morrison-Woodbury formula:

QT−1 = (T5 + UCT )−1 = T−1
5 − T−1

5 U(In + CTT−1
5 U)−1T−1

5

So,

QT−1 =



0.0810 −0.3565 −0.0284 0.2514 0.1577 −0.1534 −0.3253 0.2372
−0.3565 0.9560 0.7216 −0.6861 −0.9048 0.0966 1.3622 −0.3253
−0.0284 0.7216 −0.3409 0.0170 −0.1080 0.1591 0.0966 −0.1534
0.2514 −0.6861 0.0170 0.1491 0.8054 −0.1080 −0.9048 0.1577
0.1577 −0.9048 −0.1080 0.8054 0.1491 0.0170 −0.6861 0.2514
−0.1534 0.0966 0.1591 −0.1080 0.0170 −0.3409 0.7216 −0.0284
−0.3253 1.3622 0.0966 −0.9048 −0.6861 0.7216 0.9560 −0.3565
0.2372 −0.3253 −0.1534 0.1577 0.2514 −0.0284 −0.3565 0.0810


6.2 Numerical resolution of linear systems with Quasi-Toeplitz matrices

The purpose of a matrix inversion calculation is to use it to solve systems of linear equations. In
the following examples we will use our new approach to solve the symmetric and asymmetric
quasi-Toeplitz linear systems to show that our method is one of the ideal ways to solve this type
of problem.
We use our algorithm to compute x solution of the system Ax = b. The Error = ∥x−x∗∥2

∥x∗∥2
is con-

sidered, where ∥ . ∥2 is the Euclidean vector norm to evaluate the quality of the approximation.
It can be verified that x∗ = [1, 1, 1, . . . , 1, 1, 1]T is the exact solution for the two considered
examples.

Example 2:

For this example, we consider the n×n symmetric Quasi-Toeplitz linear system QTx = b with:
t0 = 1, t−1 = t1 = 1, t−2 = t2 = 2, γ = −1 and b = [3, 5, 7, . . . , 7, 5, 3]T .

Example 3:

In this example, we consider a non symmetric Quasi-Toeplitz linear system QTx = b, with:
t0 = −1, t−1 = −1, t−2 = 2, t1 = 1, t2 = −1, γ = 1 and b = [1, 1, 0, . . . , 0,−2, 0]T .

Table 1: Numerical result for example 2
n Error CPU-time(s) Cond(QT )

10 7.195068e−16 1.375000e−02 7.4953
102 5.370129e−15 4.687500e−02 610.9946
103 1.215850e−14 1.093750e−01 918.5586
104 5.594362e−14 3.046875e+00 1.0761e+04

Table 2: Numerical result for example 3
n Error CPU-time(s) Cond(QT )

10 1.110223e−16 4.687500e−02 13.3223
102 2.362976e−16 4.687500e−02 110.2692
103 2.294821e−15 7.812500e−02 1.0679e+03

104 4.438856e−15 2.796875e+00 1.0643e+04

The numerical results of example 2 are presented in Table 1. From this result we can see that
for all the values of n, the errors remain very low, and that the calculated solutions are a good
approximation to the exact solution, which proves the effectiveness of our approach. Table 2
shows the results of example 3, thanks to this example, we show that our algorithm is still valid
for asymmetric system.



Numerical algorithm to compute the inverse of Quasi-Toeplitz matrix 125

7 Conclusion

In this paper, we have presented a new algorithm to compute the inverse of a class of Quasi-
Toeplitz matrices. We have broken down the matrix into a sum of two matrices where the first one
is a 5-band Toeplitz matrix and the rest which is a matrix of size n×n. Then, we applied Sherman
Morrison formula to find the inverse of the decomposed matrix which reduce the computation
of the inverse of the initial Toeplitz matrix to the inverse of a banded Toeplitz matrix. Numerical
examples are presented showing the efficiency and the accuracy of the proposed method.
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