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Abstract This paper concerns the asymptotic behavior near infinity of positive global solu-
tions of the p-Laplacian equation

div
(
|∇v|p−2 ∇v

)
+ g(v) = 0 in RN\{0},

where N > p > 2, δ > N(p− 1)/(N − p) and g(v) = vδ + h(|x|) such that h is a continuous
and strictly positive function defined on RN\{0} satisfying h(|x|) = o

(
|x|−pδ/(δ+1−p)

)
as |x| →

+∞. More precisely, we give an explicit behavior near infinity of radial solutions v that satisfy
lim

|x|→0
v(x) = +∞.

1 Introduction

In this paper, we study the asymptotic behavior of positive global solutions of the following
radial problem

(
|v′|p−2v′

)′
(r) +

N − 1
r

|v′|p−2v′(r) + vδ(r) + h(r) = 0, r > 0 (1.1)

lim
r→0

v(r) = +∞, lim
r→0

r(N−1)/(p−1)v′(r) = 0, (1.2)

where N > p > 2, δ > N(p − 1)/(N − p), h is a continuous and strictly positive function on
(0,+∞) satisfying lim

r→+∞
rp δ/(δ+1−p)h(r) = 0.

This work constitutes a continuity of the work elaborated in [6] and [7] where the authors
proved the existence of a positive global solution of problem (1.1)-(1.2). They noticed that the
inhomogeneous term h has a crucial impact on the existence and asymptotic behavior of the
solutions v to the problem (1.1)-(1.2). More precisely, if N > p > 2, δ > N(p − 1)/(N − p)
and h(r) = K r−pδ/(δ+1−p), with

K =
δ + 1 − p

p− 1

(
p− 1
δ

(
N − pδ

δ + 1 − p

)(
p

δ + 1 − p

)p−1
)δ/(δ+1−p)

.

Then equation (1.1) has an explicit solution

ṽ(r) =

(
p− 1
δ

(
N − pδ

δ + 1 − p

)(
p

δ + 1 − p

)p−1
)1/(δ+1−p)

r−p/(δ+1−p). (1.3)

Moreover, they proved that if h(r) ∼
+∞

Lr−p δ/(δ+1−p) for some constant L > 0, then under some

conditions, the problem (1.1)-(1.2) has a solution v that behaves like r−p/(δ+1−p) near infinity. In
the case where h is negligible in front of r−p δ/(δ+1−p), it is difficult to find an equivalent of the
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solution v near infinity because v can be negligible in front of r−p/(δ+1−p). This open question
strongly depends on the behavior of h near infinity.

When p = 2, equation (1.1) becomes an inhomogeneous second-order elliptic equation that
appears naturally in probability theory in the study of stochastic processes. In particular, equa-
tion (1.1) arises recently in a paper by Tzong-Yow Lee [16] establishing limit theorems for
super-brownian motion. Moreover, Bernard [3] gave interesting results on the existence and
nonexistence of this type of equations. Also, in [2], Bae studied the existence of global pos-
itive solutions, and in paper [1], he established the asymptotic behavior near the origin and
infinity of positive radial solutions. We also invite the readers to see [15, 9, 18] for more
details and the references therein. If the inhomogeneous term h is identically null, equation
(1.1) becomes the classic Emden-Fowler equation. Existence results were obtained on RN

and RN\{0} in articles [10, 11, 12]. In the case N > 2, two critical values N/(N − 2) and
(N + 2)/(N − 2) appear. Gidas-Spruck [13] presented local and entire results in the non-radial
case when δ < (N + 2)/(N − 2). Caffarelli, Gidas, and Spruck [8] have just extended them to
the critical case δ = (N + 2)/(N − 2).

When p > 2 and the inhomogeneous term h is identically null, Ni and Serrin [17] studied the
following equation

(
|u′|p−2u′

)′
(r) +

N − 1
r

|u′|p−2u′(r) + uδ(r) = 0, r > 0. (1.4)

They have proved the existence of two critical cases N(p − 1)/(N − p) and (N(p − 1) +
p)/(N − p). Guedda and Véron [14] studied the existence of entire solutions and asymptotic
behavior near the origin of radial solutions when δ < N(p − 1)/(N − p). The non-radial case
was proved by Bidaut-veron and Pohozaev [5].

This paper deals with the case where p > 2 and the inhomogeneous term h is not identically
null. We present the asymptotic behavior near infinity of positive solutions v which tend to
infinity at zero, while recalling that the asymptotic behavior near the origin has been studied in
the paper Bouzelmate and Gmira [6] where they proved that v′ must be negligible in front of
r(1−N)/(p−1) near the origin when N ≥ p.

The paper is organized as follows. The section 2 contains some preliminary results which
are essential for the continuity of the work. In section 3, we study the asymptotic behavior of
solutions of problem (1.1)-(1.2) and their derivatives. We present four main theorems that deal
with the behavior of the solution v in the case where lim

r→+∞
rp δ/(δ+1−p)h(r) = 0. We prove

under some assumptions that lim
r→+∞

rp/(δ+1−p)v(r) ≥ 0. If lim
r→+∞

rp/(δ+1−p)v(r) = 0, we give

equivalents of v and v′ near infinity in the case where lim
r→+∞

rm h(r) = l > 0 for some constant

m > p δ/(δ + 1 − p). The study strongly depends on the position of m with respect to N . The
section 4 gives a conclusion of the work presented.

2 Preliminaries

In this section, we present some useful computational tools to prove the main theorems. We also
recall some preliminary results that appear in the papers [7] and [13].

Define the following function

Fλ(r) = λv(r) + rv′(r), r ≥ 0. (2.1)

This function plays an important role to study the asymptotic behavior of the function v, more
exactly the monotonicity of rλv because(

rλv(r)
)′
= rλ−1Fλ(r). (2.2)

To study the sign of Fλ, we give this following equation for any r > 0 such that v′(r) ̸= 0,

(p− 1) |v′|p−2
(r)F ′

λ(r) = (p− 1)
(
λ− N − p

p− 1

)
|v′|p−2

v′(r)− rvδ(r)− r h(r). (2.3)
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Suppose that there exits r0 > 0 such that Fλ(r0) = 0, then equation (1.1) gives

(p− 1) rp−1
0 |v′|p−2

(r0)F
′
λ(r0) = (p− 1)

(
N − p

p− 1
− λ

)
|λ|p−2λ vp−1(r0)

− rp0v
δ(r0)− rp0 h(r0). (2.4)

Now, we introduce the following change of variable which will be very useful. Let us define,
for any real λ the function

ψλ(t) = rλv(r) where λ ̸= 0 and t = ln r. (2.5)

Therefore ψλ verifies the following equation

y′λ(t) + Γλ yλ(t) + e(p−λ(δ+1−p))tψδ
λ(t) + jλ(t) = 0, (2.6)

where
jλ(t) = e(p+λ(p−1))th(et), (2.7)

yλ(t) = |kλ|p−2kλ(t), (2.8)

kλ(t) = ψ′
λ(t)− λψλ(t) (2.9)

and
Γλ = N − p− λ(p− 1). (2.10)

It is easy to see that
kλ(t) = rλ+1v′(r) (2.11)

and
ψ′
λ(t) = rλFλ(r). (2.12)

Now, we present some essential lemmas that initiated the study of the problem (1.1)-(1.2)
and were already seen in [7] and [13].

Lemma 2.1 ([7]). Let v be a solution of problem (1.1)-(1.2). Then

v(r) > 0 and v′(r) < 0, for any r > 0, (2.13)

Moreover, there exists a constant M > 0 such that

0 < v(r) ≤M r−p/(δ+1−p). (2.14)

Lemma 2.2 ([7]). Let v be a solution of problem (1.1)-(1.2). Then

F(N−p)/(p−1)(r) > 0 for large r.

Lemma 2.3 ([7]). Let v be a solution of problem (1.1)-(1.2). Then the function rp/(δ+1−p)+1v′(r)
is bounded near infinity.

Lemma 2.4 ([7]). Let v be a solution of problem (1.1)-(1.2). Suppose that rp/(δ+1−p)v(r) con-
verges when r → +∞. Then rp/(δ+1−p)+1v′(r) converges also when r → +∞ and

lim
r→+∞

rp/(δ+1−p)+1v′(r) =
−p

δ + 1 − p
lim

r→+∞
rp/(δ+1−p)v(r). (2.15)

Lemma 2.5. Let v be a solution of problem (1.1)-(1.2). If lim
r→+∞

rp/(δ+1−p)v(r) = b. Then b = 0

or b = Λ, where

Λ =

((
p

δ + 1 − p

)p−1(
N − pδ

δ + 1 − p

))1/(δ+1−p)

. (2.16)
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Proof. Taking λ = p/(δ + 1 − p) in logarithmic change (2.5), we obtain the following equation

y′p/(δ+1−p)(t) + Γp/(δ+1−p) yp/(δ+1−p)(t) + ψδ
p/(δ+1−p)(t) + jp/(δ+1−p)(t) = 0. (2.17)

We know by Lemma 2.4 that lim
t→+∞

kp/(δ+1−p)(t) = −p/(δ + 1 − p) b. Then by (2.8), we

have lim
t→+∞

yp/(δ+1−p)(t) = − (p/(δ + 1 − p))
p−1

bp−1. Since lim
t→+∞

jp/(δ+1−p)(t) = 0, then

y′p/(δ+1−p)(t) necessarily converges to 0. By tending t→ +∞ in equation (2.17), we obtain

bδ − Λ
δ+1−p bp−1 = 0, (2.18)

where Λ is given by (2.16). Hence b = 0 or b = Λ.

Lemma 2.6 ([13]). Let G a positive differentiable function satisfying

(i)

∫ +∞

t0

G(t) dt < +∞ for large t0.

(ii) G′(t) is bounded for large t.

Then, lim
t→+∞

G(t) = 0.

3 Main Results

In this section, we study the asymptotic behavior of the solution v of problem (1.1)-(1.2) when
lim

r→+∞
rp δ/(δ+1−p) h(r) = 0. We give a complete study that allow us to obtain the equivalents of

v and v′ according to the behavior of the inhomogeneous term h near infinity and the position of
δ with respect to the critical values N(p− 1)/(N − p) and (N(p− 1) + p)/(N − p).

We use ideas from [4], [6] and [7] and we introduce the following hypotheses:

(C1) δ >
N(p− 1) + p

N − p
and

∫ +∞

1

(
rpδ/(δ+1−p)h

)+
r
dr <∞.

(C2)
N(p− 1)
N − p

< δ <
N(p− 1) + p

N − p
and

∫ +∞

1

(
rpδ/(δ+1−p)h

)−
r
dr <∞.

(C3) rpδ/(δ+1−p)+1h′(r) is bounded for large r and
∫ +∞

1
rpδ/(δ+1−p)−1h(r)dr <∞.

(C4) δ ≥ N(p− 1) + p

N − p
+ 1 and

∫ +∞

1

(
rpδ/(δ+1−p)h

)+
r
dr <∞.

Then we have the following main theorem.

Theorem 3.1. Let v be a solution of problem (1.1)-(1.2). If one of the following cases arises:

(i) (C1) and (C3),

(ii) (C2) and (C3),

(iii) (C4),

then
(i) lim

r→+∞
rp/(δ+1−p)v(r) = 0 or lim

r→+∞
rp/(δ+1−p)v(r) = Λ.

(ii) lim
r→+∞

rp/(δ+1−p)+1v′(r) = 0 or lim
r→+∞

rp/(δ+1−p)+1v′(r) =
−p

δ + 1 − p
Λ, where Λ is given

by (2.16).

Proof. Due to Lemmas 2.4 and 2.5, we concentrate to show that ψp/(δ+1−p)(t) converges when
t→ +∞.
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• Suppose that the case (i) or the case (ii) occurs.
Let us define the following energy function associated with equation (2.17):

E1(t) =
p− 1
p

∣∣kp/(δ+1−p)(t)
∣∣p + Γ yp/(δ+1−p)(t)ψp/(δ+1−p)(t)

+
δ

δ + 1
AΓ

1/δ ∣∣yp/(δ+1−p)(t)
∣∣(δ+1)/δ

+
1

δ + 1
ψδ+1
p/(δ+1−p)(t),

(3.1)

where

A =
δ(N − p)− (N(p− 1) + p)

δ + 1 − p
(3.2)

and
Γ = Γp/(δ+1−p) = N − pδ

δ + 1 − p
. (3.3)

Therefore

E′
1(t) = −AY1(t)− jp/(δ+1−p)(t)ψ

′
p/(δ+1−p)(t) (3.4)

+Ajp/(δ+1−p)(t)
(

Γ
1/δ ∣∣yp/(δ+1−p)(t)

∣∣1/δ − ψp/(δ+1−p)(t)
)
,

where

Y1(t) =
(
ψp/(δ+1−p)(t)− Γ

1/δ ∣∣yp/(δ+1−p)(t)
∣∣1/δ)(ψδ

p/(δ+1−p)(t)− Γ
∣∣yp/(δ+1−p)(t)

∣∣) . (3.5)

We proceed in three steps.
Step 1. E1(t) converges when t→ +∞.
Since ψp/(δ+1−p)(t), kp/(δ+1−p)(t) and yp/(δ+1−p)(t) are bounded for large t, then E1(t) is
bounded for large t.
Integrating (3.4) on (T, t) for large T , we obtain

E1(t) = C1(T )−AS1(t)− jp/(δ+1−p)(t)ψp/(δ+1−p)(t) +

∫ t

T

j′p/(δ+1−p)(s)ψp/(δ+1−p)(s) ds

+A

∫ t

T

jp/(δ+1−p)(s)
(

Γ
1/δ ∣∣yp/(δ+1−p)(s)

∣∣1/δ − ψp/(δ+1−p)(s)
)
ds,

(3.6)
where

C1(T ) = E1(T ) + jp/(δ+1−p)(T )ψp/(δ+1−p)(T ) (3.7)

and

S1(t) =

∫ t

T

Y1(s) ds. (3.8)

Since A ̸= 0, we have by (3.6),

S1(t) = −E1(t)

A
− 1
A
jp/(δ+1−p)(t)ψp/(δ+1−p)(t) +

1
A

∫ t

T

j′p/(δ+1−p)(s)ψp/(δ+1−p)(s) ds

+

∫ t

T

jp/(δ+1−p)(s)
(

Γ
1/δ ∣∣yp/(δ+1−p)(s)

∣∣1/δ − ψp/(δ+1−p)(s)
)
ds+

C1(T )

A
.

(3.9)
Since the function s → sδ is monotone, then Y1(t) ≥ 0. Therefore, the function S1 is positive
and increasing. On the other hand, by logarithmic change, hypothesis (C1) gives A > 0 and∫ +∞

T

(
j′p/(δ+1−p)(s)

)+
ds < +∞, hypothesis (C2) implies A < 0 and∫ +∞

T

(
j′p/(δ+1−p)(s)

)−
ds < +∞, and hypothesis (C3) gives

∫ +∞

T

jp/(δ+1−p)(s) ds < +∞.

These assumptions, with the fact that ψp/(δ+1−p)(t), yp/(δ+1−p)(t) and E1(t) are bounded for

large t, lim
t→+∞

jp/(δ+1−p)(t) = 0 and −
(
j′p/(δ+1−p)(s)

)−
≤ j′p/(δ+1−p)(s) ≤

(
j′p/(δ+1−p)(s)

)+
,

give that S1(t) is bounded for large t. Therefore, S1(t) converges when t → +∞. Hence by
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letting t→ +∞ in (3.9), we obtain lim
t→+∞

E1(t) exists and is finite.

Step 2. lim
t→+∞

y′p/(δ+1−p)(t) = 0.

Recall that for any 1 < ϱ ≤ 2, there is a cϱ such that(
|a|ϱ−2a− |b|ϱ−2b

)
(a− b) ≥ cϱ(a− b)2 (|a|+ |b|)ϱ−2

, (3.10)

for any a, b ∈ R such that |a|+ |b| > 0.
Therefore, we have(

ψp/(δ+1−p)(t)− Γ1/δ
∣∣yp/(δ+1−p)(t)

∣∣1/δ)(ψδ
p/(δ+1−p)(t)− Γ

∣∣yp/(δ+1−p)(t)
∣∣)≥

cδ

(
ψδ
p/(δ+1−p)(t)− Γ

∣∣yp/(δ+1−p)(t)
∣∣)2 (

ψδ
p/(δ+1−p)(t) + Γ

∣∣yp/(δ+1−p)(t)
∣∣)−(1−1/δ)

.

(3.11)
As yp/(δ+1−p)(t) < 0 for large t, then according to (2.17) and (3.5), we have for large t

Y1(t) ≥ cδ

(
y′p/(δ+1−p)(t) + jp/(δ+1−p)(t)

)2 (
ψδ
p/(δ+1−p)(t) + Γ

∣∣yp/(δ+1−p)(t)
∣∣)−(1−1/δ)

.

(3.12)
Using the fact that ψp/(δ+1−p)(t) and yp/(δ+1−p)(t) are bounded for large t and 1 − 1/δ > 0.
Then there exists a constant C > 0 such that for large t,(

y′p/(δ+1−p)(t) + jp/(δ+1−p)(t)
)2

≤ CY1(t).

Which yields that ∫ t

T

(
y′p/(δ+1−p)(s) + jp/(δ+1−p)(s)

)2
ds ≤ C S1(t).

Consequently∫ t

T

y′2p/(δ+1−p)(s) ds ≤ CS1(t)− 2
∫ t

T

y′p/(δ+1−p)(s)jp/(δ+1−p)(s) ds−
∫ t

T

j2
p/(δ+1−p)(s) ds

≤ CS1(t)− 2
∫ t

T

y′p/(δ+1−p)(s)jp/(δ+1−p)(s) ds.

Since S1(t) and y′p/(δ+1−p)(t) are bounded for large t and
∫ t

T

jp/(δ+1−p)(s) ds < +∞ from

(C3), then
∫ t

T

y′2p/(δ+1−p)(s) ds is bounded. Moreover, since
∫ t

T

y′2p/(δ+1−p)(s) ds is increasing,

then
∫ +∞

T

y′2p/(δ+1−p)(s) ds < +∞.

On the other hand, deriving equation (2.17), we get

y′′p/(δ+1−p)(t) + Γ y′p/(δ+1−p)(t) + δψδ−1
p/(δ+1−p)(t)ψ

′
p/(δ+1−p)(t) + j′p/(δ+1−p)(t) = 0. (3.13)

Since j′p/(δ+1−p)(t) is bounded from (C3) and y′p/(δ+1−p)(t), ψp/(δ+1−p)(t), ψ′
p/(δ+1−p)(t) are

bounded for large t, then y′′p/(δ+1−p)(t) is bounded for large t. Hence, using Lemma 2.6 we have
lim

t→+∞
y′p/(δ+1−p)(t) = 0.

Step 3. ψp/(δ+1−p)(t) converges when t→ +∞.
Since lim

t→+∞
jp/(δ+1−p)(t) = 0, then by tending t→ +∞ in equation (2.17), we obtain

lim
t→+∞

Γyp/(δ+1−p)(t) + ψδ
p/(δ+1−p)(t) = 0. (3.14)

We argue by contradiction, and we suppose that ψp/(δ+1−p)(t) oscillates for large t. Then there
exist two sequences {ηj} and {ξj} that go to +∞ as j → +∞ such that {ηj} and {ξj} are local
minimum and local maximum of ψp/(δ+1−p), respectively, satisfying ηj < ξj < ηj+1 and

0 ≤ lim inf
t→+∞

ψp/(δ+1−p)(t) = lim
j→+∞

ψp/(δ+1−p)(ηj) = α <

lim sup
t→+∞

ψp/(δ+1−p)(t) = lim
j→+∞

ψp/(δ+1−p)(ξj) = β < +∞.
(3.15)
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Now, since ψ′
p/(δ+1−p)(ηj) = ψ′

p/(δ+1−p)(ξj) = 0, the relation (3.14) implies that χ(α) =

χ(β) = 0, where
χ(s) = Λ

δ+1−p sp−1 − sδ = 0, s ≥ 0, (3.16)

and Λ is given by (2.16). As α < β, then necessarily α = 0 and β = Λ. On the other hand,
by (3.1), we have lim

j→+∞
E1(ηj) = 0 and lim

j→+∞
E1(ξj) = −1/(δ + 1) (p/(δ + 1 − p))

p−1
Λ

p <

0, which cannot take place because E1(t) converges when t → +∞. Hence, ψp/(δ+1−p)(t)
converges when t→ +∞.

• Suppose that the case (iii) occurs.
Similarly to the cases (i) and (ii), it suffices to show that ψp/(δ+1−p)(t) converges when t→ +∞.
Define the following energy function,

E2(t) =
p− 1
p

∣∣kp/(δ+1−p)(t)
∣∣p + p

δ + 1 − p
yp/(δ+1−p)(t)ψp/(δ+1−p)(t)

−A
p

(
p

δ + 1 − p

)p−1

ψp
p/(δ+1−p)(t) +

1
δ + 1

ψδ+1
p/(δ+1−p)(t),

(3.17)

where A is given by (3.2).
A simple calculation gives

E′
2(t) = −AY2(t)− jp/(δ+1−p)(t)ψ

′
p/(δ+1−p)(t), (3.18)

where

Y2(t) =

[
|kp/(δ+1−p)(t)|p−1 −

(
p

δ + 1 − p

)p−1

ψp−1
p/(δ+1−p)(t)

]
×[

|kp/(δ+1−p)(t)| −
p

δ + 1 − p
ψp/(δ+1−p)(t)

]
. (3.19)

Integrating relation (3.18) on (T, t) for large T , we obtain

E2(t) = C2(T )−AS2(t)− j(t)ψp/(δ+1−p)(t) +

∫ t

T

j′(s)ψp/(δ+1−p)(s) ds, (3.20)

where
C2(T ) = E2(T ) + jp/(δ+1−p)(T )ψp/(δ+1−p)(T ) (3.21)

and

S2(t) =

∫ t

T

Y2(s) ds. (3.22)

Since the function s→ sp−1 is monotone, then Y2(t) ≥ 0. Therefore, S2 is positive and increas-
ing. In the same way as the cases (i) and (ii), we prove that S2(t) is bounded for large t by using

(C4) which gives A > 0 and
∫ +∞

T

(
j′p/(δ+1−p)(s)

)+
ds < +∞. Therefore S2(t) converges

when t→ +∞ and thereby E2(t) converges to a real number noted d when t→ +∞.
Assume by contradiction that ψp/(δ+1−p)(t) oscillates for large t. Then there exist two se-
quences {ηj} and {ξj} that go to +∞ as j → +∞ such that {ηj} and {ξj} are local minimum
and local maximum of ψp/(δ+1−p), respectively, satisfying ηj < ξj < ηj+1 and (3.15). Since
ψ′
p/(δ+1−p)(ηj) = ψ′

p/(δ+1−p)(ξj) = 0, then by expression (3.17) of E2, we obtain

lim
j→+∞

E2(ηj) = ζ(α) and lim
j→+∞

E2(ξj) = ζ(β), (3.23)

where

ζ(s) =
sδ+1

δ + 1
− Λδ+1−p

p
sp, s ≥ 0. (3.24)

Since lim
t→+∞

E2(t) = d, then

ζ(α) = ζ(β) = d, (3.25)
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Therefore, there exists γ ∈ (α, β) and tj ∈ (ηj , ξj) such that ψp/(δ+1−p)(tj) = γ, ζ ′(γ) = 0 and
ζ(γ) ̸= d. It is easy to see that ζ ′(0) = ζ ′(Λ) = 0, hence ψp/(δ+1−p)(tj) = γ = Λ.
Now, we distinguish two cases.
• If lim inf

t→+∞
ψp/(δ+1−p)(t) = α = 0, then using (3.25), we have lim

t→+∞
E2(t) = 0. On the other

hand, using expression (3.17) of E2 and the fact that kp/(δ+1−p)(t) < 0, we obtain

E2(tj) <
∣∣kp/(δ+1−p)(tj)

∣∣p−1
(∣∣kp/(δ+1−p)(tj)

∣∣− p

δ + 1 − p
ψp/(δ+1−p)(tj)

)
− A

p

( p

δ + 1 − p

)p−1
ψp
p/(δ+1−p)(tj) +

1
δ + 1

ψδ+1
p/(δ+1−p)(tj).

That is, thanks to (2.9),

E2(tj) < −ψ′
p/(δ+1−p)(tj)

∣∣kp/(δ+1−p)(tj)
∣∣p−1 − A

p

( p

δ + 1 − p

)p−1
ψp
p/(δ+1−p)(tj)

+
1

δ + 1
ψδ+1
p/(δ+1−p)(tj).

But ψp/(δ+1−p)(tj) = Λ and ψ′
p/(δ+1−p)(tj) ≥ 0, hence E2(tj) < ρ(Λ), where

ρ(s) =
sδ+1

δ + 1
− A

p

( p

δ + 1 − p

)p−1
sp, s ≥ 0. (3.26)

Since δ ≥ (N(p − 1) + p)/(N − p) + 1, then ρ(Λ) < 0. Therefore, lim
i→+∞

E2(tj) ≤ ρ(Λ) < 0.

This is impossible because lim
t→+∞

E2(t) = 0.

• If lim inf
t→+∞

ψp/(δ+1−p)(t) > 0, then there exists ε > 0 such that ψp/(δ+1−p)(t) ≥ ε for large t.

Combining this with equation (2.17) and the fact that jp/(δ+1−p)(t) is positive, we get for large t,

y′p/(δ+1−p)(t) +

(
N − pδ

δ + 1 − p

)
yp/(δ+1−p)(t) ≤ −εq.

Integrating this last inequality on (T, t) for large T and taking into account yp/(δ+1−p)(t) < 0
and N > p δ/(δ + 1 − p), we obtain

∣∣yp/(δ+1−p)(t)
∣∣ ≥ εδ

N − pδ

δ + 1 − p

+M(T ) e−
(
N−pδ/(δ+1−p)

)
t for t > T,

where

M(T ) =

∣∣yp/(δ+1−p)(T )
∣∣− εδ

N − pδ

δ + 1 − p

 e(N−pδ/(δ+1−p)
)
T .

Therefore, by (2.8), we have that
∣∣kp/(δ+1−p)(t)

∣∣2−p is bounded for large t. Now, we prove
that lim

t→+∞
ψ′
p/(δ+1−p)(t) = 0, which amounts to show that lim

t→+∞
Y2(t) = 0. For this we apply

Lemma 2.6. Since S2(t) converges when t → +∞, then
∫ +∞

T

Y2(s) ds < +∞. We show that

Y ′
2 (t) is bounded for large t. Using expression (3.19) of Y2, we have

Y2(t) = |yp/(δ+1−p)|p/(p−1)(t)− p

δ + 1 − p
|yp/(δ+1−p)|(t)ψp/(δ+1−p)(t)

+

(
p

δ + 1 − p

)p−1

ψp−1
p/(δ+1−p)(t)ψ

′
p/(δ+1−p)(t).

(3.27)
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Deriving relation (3.27), we obtain

Y ′
2 (t) =

p

p− 1
kp/(δ+1−p)(t)y

′
p/(δ+1−p)(t) +

p

δ + 1 − p
yp/(δ+1−p)(t)ψ

′
p/(δ+1−p)(t)

+
p

δ + 1 − p
ψp/(δ+1−p)(t)y

′
p/(δ+1−p)(t)

+ (p− 1)
(

p

δ + 1 − p

)p−1

ψp−2
p/(δ+1−p)(t)ψ

′2
p/(δ+1−p)(t)

+

(
p

δ + 1 − p

)p−1

ψp−1
p/(δ+1−p)(t)ψ

′′
p/(δ+1−p)(t). (3.28)

Since ψp/(δ+1−p)(t), kp/(δ+1−p)(t) and jp/(δ+1−p)(t) are bounded for large t, according to (2.9)
and (2.17), ψ′

p/(δ+1−p)(t) and y′p/(δ+1−p)(t) are bounded for large t. Moreover, ψ′′
p/(δ+1−p)(t) is

bounded also for large t by using the fact that

ψ′′
p/(δ+1−p)(t) =

1
p− 1

|kp/(δ+1−p)(t)|2−py′p/(δ+1−p)(t) +
p

δ + 1 − p
ψ′
p/(δ+1−p)(t) (3.29)

and |kp/(δ+1−p)(t)|2−p is bounded for large t. Therefore, by equation (3.28), Y ′
2 (t) is bounded for

large t. Hence, by Lemma 2.6, we obtain lim
t→+∞

Y2(t) = 0 and thereby lim
t→+∞

ψ′
p/(δ+1−p)(t) =

0. This gives lim
j→+∞

E2(tj) = ζ(Λ) = ζ(γ). But this contradicts the fact that ζ(Λ) ̸= d =

lim
t→+∞

E2(t). Consequently, ψp/(δ+1−p)(t) converges when t→ +∞. The proof is complete.

Now, a main question arises: Could we find equivalents of v and v′ near infinity in the case
where lim

r→+∞
rp/(δ+1−p) v(r) = 0? The answer to this question strongly depends on the behavior

of the inhomogeneous term h. For this, we assume that there existsm > pδ/(δ+1−p) satisfying
the following hypotheses.

(Hb) rm h(r) is bounded for large r.

(Hc) lim
r→+∞

rm h(r) = l > 0.

The study depends on the position ofm with respect toN . We start with the case where p δ/(δ+
1 − p) < m < N .

Theorem 3.2. Assume that p δ/(δ + 1 − p) < m < N and (Hc) holds. Let v be a solution of
problem (1.1)-(1.2) satisfying lim

r→+∞
rp/(δ+1−p)v(r) = 0. Then

(i) v(r) ∼
+∞

p− 1
m− p

(
l

N −m

)1/(p−1)

r−(m−p)/(p−1).

(ii) v′(r) ∼
+∞

−
(

l

N −m

)1/(p−1)

r−(m−1)/(p−1).

The proof requires the following results.

Lemma 3.3. Let v be a solution of problem (1.1)-(1.2) satisfying lim
r→+∞

rp/(δ+1−p)v(r) = 0.

Suppose that rθ(p−1)+p h(r) is bounded for large r and lim
r→+∞

rθv(r) = +∞ for some p/(δ +

1 − p) < θ ≤ (N − p)/(p− 1). Then Fp/(δ+1−p)(r) < 0 and Fθ(r) > 0, for large r.

Proof. The proof will be done in two steps.
Step 1. Fp/(δ+1−p)(r) < 0 for large r.
Using relation (2.2) and the fact that lim

r→+∞
rp/(δ+1−p)v(r) = 0, it suffices to show that Fp/(δ+1−p)(r) ̸=

0. Suppose by contradiction that there exists a large r such that Fp/(δ+1−p)(r) = 0. Using the



136 Arij Bouzelmate, Hikmat El Baghouri and Mohamed El Hathout

relation (2.4) with λ = p/(δ + 1 − p) and multiplying by rθ(p−1), we get

(p− 1) r(θ+1)(p−1) |v′(r)|p−2
F ′
p/(δ+1−p)(r) = rθ(p−1)vp−1(r)

[
Λ

δ+1−p − rpvδ+1−p(r)

−rp+θ(p−1)h(r)
(
rθv(r)

)1−p
]
.

(3.30)
Since lim

r→+∞
rp/(δ+1−p)v(r) = 0, rθ(p−1)+ph(r) is bounded for large r and lim

r→+∞
rθv(r) = +∞,

then F ′
p/(δ+1−p)(r) > 0. Hence Fp/(δ+1−p)(r) ̸= 0 for large r.

Step 2. Fθ(r) > 0 for large r.
We start with the first case p/(δ+1−p) < θ < (N−p)/(p−1). In the same way as the first step,
using (2.2), it suffices to show that Fθ(r) ̸= 0 for large r since lim

r→+∞
rθv(r) = +∞. Suppose

that there exists a large r such that Fθ(r) = 0. We have by (2.4)

(p− 1) r(θ+1)(p−1) |v′(r)|p−2
F ′
θ(r) = rθ(p−1)vp−1(r)

[
Γθθ

p−1 − rpvδ+1−p(r)

−rp+θ(p−1)h(r)
(
rθv(r)

)1−p
]
,

(3.31)

where Γθ is given by (2.10). Using our hypothesis and the fact that Γθ > 0 (because p/(δ + 1 −
p) < θ < (N − p)/(p− 1)), we obtain F ′

θ(r) > 0. Therefore, Fθ(r) ̸= 0 for large r.
The case θ = (N − p)/(p− 1) is given by Lemma 2.2. The proof is over.

Proposition 3.4. Assume that (Hb) holds. Let v be a solution of problem (1.1)-(1.2) satisfying
lim

r→+∞
rp/(δ+1−p)v(r) = 0. Then r(m−p)/(p−1)v(r) is bounded for large r. Moreover, we have

lim inf
r→+∞

rmh(r) ≤ (N −m)

(
m− p

p− 1

)p−1

lim sup
r→+∞

rm−pvp−1(r) (3.32)

and

lim sup
r→+∞

rmh(r) ≥ (N −m)

(
m− p

p− 1

)p−1

lim inf
r→+∞

rm−pvp−1(r). (3.33)

Proof. Taking θ = (m− p)/(p− 1) and using the change (2.5) (for λ = θ), we show that ψθ(t)
is bounded for large t. We argue by contradiction and we distinguish two cases.
• If lim

t→+∞
ψθ(t) = +∞.

As p/(δ+1−p) < θ < (N −p)/(p−1) and rθ(p−1)+ph(r) is bounded for large r by hypothesis
(Hb), combining this with Lemma 3.3, we have Fp/(δ+1−p)(r) < 0 and Fθ(r) > 0, for large r.
Consequently, since v′(r) < 0 on (0,+∞), then for large r,

p

δ + 1 − p
<
r|v′|
v

< θ. (3.34)

Using the change (2.5), we have for large t,(
p

δ + 1 − p

)p−1

< |yθ(t)|ψ1−p
θ (t) < θp−1. (3.35)

Now, taking λ = θ in equation (2.6) and multiplying by ψ1−p
θ (t), we get(

yθ(t)ψ
1−p
θ (t)

)′
+ (p− 1) |kθ(t)|p ψ−p

θ (t) + (N − p) yθ(t)ψ
1−p
θ (t) + Jθ(t) = 0, (3.36)

where
Jθ(t) = e(p−θ(δ+1−p))tψδ+1−p

θ (t) + jθ(t)ψ
1−p
θ (t). (3.37)

Since lim
t→+∞

e(p−θ(δ+1−p))tψδ+1−p
θ (t) = 0 (because lim

r→+∞
rp/(δ+1−p)v(r) = 0), jθ(t) is bounded

for large t and lim
t→+∞

ψθ(t) = +∞, then lim
t→+∞

Jθ(t) = 0.
For simplicity, we set

φθ(t) = |yθ(t)|ψ1−p
θ (t). (3.38)
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Then by (3.35), we have for large t(
p

δ + 1 − p

)p−1

< φθ(t) < θp−1 (3.39)

and by (3.36), we have

φ′
θ(t) = (p− 1) |φθ(t)|p/(p−1) − (N − p)φθ(t) + Jθ(t). (3.40)

Since φθ(t) > 0 for large t, we obtain for large t

φ′
θ(t) = (p− 1)τ (φθ(t)) + Jθ(t) (3.41)

where
τ(s) = sp/(p−1) − N − p

p− 1
s, s ≥ 0. (3.42)

A simple study of the function τ implies that there exists c > 0 such that τ(s) < −c for
(p/(δ + 1 − p))

p−1
< s < θp−1 < ((N − p)/(p− 1))p−1. Using (3.39), (3.41) and the fact that

lim
t→+∞

Jθ(t) = 0, we see that there exists a constant c1 > 0 such that for large t, φ′
θ(t) < −c1.

Integrating this last inequality on (T, t) for large T , we get lim
t→+∞

φθ(t) = −∞, which gives a

contradiction with the fact that φθ(t) is bounded for large t by (3.39).
• If lim sup

t→+∞
ψθ(t) = +∞.

Then there exists a sequence {ri} going to +∞ as i → +∞ such that {ri} is a local maximum
of ψθ satisfying lim

t→+∞
ψθ(ri) = +∞.

Taking t = ri in equation (2.6) with λ = θ, we get

y′θ(ri) = −Γθ yθ(ri)− e(p−θ(δ+1−p))riψδ
θ(ri)− jθ(ri). (3.43)

Since ψ′
θ(ri) = 0, then by (2.9) and (2.8), we have

ψp−1
θ (ri)

yθ(ri)
= −θ1−p.

As a consequence, equation (3.43) can be written as

y′θ(ri) = yθ(ri)

[
−Γθ + θ1−pe(p−θ(δ+1−p))riψδ+1−p

θ (ri)−
jθ(ri)

yθ(ri)

]
. (3.44)

Using our hypotheses, we have lim
i→+∞

y′θ(ri)

yθ(ri)
= −Γθ, then y′θ(ri) > 0 for large i. On the other

hand, we have k′θ(ri) = v′′θ (ri) ≤ 0, which yields that y′θ(ri) ≤ 0. This is a contradiction.
We deduce that ψθ(t) is bounded for large t.

Now, we show the estimate (3.32). Assume by contradiction that

lim inf
r→+∞

rmh(r) > (N −m)

(
m− p

p− 1

)p−1

lim sup
r→+∞

rm−pvp−1(r).

Taking λ = θ = (m− p)/(p− 1) in (2.5), there exists ε0 > 0 such that for large t,

jθ(t) = emt h(et) ≥ (N −m) θp−1ψp−1
θ (t) + ε0. (3.45)

First, we show that ψθ(t) is strictly monotone for large t, which amounts to prove that Fθ(r) ̸= 0
for large r by (2.2). Suppose by contradiction that there exists a large r such that Fθ(r) = 0.
Then combining this with relation (2.4), we obtain

(p−1)rm−1|v′|p−2F ′
θ(r) = (N−m) θp−1ψp−1

θ (t)−e(pδ−m(δ+1−p))/(p−1))tψδ
θ(t)−jθ(t). (3.46)
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Using inequality (3.45), we obtain for large r,

(p− 1)rm−1|v′|p−2F ′
θ(r) < (N −m) θp−1ψp−1

θ (t)− jθ(t) ≤ −ε0 < 0. (3.47)

Therefore, Fθ(r) ̸= 0 for large r, that is ψθ(t) is strictly monotone for large t. Moreover, since
ψθ(t) is bounded for large t, then lim

t→+∞
ψθ(t) = b1 ≥ 0 and lim

t→+∞
ψ′
θ(t) = 0. Therefore, by

(2.9), that lim
t→+∞

kθ(t) = −θb1 and thereby lim
t→+∞

yθ(t) = −θp−1bp−1
1 .

On the other hand, according to (2.17), we have

y′θ(t) = −(N −m)yθ(t)− e(pδ−m(δ+1−p))/(p−1))tψδ
θ(t)− jθ(t). (3.48)

Hence, combining with (3.45), we get for large t,

y′θ(t) ≤ ϕ(t)− ε0, (3.49)

where

ϕ(t) = −(N −m)yθ(t)− e(pδ−m(δ+1−p))/(p−1))tψδ
θ(t)− (N −m) θp−1ψp−1

θ (t). (3.50)

Since m > pδ/(δ+1−p), lim
t→+∞

ψθ(t) = b1 and lim
t→+∞

yθ(t) = −θp−1bp−1
1 , then lim

t→+∞
ϕ(t) = 0.

This implies that there exists a constant c2 > 0 such that y′θ(t) ≤ −c2 for large t. Integrating the
last inequality on (T, t) for large T , we obtain lim

t→+∞
yθ(t) = −∞. This is impossible and the

estimate (3.32) holds.

Finally, to prove estimate (3.33), we assume by contradiction that

lim sup
r→+∞

rmh(r) < (N −m)

(
m− p

p− 1

)p−1

lim inf
r→+∞

rm−pvp−1(r).

Then with θ = (m− p)/(p− 1), there exists ε2 > 0 such that for large t

jθ(t) ≤ (N −m) θp−1ψp−1
θ (t)− ε2. (3.51)

In a similar manner, we prove that the last inequality gives ψθ(t) is strictly monotone for large t.
Indeed, suppose by contradiction that there exists a large r such that Fθ(r) = 0. Then, according
to (3.46) and (3.51) , we get for large r,

(p− 1)rm−1|v′|p−2F ′
θ(r) ≥ ε2 − e(pδ−m(δ+1−p))/(p−1))tψδ

θ(t). (3.52)

Since lim
t→+∞

e(pδ−m(δ+1−p))/(p−1))tψδ
θ(t) = 0 (because m > pδ/(δ+ 1− p) and ψθ(t) is bounded

for large t), then for large r

(p− 1)rm−1|v′|p−2F ′
θ(r) >

ε2

2
> 0.

Therefore Fθ(r) ̸= 0 for small r and thereby ψθ(t) is strictly monotone for large t. Hence
lim

t→+∞
ψθ(t) = b1 ≥ 0 and lim

t→+∞
ψ′
θ(t) = 0.

We use the same reasoning as in the previous case, equation (3.48) and estimate (3.51) to get the
contradiction. Hence, the estimate (3.33) is verified. This completes the proof.

Now we can prove Theorem 3.2.

Proof. (i) Taking θ = (m − p)/(p − 1). By Proposition 3.4 we have that ψθ(t) is bounded for
large t. Suppose by contradiction that ψθ(t) oscillates for large t. Then there exist two sequences
{ηi} and {ξi} that tend to +∞ as i→ +∞ such that {ηi} and {ξi} are local minimum and local
maximum of ψθ, respectively, satisfying ηi < ξi < ηi+1 and

0 ≤ lim inf
t→+∞

ψθ(t) = lim
i→+∞

ψθ(ηi) = α < lim sup
t→+∞

ψθ(t) = lim
i→+∞

ψθ(ξi) = β < +∞. (3.53)
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Since ψ′
θ(ηi) = ψ′

θ(ξi) = 0, ψ′′
θ (ηi) ≥ 0 and ψ′′

θ (ξi) ≤ 0, then using (2.8) and (2.9), we have

lim
i→+∞

yθ(ηi) = −θp−1αp−1,

lim
i→+∞

yθ(ξi) = −θp−1βp−1,

y′θ(ηi) ≥ 0 and y′θ(ξi) ≤ 0.

Hence according to (3.48), we have

−(N −m)yθ(ηi)− e(pδ−m(δ+1−p))/(p−1))ηiψδ
θ(ηi)− jθ(ηi) ≥ 0 (3.54)

and
−(N −m)yθ(ξi)− e(pδ−m(δ+1−p))/(p−1))ξiψδ

θ(ξi)− jθ(ξi) ≤ 0. (3.55)

Letting i→ +∞ in (3.54) and (3.55) and since lim
t→+∞

jθ(t) = l, we get

βp−1 ≤ l

(N −m)θp−1 ≤ αp−1.

Which contradicts (3.53). Consequently, ψθ(t) converges when t→ +∞.
Using again Proposition 3.4 we have

lim inf
t→+∞

ψp−1
θ (t) ≤ l

(N −m)θp−1 ≤ lim sup
t→+∞

ψp−1
θ (t).

Hence, lim
t→+∞

ψθ(t) =
1
θ

(
l

N −m

)1/(p−1)

=
p− 1
m− p

(
l

N −m

)1/(p−1)

.

(ii) We show that lim
t→+∞

kθ(t) = −
(

l

N −m

)1/(p−1)

.

Since ψθ(t) is bounded for large t and F(N−p)/(p−1)(r) > 0 for large r from Lemma 2.2, then
kθ(t) is bounded for large t. Assume by contradiction that kθ(t) oscillates for large t. Then there
exist two sequences {si} and {ρi} that go to +∞ as i → +∞ such that {si} and {ρi} are local
minimum and local maximum of kθ, respectively, satisfying si < ρi < si+1 and

lim inf
t→+∞

kθ(t) = lim
i→+∞

kθ(si) = l1 < lim sup
t→+∞

kθ(t) = lim
i→+∞

kθ(ρi) = L1. (3.56)

Hence, y′θ(si) = y′θ(ρi) = 0 (because k′θ(si) = k′θ(ρi) = 0), lim
i→+∞

yθ(si) = |l1|p−2
l1 and

lim
i→+∞

yθ(ρi) = |L1|p−2
L1. Since m > pδ/(δ + 1 − p), ψθ converges and lim

t→+∞
emtf(et) = l,

we claim, by taking respectively t = si and t = ρi in equation (2.6) and letting i→ +∞, that

(N −m) |l1|p−2
l1 = −l = (N −m) |L1|p−2

L1.

As m < N and l > 0, then
|l1|p−2

l1 = |L1|p−2
L1 < 0.

That is equivalent to l1 = L1. This gives a contradiction to (3.56). Consequently, kθ(t) converges
when t→ +∞, therefore by, (2.9), we necessarily have lim

t→+∞
ψ′
θ(t) = 0 (because ψθ converges).

As a consequence, lim
t→+∞

kθ(t) = −
(

l

N −m

)1/(p−1)

, which is equivalent by (2.11) to

lim
r→0

r(m−1)/(p−1)v′(r) = −
(

l

N −m

)1/(p−1)

.

The proof is over.

Now we consider the case m = N and look for equivalents to v and v′ near infinity.
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Theorem 3.5. Assume that m = N and (Hc) holds. Let v be a solution of problem (1.1)-(1.2)
such that lim

r→+∞
rp/(δ+1−p)v(r) = 0. Then

(i)
r(N−p)/(p−1)v(r)

(ln r)1/(p−1) ∼
+∞

p− 1
N − p

l1/(p−1).

(ii)
r(N−1)/(p−1)v′(r)

(ln r)1/(p−1) ∼
+∞

−l1/(p−1).

The following proposition will be useful for the proof of this theorem.

Proposition 3.6. Assume that m = N and (Hb) holds. Let v be a solution of problem (1.1)-(1.2)

such that lim
r→+∞

rp/(δ+1−p)v(r) = 0. Then
r(N−p)/(p−1)v(r)

(ln r)1/(p−1) is bounded for large r. Moreover,

we have

lim inf
r→+∞

rNh(r) ≤
(
N − p

p− 1

)p−1

lim sup
r→+∞

rN−pvp−1(r)

ln r
(3.57)

and

lim sup
r→+∞

rNh(r) ≥
(
N − p

p− 1

)p−1

lim inf
r→+∞

rN−pvp−1(r)

ln r
. (3.58)

Proof. Taking the change (2.5) for λ = (N − p)/(p − 1), we see that ψ(N−p)/(p−1) satisfies the
following equation

y′(N−p)/(p−1)(t) + e

(
N−δ(N−p)/(p−1)

)
tψδ

(N−p)/(p−1)(t) + eNth(et) = 0. (3.59)

Therefore, y′(N−p)/(p−1)(t) < 0. Moreover, since y(N−p)/(p−1)(t) < 0 (because v′(r) < 0), then
lim

t→+∞
y(N−p)/(p−1)(t) ∈ [−∞, 0[. We distinguish two cases.

Case 1. −∞ < lim
t→+∞

y(N−p)/(p−1)(t) < 0.

Then, lim
r→+∞

r(N−1)/(p−1)v′(r) is finite, so using Hôspital’s rule (because lim
r→+∞

v(r) = 0 and

N > p), we have lim
r→+∞

r(N−p)/(p−1)v(r) is finite. This implies that lim
r→+∞

r(N−p)/(p−1)v(r)

(ln r)1/(p−1) = 0.

Case 2. lim
t→+∞

y(N−p)/(p−1)(t) = −∞.

Then lim
r→+∞

r(N−1)/(p−1)v′(r) = −∞ and by Hôspital’s rule, lim
r→+∞

r(N−p)/(p−1)v(r) = +∞.

Therefore, according to Lemma 3.3, we have Fp/(δ+1−p)(r) < 0 for large r. Consequently, for
large t,

p

δ + 1 − p
ψ(N−p)/(p−1)(t) <

∣∣k(N−p)/(p−1)(t)
∣∣ .

Hence for large t,

ψp−1
(N−p)/(p−1)(t)

t
<

(
p

δ + 1 − p

)1−p
∣∣y(N−p)/(p−1)(t)

∣∣
t

. (3.60)

Therefore, it is clear that, to show that ψp−1
(N−p)/(p−1)(t)/t is bounded for large t, it suffices to

prove that
∣∣y(N−p)/(p−1)(t)

∣∣ /t is bounded for large t.
According to Proposition 3.4, if there exists p/(δ + 1 − p) < ϱ < (N − p)/(p − 1) such
that rp+ϱ(p−1)h(r) is bounded for large r, then rϱv(r) is bounded for large r. In particular for
ϱ = N/δ, we have rp+N(p−1)/δh(r) is bounded for large r (because p + N(p − 1)/δ < N and
rNh(r) is bounded for large r) and therefore rN/δv(r) is bounded for large r. This is equivalent

to e
(
N−δ(N−p)/(p−1)

)
tψδ

(N−p)/(p−1)(t) is bounded for large t. Hence, by equation (3.59), there
exists a constant C > 0 such that for large t, we have

−C < y′(N−p)/(p−1)(t) < 0.
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Integrating this last inequality on (T, t) for large T and using the fact that y(N−p)/(p−1)(t) < 0,
we get

∣∣y(N−p)/(p−1)(t)
∣∣ /t is bounded for large t. This implies by (3.60) that ψp−1

(N−p)/(p−1)(t)/t

is bounded for large t. That is r(N−p)/(p−1)v(r)/ (ln r)1/(p−1) is bounded for large r.

Now, we show the estimate (3.57). Assume by contradiction that

lim inf
r→+∞

rNh(r) >

(
N − p

p− 1

)p−1

lim sup
r→+∞

rN−pvp−1(r)

ln r
. (3.61)

We make the following change

V (t) =
r(N−p)/(p−1)v(r)

(ln r)1/(p−1) , t = ln r. (3.62)

Then V satisfies the following equation

W ′(t) +
W (t)

t
+ t(δ+1−p)/(p−1)e

(
N−δ(N−p)/(p−1)

)
tV δ(t) +

eNth(et)

t
= 0, (3.63)

where
W (t) = |H(t)|p−2

H(t) (3.64)

and

H(t) = V ′(t)− N − p

p− 1
V (t) +

1
p− 1

V (t)

t
. (3.65)

Note that
H(t) = (ln r)−1/(p−1)

r(N−1)/(p−1)v′(r). (3.66)

Using the change (3.62), inequality (3.61) implies that there exists ε3 > 0 such that for large t,

eNth(et) ≥
(
N − p

p− 1

)p−1

V p−1(t) + ε3. (3.67)

Therefore, according to equation (3.63), we have

W ′(t) ≤ −W (t)

t
−
(
N − p

p− 1

)p−1
V p−1(t)

t
− ε3

t
. (3.68)

On the other hand, we know by Lemma 2.2, that F(N−p)/(p−1)(r) > 0 for large r. Therefore,
using (3.62), (3.66), (3.64) and the fact that v′(r) < 0, we have

|W (t)| = −W (t) <

(
N − p

p− 1

)p−1

V p−1(t). (3.69)

Since V (t) is bounded for large t by (i), then W (t) is bounded for large t. But according to
(3.68) and (3.69), we have for large t,

W ′(t) < −ε3

t
.

Integrating this last inequality on (T, t) for large T , we obtain lim
t→+∞

W (t) = −∞. This con-

tradicts the fact that W (t) is bounded for large t by (3.69). Consequently, the estimate (3.57) is
satisfied.

Finally, we show the estimate (3.58). Suppose by contradiction that

lim sup
r→+∞

rNh(r) <

(
N − p

p− 1

)p−1

lim inf
r→+∞

rN−pvp−1(r)

ln r
. (3.70)
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Then there exists ε4 > 0 such that for large t,

eNth(et) ≤
(
N − p

p− 1

)p−1

V p−1(t)− ε4. (3.71)

This inequality implies since h is positive, that

V (t) ≥ p− 1
N − p

ε
1/(p−1)
4 > 0 (3.72)

and by equation (3.63),
tW ′(t) ≥ χ1(t) + ε4 (3.73)

where

χ1(t) = −W (t)− tδ/(p−1)e

(
N−δ(N−p)/(p−1)

)
tV δ(t)−

(
N − p

p− 1

)p−1

V p−1(t). (3.74)

We propose to show that lim
t→+∞

χ1(t) = 0. For this, since

lim
t→+∞

tδ/(p−1)e

(
N−δ(N−p)/(p−1)

)
tV δ(t) = 0 (3.75)

because V (t) is bounded for large t and δ > (N(p− 1)/(p− 1), it suffices to prove that

lim
t→+∞

W (t) +

(
N − p

p− 1

)p−1

V p−1(t) = 0. (3.76)

This will be shown in four steps.
Step 1. Fp/(δ+1−p)(r) < 0 for large r.
By equation (1.1) we have(

rN−1v′|v′|p−2)′ = −rN−1vδ(r)− rN−1h(r). (3.77)

Then the function rN−1|v′|p−2v′(r) is decreasing and negative. Therefore, lim
r→+∞

rN−1|v′|p−2v′(r) ∈

[−∞, 0[, which is equivalent to lim
r→+∞

r(N−1)/(p−1)v′(r) ∈ [−∞, 0[. This gives by Hôspital’s rule

that lim
r→+∞

r(N−p)/(p−1)v(r) ∈]0,+∞]. If lim
r→+∞

r(N−p)/(p−1)v(r) is finite, then using the change

(3.62), we have lim
t→+∞

V (t) = 0. But this contradicts (3.72). Therefore, necessarily

lim
r→+∞

r(N−p)/(p−1)v(r) = +∞ and by Lemma 3.3, Fp/(δ+1−p)(r) < 0 for large r.

Step 2. lim
t→+∞

H ′(t) = 0.

Since V (t) is bounded for large t, then by (3.69), W (t) is bounded for large t. Using in addition
the fact that eNth(et) is bounded for large t and (3.75), we get by (3.63), lim

t→+∞
W ′(t) = 0. On

the other hand, using the change (3.62), the first step and the fact that v′ < 0, we obtain

|H(t)| > p

δ + 1 − p
V (t). (3.78)

This implies, using (3.72),

|H(t)| > C =
p(p− 1)

(N − p)(δ + 1 − p)
ε

1/(p−1)
4 > 0. (3.79)

Therefore, since by (3.64) H ′(t) =
1

p− 1
|H(t)|2−p

W ′(t) (H ′ exists because v′ < 0), we have

|H ′(t)| < C2−p

p− 1
|W ′(t)| .
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Hence, lim
t→+∞

H ′(t) = 0.

Step 3. lim
t→+∞

V ′(t) = 0.

Since W (t) is bounded for large t (by (3.69)), then H(t) is bounded for large t and therefore
by (3.65), V ′(t) is bounded for large t. Suppose that V ′(t) oscillates for large t. Then there
exist two sequences {si} and {ki} that go to +∞ as i → +∞ such that {si} and {ki} are local
minimum and local maximum of V ′, respectively, satisfying si < ki < si+1 and

lim inf
t→+∞

V ′(t) = lim
i→+∞

V ′(si) < lim sup
t→+∞

V ′(t) = lim
i→+∞

V ′(ki). (3.80)

By deriving the equation (3.65), we obtain

H ′(t) = V ′′(t)− N − p

p− 1
V ′(t) +

1
p− 1

V ′(t)

t
− 1
p− 1

V (t)

t2
. (3.81)

Since V ′′(si) = V ′′(ki) = 0, then

H ′(si) = −N − p

p− 1
V ′(si) +

1
p− 1

V ′(si)

si
− 1
p− 1

V (si)

s2
i

and

H ′(ki) = −N − p

p− 1
V ′(ki) +

1
p− 1

V ′(ki)

ki
− 1
p− 1

V (ki)

k2
i

.

It follows, since V (t) and V ′(t) are bounded for large t and lim
t→+∞

H ′(t) = 0, that

lim
i→+∞

V ′(si) = lim
i→+∞

V ′(ki) = 0.

This contradicts (3.80). We deduce that V ′(t) converges when t→ +∞. Since V (t) is bounded
for large t, then necessarily lim

t→+∞
V ′(t) = 0.

Step 4. lim
t→+∞

W (t) +

(
N − p

p− 1

)p−1

V p−1(t) = 0.

Recall that for any ϱ > 1, there exists a constant Cϱ > 0 such that∣∣|a|ϱ−2a− |b|ϱ−2b
∣∣ ≤ Cϱ (|a|+ |b|)ϱ−2 |a− b| (3.82)

for any a, b ∈ R such that |a| + |b| > 0. Hence, taking ϱ = p > 2, a = (N − p)/(p − 1)V (t)
and b = −H(t) = |H(t)|, we obtain∣∣∣∣∣

(
N − p

p− 1

)p−1

V p−1(t) +W (t)

∣∣∣∣∣ ≤ cp

(
N − p

p− 1
V (t) + |H(t)|

)p−2 ∣∣∣∣N − p

p− 1
V (t) +H(t)

∣∣∣∣ .
(3.83)

Since V (t) and H(t) are bounded for large t and p > 2, then there exists a constant C > 0 such
that for large t, ∣∣∣∣∣

(
N − p

p− 1

)p−1

V p−1(t) +W (t)

∣∣∣∣∣ ≤ C

∣∣∣∣N − p

p− 1
V (t) +H(t)

∣∣∣∣ . (3.84)

Using again the fact that V (t) is bounded for large t and lim
t→+∞

V ′(t) = 0, we deduce easily from
(3.65) that

lim
t→+∞

H(t) +
N − p

p− 1
V (t) = 0.

Which implies (3.76) and therefore by (3.75), lim
t→+∞

χ1(t) = 0.

Consequently, according to (3.73), there exists a constant C > 0 such that for large t,

tW ′(t) ≥ C.

Integrating this last inequality on (T, t) for large T , we obtain lim
t→+∞

W (t) = +∞. Which

contradicts the fact that W (t) is bounded for large t. It follows that estimate (3.58) is satisfied.
This completes the proof.
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Now, we return to the proof of Theorem 3.5.

Proof. (i) Using the change (3.62), we have that V (t) is bounded for large t by Proposition 3.6.
Assume that V (t) oscillates for large t. Then there exist two sequences {µi} and {νi} that go
to +∞ as i → +∞ such that {µi} and {νi} are local minimum and local maximum of V ,
respectively, satisfying µi < νi < µi+1 and

0 ≤ lim inf
t→+∞

V (t) = lim
i→+∞

V (µi) = α1 < lim sup
t→+∞

V (t) = lim
i→+∞

V (νi) = β1 < +∞. (3.85)

Since V ′(µi) = V ′(νi) = 0, V ′′(µi) ≥ 0 and V ′′(νi) ≤ 0, then using (3.64), (3.65) and (3.81),
we have

lim
i→+∞

W (µi) = −
(
N − p

p− 1

)p−1

αp−1
1 ,

lim
i→+∞

W (νi) = −
(
N − p

p− 1

)p−1

βp−1
1 ,

W ′(µi) = (p− 1) |H(µi)|p−2
H ′(µi) ≥ − |H(µi)|p−2 V (µi)

µ2
i

and

W ′(νi) = (p− 1) |H(νi)|p−2
H ′(νi) ≤ − |H(νi)|p−2 V (νi)

ν2
i

.

Therefore according to equation (3.63), we have

− |H(µi)|p−2 V (µi)

µi
≤ µiW

′(µi) = −W (µi)−µδ/(p−1)
i e−

(
N−δ(N−p)/(p−1)

)
µiV δ(µi)−eNµih(eµi)

(3.86)
and

− |H(νi)|p−2 V (µi)

µi
≥ νiW

′(νi) = −W (νi)−νδ/(p−1)
i e−

(
N−δ(N−p)/(p−1)

)
νiV δ(νi)−eNνih(eνi).

(3.87)
Letting i → +∞ in the two previous inequalities and using the fact that lim

t→+∞
eNth(et) = l, we

obtain

βp−1
1 ≤

(
p− 1
N − p

)p−1

l ≤ αp−1
1 .

But this contradicts (3.85). Therefore, V (t) converges when t→ +∞.
On the other hand, we have, by Proposition 3.6,

lim inf
t→+∞

V p−1(t) ≤
(
p− 1
N − p

)p−1

l ≤ lim sup
t→+∞

V p−1(t).

Hence lim
t→+∞

V (t) = (p− 1)/(N − p) l1/(p−1).

(ii) Using the change (3.62) and by (i), we have lim
t→+∞

V (t) = (p− 1)/(N − p) l1/(p−1). Now,

we show that lim
t→+∞

H(t) = −l1/(p−1).

Since F(N−p)/(p−1)(r) > 0 for large r Lemma 2.2, then H(t) is bounded for large t. Suppose by
contradiction that H(t) oscillates for large t. Then there exist two sequences {mi} and {ni} that
tend to +∞ as i → +∞ such that {mi} and {ni} are local minimum and local maximum of H ,
respectively, satisfying mi < ni < mi+1 and

lim inf
t→+∞

H(t) = lim
i→+∞

H(mi) = α2 < lim sup
t→+∞

H(t) = lim
i→+∞

H(ni) = β2. (3.88)

Therefore W ′(mi) =W ′(ni) = 0 (because H ′(mi) = H ′(ni) = 0), lim
i→+∞

W (mi) = |α2|p−2
α2

and lim
i→+∞

W (ni) = |β2|p−2
β2. Since δ > N(p−1)/(N−p), V converges and lim

t→+∞
eNth(et) =
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l, we deduce, by multiplying equation (3.63) by t, taking respectively t = mi and t = ni in
equation (3.63) and letting i→ +∞, that

|α2|p−2
α2 = −l = |β2|p−2

β2.

Therefore, α2 = β2. That contradicts (3.88). Therefore, H(t) converges when t → +∞.
Hence, by (3.65), we have lim

t→+∞
V ′(t) = 0 (because V converges). Consequently lim

t→+∞
H(t) =

−l1/(p−1). This completes the proof.

The last main result in this work concerns the search for the equivalents of v and v′ near
infinity in the case m > N .

Theorem 3.7. Assume that m > N and (Hc) holds. Let v be a solution of problem (1.1)-(1.2)
such that lim

r→+∞
rp/(δ+1−p)v(r) = 0. Then

(i) lim
r→+∞

r(N−p)/(p−1)v(r) is finite and strictly positive.

(ii) lim
r→+∞

r(N−1)/(p−1)v′(r) is finite and strictly negative.

Proof. Since h > 0 and v > 0 (by Lemma 2.1), then by (3.77), the function rN−1|v′|p−2v′(r) is
decreasing and negative. Therefore, lim

r→+∞
rN−1|v′|p−2v′(r) ∈ [−∞, 0[. Assume by contradic-

tion that
lim

r→+∞
rN−1|v′|p−2v′(r) = −∞. Then lim

r→+∞
φ(r) = +∞ where

φ(r) = rN−1|v′(r)|p−1. (3.89)

Let 0 < λ1 < min (δ(N − p)/(p− 1)−N, m−N) (this is possible because δ > N(p−1)/(N−
p) and m > N ). We show that lim

r→+∞
rλ1+1φ′(r) = 0.

We have by (3.77),
rλ1+1φ′(r) = rλ1+Nvδ(r) + rλ1+Nh(r). (3.90)

Since rm h(r) is bounded for large r, then rN h(r) is also bounded for large r (because m > N ).
Therefore, according to Proposition 3.6 and the fact that (λ1+N)/δ < (N−p)/(p−1), we have

lim
r→+∞

r(λ1+N)/δv(r) = 0. On the other hand, since λ1 + N < m, then lim
r→+∞

rλ1+Nh(r) = 0.

Therefore, we have by (3.90), lim
r→+∞

rλ1+1φ′(r) = 0. Therefore, since φ′ is strictly positive,

there exists a constant C > 0 such that for large r,

0 < φ′(r) < Cr−λ1−1

Integrating this last inequality on (R, r) for large R and using the fact that λ1 > 0, we obtain

φ(r)− φ(R) <
−C
λ1

r−λ1 +
C

λ1
R−λ1 .

By letting r → +∞, we obtain a contradiction with the fact that lim
r→+∞

φ(r) = +∞. Therefore,

lim
r→+∞

rN−1|v′|p−2v′(r) is finite and strictly negative, that is, lim
r→+∞

r(N−1)/(p−1)v′(r) is finite

and strictly negative. Consequently, using Hôspital’s rule (because lim
r→+∞

v(r) = 0 and N > p),

we have lim
r→+∞

r(N−p)/(p−1)v(r) is finite and strictly positive. The proof is complete.

4 Conclusion

In this paper, we presented a detailed study of the asymptotic behavior of global positive solu-
tions of the problem (1.1)-(1.2) in the case where the inhomogeneous term h is strictly positive
and negligible in front of r−pδ/(δ+1−p). The main results strongly depend on the sign and asymp-
totic behavior of the inhomogeneous term h. The case where the inhomogeneous term changes
sign remains an open question to be treated in another paper.
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