
Palestine Journal of Mathematics

Vol 13(Special Issue I)(2024) , 189–208 © Palestine Polytechnic University-PPU 2024

GENERATION OF 2-D UNSTRUCTURED MESH USING A
NOVEL ALGORITHM FOR NODE PLACEMENT

Mohamed Mrini, Amal Bergam, Anouar El Harrak and Hatim Tayeq

MSC 2010 Classifications: Primary 65D18, 65N50; Secondary 68U05, 68Q25, 65M50, 65M60.

Keywords and phrases: Mesh Generation, Unstructured Mesh, Node Placement, Algorithm, Distmesh.

Abstract In this work, we present improvements to the meshing algorithm, Distmesh, specif-
ically regarding creating a nonuniform triangular mesh. We introduce a novel strategy for de-
termining the placement of nodes in the domain targeted to be meshed, to generate an initial
distribution based on a user-defined mesh size function. In our algorithm, the creation of well-
shaped triangles, similar to the Distmesh algorithm, can be achieved by connecting the nodes
using Delaunay triangulation and applying in the smoothing process a new internode force with
an attractive effect. Finally, through a series of tests, we validate the benefits of our proposed
enhancements with regard to computational efficiency and robustness while globally preserving
mesh quality.

1 Introduction

Mesh generation plays a vital role in a variety of scientific and engineering fields. Generating
efficient and high-quality meshes is crucial for obtaining accurate and reliable results in these
domains. Over the years, numerous methods for creating mesh structures have been developed
to address the challenges associated with creating high-quality meshes for numerical simula-
tions. Some of the most common methods include structured and unstructured mesh generation
approaches. Structured methods, such as finite difference and finite-volume techniques, utilize
regularly spaced grid points and are commonly employed in problems with simple geometries.
However, they may not be suitable for complex domains or problems with irregular boundaries.
Unstructured mesh generation techniques, on the other hand, are more versatile and can adapt to
complex geometries and boundary conditions. Popular unstructured methods include Delaunay
triangulation [7], advancing front techniques [9, 10], and the Distmesh algorithm [13]. Such
techniques have found extensive use in various applications due to their flexibility and adaptabil-
ity [18, 3, 11].

Among various mesh generation techniques, the Distmesh algorithm [13], introduced by
Persson and Strang, has become popular for its simplicity and versatility. This algorithm pro-
vides a straightforward approach to generating unstructured triangular meshes in two-dimensional
domains using signed distance functions. Although the original Distmesh algorithm has demon-
strated its effectiveness in many applications, there is still room for improvement regarding
computational efficiency and robustness. The primary objective of this study is to propose and
investigate a series of enhancements to the Distmesh algorithm, in order to address these com-
putational limitations and further improve its performance in 2D mesh generation.

The Distmesh algorithm is an adaptable solution for creating unstructured triangular meshes
in both 2D and 3D settings. Although it offers several advantages, the algorithm also presents
some challenges. The probabilistic rejection method used can result in an excessively large
number of nodes, causing complications. Additionally, node placement obtained via the rejec-
tion method may not conform to the intended distribution specified by the desired edge length
function (the mesh size function), leading to inconsistencies in the final mesh. Furthermore, the
mesh smoothing process requires a large number of iterations, which reduces the efficiency of
the algorithm. The increased frequency of Delaunay re-triangulation also adds complexity to the
mesh generation process in terms of computational cost. Finally, as the number of nodes grows,
so does the demand for computational resources such as time and memory, making the algorithm

190 Mrini et al.

less efficient when handling larger meshes.
In order to address these challenges, we have designed an algorithm specifically aimed at

generating nodes within the initial distribution based on a user-defined size function. This pro-
cess begins by placing nodes on the domain boundary with respect to the mesh size function,
followed by injecting nodes within the domain using the same function. By employing this strat-
egy, our mesh generator is able to produce an optimal node count while simultaneously reducing
the number of iterations needed during our new mesh smoothing processes.

In this paper, we present a detailed description of the proposed improvements to the Distmesh
algorithm, focusing on their foundations and practical implementation. We then conduct a com-
prehensive test to assess the effectiveness of the enhanced algorithm, comparing it with the orig-
inal Distmesh approach. Through a series of tests, we demonstrate the benefits of our proposed
enhancements in terms of computational efficiency and robustness while globally preserving
mesh quality.

The structure of this paper proceeds in the following manner: Section 2 offers an overview
of the Distmesh algorithm and some existing mesh generation techniques. Section 3 introduces
the proposed enhancements to the Distmesh algorithm, details our new node placement strategy,
and discusses the mesh smoothing forces adopted. Section 4 discusses the implementation of the
new algorithm and the performance metrics used to evaluate the improved algorithm. In Section
5, we present the validation results and performance comparisons. In conclusion, Section 6
presents a summary and outlines potential avenues for future research.

2 Node Placement & Problem Statement

In this section, we present a concise overview of node placement strategies in mesh generation
techniques and examine the most pertinent literature in the domain, with particular emphasis on
the Distmesh algorithm.

2.1 Overview on Node Placement

Node placement is an essential factor in all meshing algorithms, as it requires the generation
of nodes at varying positions throughout the region requiring meshing. This process is vital to
accurately representing the geometry and providing a solid foundation for subsequent analysis.
Various methods have been devised to address node placement, each with its own advantages
and disadvantages. Numerous alternative meshing methods have been suggested in the litera-
ture, with the aim of overcoming the limitations of various techniques relative to each other. The
choice of method can greatly impact the quality, efficiency, and adaptability of the final mesh,
making it a critical consideration for researchers and engineers when designing and implement-
ing mesh generation algorithms. Ultimately, selecting the most appropriate node placement
strategy depends on the specific application, desired level of detail, and available computational
resources. Here, we provide a brief background on node placement on mesh generation tech-
niques and review the most relevant literature in the field.

Delaunay triangulation methods have been widely used for their ability to generate high-
quality meshes with a well-defined mathematical foundation [7]. However, Delaunay triangu-
lation can be computationally expensive and may struggle with complex geometries. Delaunay
meshing methodologies typically involve the gradual addition of nodes into a pre-existing mesh
[2]. Throughout this procedure, the Delaunay criterion is preserved through the interconnection
of nodes. However, relying solely on this approach can lead to a suboptimal quality mesh. To
address this issue, the researchers in [4] and [14] proposed a technique to enhance the quality
of triangles within a mesh by adding new nodes at the central points of the circumcircles or
circumspheres of the element. This method ensures a lower bound on any angle present in the
mesh, consequently boosting the quality of the triangle. However, the primary drawback of this
approach is that the number of elements can grow substantially. This increase may lead to higher
computational complexity and memory requirements, posing challenges for real-world applica-
tions. Balancing the trade-offs between mesh quality and resource efficiency is, therefore, an
important consideration when employing this strategy for mesh generation.

Advancing front techniques represent another popular approach for mesh generation, offering
the ability to generate high quality meshes by iteratively advancing the mesh boundary [12].

NOVEL ALGORITHM FOR NODE PLACEMENT 191

While these methods can produce excellent results, they can also be sensitive to the choice
of parameters and may require significant user input. In advancing front triangular meshing
techniques, as referenced in [9, 12], the nodes are also incrementally inserted. This method
enables adaptive refinement of the mesh as it progresses, allowing greater control over local
element density and size. However, generating a mesh comprised of thousands of elements using
the advancing front method can be computationally demanding due to the substantial number of
search operations required. These searches are necessary to identify suitable edges or triangles
from the front and to ensure that the newly formed elements satisfy the mesh quality criteria. This
can lead to increased processing time and computational resource consumption, particularly in
cases with complex geometries or when high-quality meshes are desired.

In contrast to methods that involve sequentially placing nodes into a primal mesh, some
meshing techniques focus on initially positioning all the nodes and subsequently connecting
them to form the mesh. Physically-based mesh generators exemplify this approach, including
bubble meshing method [15], Monte Carlo method [19], Distmesh [13], Molecular dynamics-
based method [20], and the more recent FlowMesher method [17]. These techniques often rely
on principles derived from physics, such as force-based interactions or energy minimization, to
guide node placement and optimize mesh quality. For instance, nodes might be distributed in
a way that simulates the behavior of repelling particles or bubbles, striving to achieve an even
spacing throughout the domain. Once the nodes are optimally placed, they are connected to form
the mesh elements, resulting in a well-distributed and high-quality mesh.

Physically-based meshing methods offer several advantages, in particular the ability to gen-
erate meshes with a more uniform distribution of elements and improved adaptability to complex
geometries. However, they may also present certain challenges, including increased computa-
tional complexity and potential convergence issues. The choice of a meshing technique ulti-
mately depends on the specific application, with factors such as desired mesh quality, compu-
tational resources, and processing time constraints, which plays a crucial role in the decision-
making process.

The bubble meshing method involves populating the entire domain with spheres or bubbles
and then creating well-shaped mesh elements by connecting their centers through constrained
Delaunay triangulation or tetrahedrization after mesh relaxation. However, this approach neces-
sitates a suitable initial bubble configuration to optimize convergence during relaxation and can
be time consuming due to the packing process.

In the Monte Carlo method, the nodes are randomly inserted into the domain and treated as
interacting particles. Employing a Monte Carlo simulation to reduce the potential energy of the
system, these particles are placed for an almost optimal distribution. When the nodes are linked
using constrained Delaunay triangulation, high-quality triangles can be created. However, due
to the random insertion of points and their movement using the statistical sampling-based Monte
Carlo approach to determine a configuration close to equilibrium, the method may result in more
nodes than desired. This excess depends on the user-defined mesh element size function, and
many of these nodes could be located near boundary edges, potentially leading to the formation
of low-quality triangles close to the boundary of the domain.

In the Molecular dynamics-based method, the nodes are treated as interacting particles. After
nodes are placed using molecular dynamics simulations, well-shaped triangles are formed by
connecting nodes through Delaunay triangulation or tetrahedrization. Nevertheless, this method
can be slow as a result of the inherently computationally intensive and time-consuming nature
of molecular dynamics simulations, making it unsuitable for real-time remeshing requirements.

2.2 Distmesh Algorithm

Persson and Strang introduced the Distmesh algorithm as a simple and efficient technique to
generate unstructured triangular meshes [13]. In the Distmesh algorithm, the domain’s geometry
targeted for meshing is depicted through the utilization of signed distance functions. This method
enables the rapid identification of a specific point’s position, whether it resides within or beyond
the designated domain boundaries.

Consider a subset Ω of R2. The corresponding signed distance function related to Ω is estab-

192 Mrini et al.

lished as follows:

dΩ(p) =

{
−min {d(p,B); B ∈ ∂Ω} if p ∈ Ω

+min {d(p,B); B ∈ ∂Ω} Otherwise.
(2.1)

In this context, ∂Ω denotes the boundary of Ω, and min {d(p,B); B ∈ ∂Ω} represents the small-
est distance between point p and its nearest point on the boundary. Here, the selected signed
distance function, dΩ, exhibits negative values within the domain, zeros along the boundary, and
positive values outside the domain Ω.

Here, the function h : Ω → R∗
+ controls the size of the element and governs the density of

the mesh. Although the function h does not directly represent the required size, it influences
the relative distribution of nodes across the domain. To achieve a uniform node distribution,
Distmesh generates a grid of nodes within the bounding box and eliminates all points external to
Ω by using the signed distance function. In this scenario, h(p) = 1 for every p ∈ Ω. However, to
obtain a nonuniform distribution, a set of points is removed from the uniform distribution with a
probability of 1/h(p)2.

An initial triangulation is achieved by connecting all nodes via Delaunay triangulation. How-
ever, many of the resulting triangles lack desirable quality. To address this issue, Persson and
Strang proposed moving the nodes towards their optimal locations by employing a physical con-
cept, the repulsive force. This idea comes from the similarity between a mesh of triangles and
a two-dimensional truss configuration, where the repulsive force helps guide the nodes toward
better positions. In this comparison, the triangle edges are analogous to bars, while the vertices
act as truss joints. Each bar is connected to a spring constant, represented as f(lc, ld), which
is influenced by the current length of the bar lc and the desired length ld. By addressing a bal-
anced force state within the structure, the node positions can be established through solving a
corresponding nonlinear system of equations

W (p) = 0. (2.2)

A synthetic time-related change is implemented:

dp

dt
= W (p), t ≥ 0. (2.3)

A stationary solution for the system of ordinary differential equations 2.3 satisfies the equa-
tion 2.2. This static solution is derived through the implementation of the forward Euler method:

pn+1 = pn + ∆t.W (pn), (2.4)

where the time discretization is tn = n∆t and pn = p(tn).
That is

pn+1
i = pni + ∆t

∑
j∈Ni

f(pni , p
n
j)

pni − pnj
(lc)nij

i = 1, ..., N. (2.5)

In this context, N denotes the total count of nodes, Ni represents the neighboring nodes sur-
rounding node i, and (lc)nij =

∥∥pni − pnj
∥∥ signifies the distance between node i and node j at the

n-th iteration. In addition, the bar force, denoted as f(pni , p
n
j), relies on both the current length

(lc)nij and the desired length (ld)nij , that is:

f(pni , p
n
j) =

{
(ld)nij − (lc)nij if (lc)nij < (ld)nij ,

0 if (lc)nij ≥ (ld)nij .
(2.6)

The desired bar length (ld)nij is given by

(ld)
n
ij = Fscales

nhn
ij . (2.7)

Here, sn = (
∑

ij((lc)
n
ij)

2/
∑

ij(h
n
ij)

2)
1
2 represents the scaling factor, while hn

ij = h((pni + pnj)/2)
refers to the value of the size function at the midpoint of the edge connecting the nodes pni and
pnj at the n-th iteration.

NOVEL ALGORITHM FOR NODE PLACEMENT 193

The fixed factor Fscale is chosen to ensure that most bars generate repulsive forces f > 0.
Distmesh code utilizes Fscale = 1.2. Ensuring that most bars produce repulsive force is crucial
to facilitate the distribution of points throughout the geometry. If point pni crosses the geometry
boundary following an update, it is relocated to the nearest position on the boundary by applying
a specific formula:

pni = pni − dΩ(p
n
i)∇dΩ(p

n
i). (2.8)

The gradient of dΩ provides the direction towards the nearest boundary point and is calculated
numerically employing a finite difference scheme. The formula 2.8 represents a perpendicular
reaction force to the boundary.

The main advantage of the Distmesh algorithm is its simplicity and ease of implementa-
tion, making it an attractive option for various applications. Despite its popularity, the Distmesh
algorithm has certain limitations, including sensitivity to initial conditions, potential for subop-
timal mesh quality, and computational inefficiency in some cases. These drawbacks have mo-
tivated researchers to explore improvements and alternative methods for mesh generation. For
instance, researchers have developed various optimization strategies, including the use of spa-
tial data structures to accelerate search operations and the implementation of parallel processing
techniques to distribute the computational load. The selection of an appropriate meshing method
and an optimization approach ultimately depends on the specific application requirements, such
as the desired mesh quality, computational resources, and processing time constraints.

In summary, the literature on mesh generation techniques, including the Distmesh algorithm
and its alternatives, highlights the ongoing challenges in developing efficient and versatile meth-
ods for 2D mesh generation. In the following sections, we aim at addressing these challenges
by proposing a series of enhancements to the Distmesh algorithm, focusing on improving its
mesh quality, computational efficiency, and robustness. In fact, the node positions generated by
the aforementioned mesh generation methods for creating unstructured meshes may not always
align with the desired positions specified by the user-defined size function. Consequently, the
generated mesh may not accurately represent the desired local element density, which leads to
a suboptimal mesh disaccording with the user’s needs. Such deviations can impact the mesh
quality, which affects the subsequent analyses and simulations that rely on the mesh. To address
these issues, the mesh generation algorithms can be enhanced or combined with the new node
placement to better fit the user-defined size function. This approach can help ensure that the
generated mesh meets the required element distribution, size, and density criteria, and increase
computational efficiency.

3 The Improved Distmesh Algorithm

The Distmesh algorithm is efficient in creating unstructured triangular meshes in both 2D and 3D
applications. However, despite its benefits, it has some limitations that manifest in the following
areas:

• The probabilistic rejection method may result in the retention of an excessively large num-
ber of nodes, which can lead to complications.

• The node placement derived through the rejection method may not adhere to the intended
node distribution as defined by the desired edge length function. This can cause inconsis-
tencies in the generated mesh.

• The process of mesh smoothing, which aims to enhance the initial mesh, demands a sig-
nificantly high number of iterations, contributing to inefficiency in the algorithm’s perfor-
mance.

• The frequency of Delaunay re-triangulation experiences an increase, further complicating
the mesh generation process.

• With an increase in the number of nodes, the computational resources, including the time
and memory space required to store the mesh elements, also grow proportionally. This can
lead to increased resource consumption and reduced efficiency in handling larger meshes.

194 Mrini et al.

Due to these constraints, although Distmesh is capable of generating 3D meshes, its perfor-
mance and mesh quality in 3D situations may not be as strong as in 2D cases. This leads to a more
challenging environment when dealing with 3D scenarios, potentially affecting the algorithm’s
effectiveness and efficiency. To address these limitations, we have developed an algorithm fo-
cused on generating nodes for the initial distribution using a user-specified size function. This
method starts by positioning nodes along the domain boundary in line with the mesh size func-
tion and continues by incorporating nodes inside the domain based on the same function. This
approach enables our mesh generator to achieve an optimal node count and minimize the count
of iterations necessary for mesh smoothing, ultimately improving the overall efficiency of the
process.

Here, we present a series of enhancements to the Distmesh algorithm aimed at addressing
its limitations and improving its performance for 2D mesh generation. We discuss the design
of these modifications, which include a New Node Placement Strategy and an Adaptive Force
Mechanism, to optimize the algorithm’s effectiveness.

3.1 New Node Placement Strategy

The probabilistic rejection method employed in the Distmesh algorithm has the potential to retain
a large number of nodes, which leads to complications in the mesh generation process. This issue
can arise from the method’s inherent randomness, which may not effectively consider the desired
edge-length function during node placement. Consequently, the resulting node distribution may
deviate from the intended distribution as defined by the mesh size function. This deviation can, in
turn, cause inconsistencies within the generated mesh, which affects its quality and potentially
impacts its performance in various applications. Here, we present our New Node Placement
Strategy in order to replace the probabilistic rejection method in the Distmesh algorithm.

In our approach, we begin by partitioning the domain boundary into an initial collection
of segments. The number of these segments is dictated by either the vertices that define the
geometry or by an initial set of points specified by the user. Subsequently, we inject points into
each of these segments in accordance with the mesh size function. Indeed, given two endpoints,
p1
i and p2

i , of a particular segment ei, we insert a point pnew
i into the segment using the mesh size

function h as follows:

pnew
i =

p1
i

h(p1
i)
+ p2

i

h(p2
i)

1
h(p1

i)
+ 1

h(p2
i)

. (3.1)

The set of points pnew
i injected on all segments forming the geometry will then be projected

onto the boundary ∂Ω using:

pnew
i = pnew

i − dΩ(p
new
i)∇dΩ(p

new
i). (3.2)

After that, we repeat the process for the new set of obtained segment until a predefined stopping
criterion is satisfied.

To guarantee that all points are well distributed along the domain boundary based on the
mesh size function, we proceed to the 1D balancing phase. For this purpose, we employ a
concept that allows each point to freely move within the limits of two barriers, specifically the
midpoints of the two adjacent segments connected to the vertex in question. Let pi, pj , and pk
be three consecutive points, Mi,j and Mj,k be the midpoints of the segments [pi, pj] and [pj , pk],
respectively. The point pj is free to move between the two points Mi,j and Mj,k (Mi,j and Mj,k

are the barriers) according to the iterative process

pn+1
j =

Mn
i,j

h(Mn
i,j)

+
Mn

j,k

h(Mn
j,k)

1
h(Mn

i,j)
+ 1

h(Mn
j,k)

. (3.3)

Here, pn+1
j represents the updated position of the point pnj . The iterative process begins with

p0
j = pj , and during each iteration, we evaluate all the boundary points pj , excluding only the

points considered fixed. In this strategy, we should prevent points from shifting in a circular
manner during the 1D balancing phase by fixing a single point for closed smooth curves, any
sharp turns for non-smooth ones, and at least the two endpoints for open curves.

NOVEL ALGORITHM FOR NODE PLACEMENT 195

After partitioning the boundary according to the function h, we start the second step; Ad-
vancing Node Injection technique. We inject points within the domain by initiating an advanc-
ing front injection process from the boundary edges moving inwards into the domain. Initially,
we designate the starting boundary edges as the active front. As the method advances and new
points are injected, we update the active front by deleting the edges already used for injecting
points and adding new points used to create new boundary edges. By using this strategy, whose
concept is similar to the Advancing Front Method, we can create a good initial distribution of
nodes, which in turn reduces the required number of improvement steps. We employ the princi-
ple of Advancing Front Method to inject point without generating triangulation and performing
excessive search operations, thereby reducing computational costs.

3.2 Attractive Internode Force for Mesh Smoothing

The mesh smoothing process is an essential component of the Distmesh algorithm. This process
focuses on smoothing and balancing the initial distribution to create a more uniform and accurate
mesh. However, this step often requires a considerably high number of iterations to achieve the
desired level of quality. Furthermore, the smoothing function used in the Distmesh algorithm,
which exhibits repulsive behavior, does not yield satisfactory results. Consequently, we have
explored alternative functions, such as:

- Laplacien smoothing function [5] that exhibits an attractive behavior,

- Lennard-Jones function [16],

f(ld, lc) = (
lc
ld
)−13 − (

lc
ld
)−7

which has an attractive-repulsive behavior,

- Bossen-Heckbert smoothing function [1],

f(ld, lc) = (1 − (
lc
ld
)4)exp(−(

lc
ld
)4)

which has also an attractive-repulsive behavior.

None of the functions that we have tested yielded satisfactory results in terms of the quality
of the obtained triangles and the number of iterations in the mesh smoothing steps. As a result,
we developed a function that adapts to the approach chosen in our algorithm. This smoothing
function describes an attractive behavior and is defined as follows:

f(ld, lc) = −0.2
lc
ld
. (3.4)

Our algorithm may provide better results than the Distmesh algorithm in terms of computa-
tional cost, especially when attempting to create a non-uniform triangular mesh with respect to a
user-defined function h. Because, we replaced the probabilistic method used by the Distmesh al-
gorithm to obtain an initial distribution with a deterministic approach, which consists of directly
injecting points into their positions according to the function h with Advancing Node Injection.
This allows us to obtain a good quality initial triangulation, reduce the number of iterations dur-
ing the smoothing process, decrease the computation time, and satisfy user-defined requirements
for the desired mesh.

In the following section, we will detail the implementation of our proposed enhancements
to the original Distmesh algorithm. We will present our approach as a sequence of elementary
steps that can be easily coded and executed using an appropriate program.

4 Implementation

The originality of our research can be found in the ability of our technique to directly inject
points into the entire domain based on the user-defined mesh size function. In this section, we

196 Mrini et al.

Algorithm 1 The new algorithm for generating 2-D unstructured mesh.

Step 1: Meshing of Boundary: we inject nodes on the domain boundary according to the
function h, then we perform a 1D Balancing of the injected points.
Step 2: Advancing Node Injection: we inject nodes inside the domain following the Advanc-
ing Node Injection technique.
Step 3: Attractive Smoothing Process: we perform a mesh smoothing process similar to the
Distmesh algorithm, but with the application of an attractive force.

will detail the approach we followed as a sequence of elementary steps that can be easily coded
and executed using an appropriate program. In Algorithm 1, we describe the key steps involved
in generating a 2D unstructured mesh.

The merging of the boundaries is based on two crucial phases. The first phase is to partition
the domain boundary into a collection of segments whose number and lengths are determined
by the mesh size function h specified by the user, and using the iterative Injection-Projection
process given by Formulas 3.1 and 3.2. After that, to look for optimal positions for those nodes
on the boundary, the second phase comes to perform a 1D balancing technique using the iterative
process given by Formula 3.3.

To discretize the boundary into a collection of segments according to the mesh size function
h, we first consider a minimal set of initial points on the boundary that accurately represent its
shape. This guarantees that the projection of any point within a segment lies on the nearest
boundary curve of that segment, providing increased flexibility for our algorithm. Consequently,
we can guarantee that, using the iterative injection-projection process, given by Formulas 3.1 and
3.2, the boundary is discretized while preserving the connectivity information between points.
Furthermore, we should fix and add in the set of initial points all sharp turns for non-smooth
curves, and include at least the two endpoints for open curves. To add more points in the initial
set, we can enclose the boundary within a circle containing some points. These points can be
numerically projected on the boundary using the function dΩ and Formula 3.2. After that, we
can perform the iterative Injection-Projection process on each segment by applying Algorithm 2
in order to discretize the corresponding part of the boundary.

The second phase consists of balancing all nodes injected on the boundary in the first phase,
to look for optimal positions on the boundary. At this phase, the injected points are subjected
to moving from their original positions in order to adjust their positions based on the iterative
process 3.3. Here, we adopt a strategy based on moving each point, except fixed points, between
the midpoints of its two adjacent segments, as shown in Algorithm 3, to preserve the connectivity
information between points.

After partitioning the boundary based on the mesh size function h, we start the second step;
Advancing Node Injection. We insert nodes inside the domain by initiating an advancing front
injection process, starting from the boundary edges given by the Meshing boundary step and
progressing inwards. Initially, we designate the starting boundary edges as the active front. As
the method advances and new points are added, we update the active front by eliminating the
edges that are already used to inject points and adding new points that are used to create new
boundary edges. Consequently, we can create a good initial distribution of nodes, which reduces
the required number of improvement iterations in the smoothing process.

Note that the condition on added angles in the node injection algorithm 4 within the domain is
capable of resolving the issue of corners during the initial triangulation. In our code, we adopted
a vectorized version because it is easier to understand, is often shorter, and runs much faster.

Attractive Smoothing Process is an essential component of our algorithm. This process fo-
cuses on smoothing and balancing the initial good distribution obtained in the Advancing Node
Injection step to create a more uniform and accurate mesh. This step requires considerably less
number of iterations to achieve the desired level of quality compared to the Distemsh algorithm.
This result is achieved by using a smoothing function 3.4 that describes an attractive behavior,
making it suitable for the approach chosen in our algorithm.

In the next section, we will validate the study through a series of tests in which we highlight
the benefits of our improvements in terms of computational efficiency while globally preserving
mesh quality, and we evaluate the performance of the improved algorithm in comparison with

NOVEL ALGORITHM FOR NODE PLACEMENT 197

Algorithm 2 Partitioning the corresponding part of the boundary to an initial segment.

Input:

• p: list of point defining the endpoints of the segment in question.

• e: list containing the indices of the endpoints of segments partitioning the part of the
boundary. Initially, e contains the initial segment.

• h: mesh size function.

• dΩ: distance function of the boundary.

Output:

• p: updated version of the input vector p containing the coordinates of points used in the
partition.

• e: updated version of the input vector e that contains all segments that partition the
boundary part.

while true do

Evaluate the function h at the endpoints of all segments within e.
In each segment within e, inject one point using Formula 3.1. Let pNew be the points injected
in all segments.
Project pNew onto the boundary using Formula 3.2.
Update the vector p by adding the points pNew.
Update the vector e by substituting each segment with the two segments that join its end-
points with the newly added point.
Evaluate the stopping condition SC.

if SC is satisfied then
Break

end if

end while

the original Distmesh algorithm.

5 Tests and Results

In this section, we compare the performance of both algorithms using some selected test cases
and performance metrics. This comparison highlights the benefits of our proposed enhancements
in terms of mesh quality, computational efficiency, robustness, and user-need requirement.

Mesh quality: numerous metrics exist to evaluate mesh quality in terms of "element quality"
[6]. In this work, we use the ratio, i.e.

q =
(b+ c− a)(c+ a− b)(a+ b− c)

abc
. (5.1)

Here a, b, c are the three sides of a triangle. q represents the relationship between the radius of
the largest inscribed circle and the smallest circumscribed circle.

Computational efficiency: CPU time and iteration count are used to evaluate the efficiency
of the improved algorithm compared to the original Distmesh algorithm.

Robustness: the capability of the algorithm to produce high-quality meshes for a wide range
of problem domains and geometries. We have selected a diverse set of test cases representing a
range of geometries. These test cases include standard problems, such as the L-shaped domain
and the circular cavity, as well as more complex.

User-need requirement: the capability of the algorithm to produce meshes that satisfy the
mesh size function h defined by the user at the initial stage. For that, we calculate for each edge

198 Mrini et al.

Algorithm 3 Balancing the injected points on the boundary of the domain.

Input:

• p: list of the points used in the partition of the boundary.

• e: list containing the indices of the endpoints of segments partitioning the boundary.

• h: mesh size function.

• dΩ: distance function of the boundary.

• pfix: fixed points.

Output:

• p: updated version of the input vector p after the balancing process.

• e: updated version of the input vector e after the balancing process.

while true do

Calculate the midpoint of each segment within e.
Evaluate the function h at the midpoint of all segments within e.
Update the positions of the points p using Formula 3.3, except for fixed points pfix. Project
the points p back onto the boundary using Formula 3.2.
Evaluate the stopping condition SC.

if SC is satisfied then
Break

end if

end while

e in the resulting mesh the difference between the actual edge length lc and the desired edge
length ld evaluated by the function h at the midpoint of e. This error is given by:

Er =

∑
e |lc − ld|

Edges count
.

In order to test the performance of our algorithm compared to the original Distmesh algo-
rithm, we conducted some experiments that led to the following results. The computation has
been carried out on HP EliteBook Folio 1040 computer equipped with Intel(R) Core(TM) i7-
6600U CPU and 8GB of RAM.

Unit disc

In the unit disc, we will generate points in the initial distribution using the probabilistic rejection
method used by the Distmesh algorithm and the approach followed by our algorithm, which
consists of injecting nodes directly into the domain based on the size function h. From Figure
1, we can observe that the nodes generated by our algorithm (Figure 1-b) are very close to the
desired positions according to the size function h, compared to the Distmesh algorithm (Figure
1-a).

After that, we connect the nodes obtained in the previous step to each other using the De-
launay algorithm to create the initial triangulation of the unit disc. Figure 2 shows that the
initial triangulation obtained by our algorithm (Figure 2-b) requires fewer iterations in the mesh
smoothing step than the initial triangulation obtained by the Distmesh algorithm (Figure 2-a).

After applying the mesh smoothing step to the initial triangulation obtained by our algorithm
using an attractive force and to the initial triangulation obtained by the Distmesh algorithm using
a repulsive force, we obtain the mesh of a unit disc by our algorithm (Figure 3-b) with an optimal
number of nodes and a mesh of a unit disc by the Distmesh algorithm (Figure 3-a) with more

NOVEL ALGORITHM FOR NODE PLACEMENT 199

Algorithm 4 Injection of points inside the domain.

Input:

• Pbnd: list of points used in the partition of the boundary.

• Ebnd: list of segments, oriented in a counterclockwise direction, partitioning the bound-
ary.

• h: mesh size function.

• dΩ: distance function of the boundary domain Ω.

Output:

• Pdom: the set of points injected into the entire domain.

Add the set of points Pbnd to the set Pdom.
Consider the partition of the boundary domain as the initial front, Pfront = Pbnd and Efront =
Ebnd.

while true do

Calculate the list of midpoints, M , of all edges on the active front Efront.
For each segment ei within Efront, inject m points into the domain following the function
h and considering the interior angles between ei and the previous and the next edges. We
denote p this set of inserted points.
Update the active front by setting Pfront = p and Efront = E, where E is the set of the
oriented segment associated with p.
Evaluate the stopping condition SC.

if SC is satisfied then
Break

end if

end while

(a) (b)

Figure 1: Node placement in the unit disc using: The rejection method, (a) and our algorithm,
(b) with h(x, y) = 0.2

√
(x− 1)2 + y2 + 0.04.

nodes.
Now, we will consider the unit disc domain with the same size function in order to compare

the two algorithms in terms of the number of generated nodes.
From Table 1, we notice that our algorithm automatically generates an optimal number of

nodes according to the size function h, unlike the Distmesh algorithm which can generate a very
large or very small number of nodes depending on the step h0 defined by the user.

200 Mrini et al.

Iteration 1

(a)

Iteration 1

(b)

Figure 2: The initial triangulation of unit disc formed by connecting the nodes generated through
both the rejection method, (a), and our algorithm, (b) using Delaunay triangulation.

Iteration 7002

(a)

Iteration 638

(b)

Figure 3: Figures (a) and (b) show the final meshes obtained from the Distmesh algorithm and
our algorithm, respectively, after applying mesh smoothing.

Table 1: Number of nodes required to create a unit disc mesh with the desired edge length
function h(x, y) = 0.2

√
(x− 1)2 + y2 +0.04 and different values of h0 for Distmesh algorithm.

Distmesh algorithm: N [h0] 8[0.2] 429[0.02] 17222[0.003]
Our algorithm: N 356 356 356

Next, we want to compare the robustness of the two algorithms using the same domain and
mesh size function.

Table 2: Robustness of the Distmesh algorithm for the unit disc with h(x, y) =

0.2
√
(x− 1)2 + y2 + 0.04 and h0 = 0.01.

Run 1 2 3 4 5 6
N 1631 1615 1599 1635 1582 1562

iter 4036 6898 9025 5920 3172 3991
qmin 0.7991 0.7383 0.8096 0.7631 0.6949 0.7216

According to Table 2, the Distmesh algorithm is not robust for the nonuniform mesh size
function, as each execution with the same parameters produces meshes of different qualities and
with different numbers of nodes. This quality, measured by qmin (i.e. qmin represents the mini-
mum quality for all elements of the mesh), can decrease significantly. In addition, the parameter
h0 in Table 2 denotes the distance between points in the initial quasi-uniform distribution used
by Distmesh in the first step. In [8], Jonas Koko attempted to modify the Distmesh algorithm to

NOVEL ALGORITHM FOR NODE PLACEMENT 201

address the non-robustness issue, but the results obtained are not entirely robust. In contrast, our
algorithm is robust for nonuniform mesh size function. Each execution with the same parameters
produces the same mesh with good quality; see Table 3.

Table 3: Robustness of our algorithm for the unit disc with h(x, y) = 0.2
√
(x− 1)2 + y2+0.04.

Run 1 2 3 4 5 6
N 356 356 356 356 356 356

iter 638 638 638 638 638 638
qmin 0.8545 0.8545 0.8545 0.8545 0.8545 0.8545

We now want to compare the two algorithms in terms of the user-need requirement using a
unit disc with the same function h.

Table 4: Error indicator of edge length in unit disc mesh with h(x, y) = 0.2
√
(x− 1)2 + y2 +

0.04 and different values of h0 for Distmesh algorithm.

Distmesh: Er[h0] 0.61[0.2] 0.22[0.08] 0.0441[0.03] 0.12[0.01] 0.15[0.003]
Our algorithm: Er 0.07 0.07 0.07 0.07 0.07

From Table 4, we can observe that the edge lengths obtained from our algorithm are remark-
ably close to the desired lengths, unlike the edge lengths obtained from the Distmesh algorithm,
which depends on the step size h0.

Now, we present several examples to provide a comprehensive view of our algorithm com-
pared to the original Distmesh algorithm.

Square with hole

The size function using to mesh this domain is

h(x, y) = min(0.2
√
(x− 0.4)2 + (y − 0.4)2 + 0.05, 0.2

√
(x− 0.6)2 + (y − 0.4)2 + 0.05,

0.2
√
(x− 0.6)2 + (y − 0.6)2 + 0.05, 0.2

√
(x− 0.4)2 + (y − 0.6)2 + 0.05).

Iteration 2246

Figure 4: Mesh of square with hole and histogram of elements qualities with qmin = 0.7292 and
h0=0.04 using Distmesh algorithm.

Circle with hole

To create the mesh for this domain, we use the size function defined as

h(x, y) = 0.2
√
x2 + y2 + 0.05.

202 Mrini et al.

Iteration 103

Figure 5: Mesh of square with hole and histogram of elements qualities with qmin = 0, 8284
using our algorithm.

Table 5: Characteristics of a square with hole mesh obtained by two algorithms.

Distmesh algorithm Our algorithm
N 234 168

iter 2246 103
qmin 0.7292 0.8284

CPU (in sec) 13.0625 7.5938
Er 0.0214 0.0108

Iteration 1193

Figure 6: Mesh of circle with hole and histogram of elements qualities with qmin = 0, 7925 and
h0 = 0.05 using Distmesh algorithm.

Table 6: Characteristics of a circle with hole mesh obtained by two algorithms.

Distmesh algorithm Our algorithm
N 416 205

iter 1193 105
qmin 0.7925 0.8223

CPU (in sec) 10.6881 8.0313
Er 0.0884 0.0343

NOVEL ALGORITHM FOR NODE PLACEMENT 203

Iteration 105

Figure 7: Mesh of circle with hole and histogram of elements qualities with qmin = 0, 8223
using our algorithm.

Square with four holes

The size function used is

h(x, y) = min(0.2
√
(x− 0.5)2 + (y − 0.5)2 + 0.05, 0.2

√
(x− 0.5)2 + (y + 0.5)2 + 0.05,

0.2
√
(x+ 0.5)2 + (y + 0.5)2 + 0.05, 0.2

√
(x+ 0.5)2 + (y − 0.5)2 + 0.05).

Iteration 5184

Figure 8: Mesh of square with four holes and histogram of elements qualities with qmin =
0.7066 and h0=0.048 using Distmesh algorithm.

Table 7: Characteristics of a square with a four holes mesh obtained by two algorithms.

Distmesh algorithm Our algorithm
N 906 420

iter 5184 100
qmin 0.7066 0.7335

CPU (in sec) 20.7188 7.2969
Er 0.0601 0.022

204 Mrini et al.

Iteration 100

Figure 9: Mesh of square with four holes and histogram of elements qualities with qmin =
0.7335 using our algorithm.

Domain obtained by two circles and square

The size function used in this domain is

h(x, y) = min(0.2
√

x2 + (y − 1)2 + 0.05, 0.2
√
(x− 0.9)2 + (y − 1)2 + 0.05,

0.2
√
(x− 1.5)2 + (y − 1)2 + 0.05).

Iteration 8985

Figure 10: Mesh of domain obtained by two circles and square, and histogram of elements
qualities with qmin = 0.7612 and h0 = 0.0086 using Distmesh algorithm.

Table 8: Characteristics of a domain obtained by two circles and square mesh using the two
algorithms.

Distmesh algorithm Our algorithm
N 194 180

iter 8985 158
qmin 0.7612 0.6466

CPU (in sec) 29.7602 7.9219
Er 0.0224 0.0285

NOVEL ALGORITHM FOR NODE PLACEMENT 205

Iteration 158

Figure 11: Mesh of domain obtained by two circles and square, and histogram of elements
qualities with qmin = 0.6466 using our algorithm.

L-shaped domain

In order to create the mesh of the L-shaped domain, we use the size function defined as h(x, y) =√
(x−1)2+y2

7 + 0.03.

Iteration 174

Figure 12: Mesh of an L-shaped domain and histogram of elements qualities with qmin =

0.7285, h(x, y) =
√

(x−1)2+y2

7 + 0.03 and h0=0.061 using Distmesh algorithm.

Table 9: Characteristics of an L-shaped domain mesh using the two algorithms.

Distmesh algorithm Our algorithm
N 35 204

iter 174 195
qmin 0.7285 0.707

CPU (in sec) 4.8438 9.7813
Er 0.1536 0.0363

This comparison provides further evidence of the advantages of our proposed enhancements
and demonstrates the competitiveness of the improved algorithm in the field of 2D mesh gener-
ation. Key findings from this comparison include the following:

Preserving or improving mesh quality: our strategy, based on the deterministic initial dis-
tribution of the nodes, globally preserves or improves the mesh quality with well-distributed
nodes and well-shaped elements.

206 Mrini et al.

Iteration 195

Figure 13: Mesh of an L-shaped domain and histogram of elements qualities with qmin = 0, 707
using our algorithm.

Increased computational efficiency: the initial distribution of nodes in the domain can in the
majority cases reduce the count of iterations required in the smoothing process. These techniques
result in faster convergence and less CPU time, allowing the algorithm to handle larger and more
complex meshes.

Enhanced robustness: the improved algorithm demonstrates a greater ability to generate
high-quality meshes for a wide range of geometries.

Statisfying User-need requirement: the capability of the algorithm to produce meshes that
satisfy the mesh size function h defined by the user at the initial stage, compared to the original
Distmesh algorithm.

The results presented in this section showcase the superior performance of the improved
Distmesh algorithm compared to the original algorithm. By addressing the limitations of the
original Distmesh algorithm and implementing the proposed enhancements, we have success-
fully developed a more efficient, robust, and versatile tool for 2D mesh generation. In the next
section, we conclude the study and discuss potential directions for future research.

6 Conclusions

In this study, we have presented a series of enhancements to the Distmesh algorithm for the gen-
eration of 2D meshes. Our proposed improvements have been shown to significantly enhance
computational efficiency, user need requirement in mesh size, and robustness of the algorithm,
as demonstrated through various numerical experiments. By comparing the improved Distmesh
algorithm with the original version, we have highlighted the benefits of our proposed modifica-
tions.

The main contributions of our research include the development of a new strategy to generate
the initial distribution of nodes in the domain, called Advancing Node Injection, and also the
integration of an attractive force in the smoothing process. These improvements have led to a
more efficient and versatile mesh generation tool that has the potential to benefit a wide range of
scientific and engineering applications.

Looking ahead, there are several possible directions for future research in the area of mesh
generation and improvement of the Distmesh algorithm. One potential avenue is to extend the
improved Distmesh algorithm to three-dimensional (3D) mesh generation, which would enable
its application to an even broader range of problems.

In conclusion, our proposed enhancements to the Distmesh algorithm represent a significant
step forward in the field of 2D mesh generation. Addressing the limitations of the original
algorithm and demonstrating the advantages of our improvements.

NOVEL ALGORITHM FOR NODE PLACEMENT 207

7 Appendix

In this appendix, we introduce the signed distance functions for various domains used in test
cases, as listed in Table 10.

Table 10: Signed distance functions for various domains used in test cases.

Domain Signed distance function
Unit disc d(x, y) =

√
x2 + y2

Square with hole d(x, y) = max(−min(x, 1 − x, y, 1 − y),

min(x− 0.4, 0.6 − x, y − 0.4, 0.6 − y))

Circle with hole d(x, y) = max(
√
x2 + y2 − 1, −

√
x2 + y2 + 0.2)

square with four holes d(x, y) = max(−min(x+ 1, 1 − x, y + 1, 1 − y),

−min(
√
(x− 0.5)2 + (y − 0.5)2 − 0.2,√

(x+ 0.5)2 + (y + 0.5)2 − 0.2,√
(x− 0.5)2 + (y + 0.5)2 − 0.2,√
(x+ 0.5)2 + (y − 0.5)2 − 0.2)

Domain obtained by two circles and square d(x, y) = max(min(−min(x+ 1, 1 − x,

y + 1, 1 − y),
√
x2 + (y − 1)2 − 0.3),

−
√
(x− 0.9)2 + (y − 1)2 + 0.6)

L-shaped domain d(x, y) = min(−min(x, 1 − x, y, 0.4 − y),

−min(x− 0.6, 1 − x, y − 0.4, 1 − y))

References
[1] F. J. Bossen and P. S. Heckbert. A pliant method for anisotropic mesh generation. In 5th Intl. Meshing

Roundtable, 63. Citeseer (1996).

[2] A. Bowyer. Computing dirichlet tessellations, Comput. J, 24(2), 162–166 (1981).

[3] J. R. Cebral, P. J. Yim, R. Löhner, O. Soto, and P. L. Choyke. Blood flow modeling in carotid arteries with
computational fluid dynamics and mr imaging. Acad. Radiol, 9(11), 1286–1299 (2002).

[4] L. P. Chew. Guaranteed-quality triangular meshes. Technical report, CORNELL UNIV ITHACA NY
DEPT OF COMPUTER SCIENCE (1989).

[5] D. A. Field. Laplacian smoothing and delaunay triangulations. Commun. Appl. Numer. Methods, 4(6),
709–712 (1988).

[6] D. A. Field. Qualitative measures for initial meshes. Int. J. Numer. Methods. Eng, 47(4), 887–906 (2000).

[7] P. L. George and H. Borouchaki. Delaunay Triangulation and Meshing: Application to Finite Elements.
Hermès (1998).

[8] J. Koko. A matlab mesh generator for the two-dimensional finite element method. Appl. Math. Comput.,
250, 650–664 (2015).

[9] S. Lo. A new mesh generation scheme for arbitrary planar domains. Int. J. Numer. Methods. Eng., 21(8),
1403–1426 (1985).

[10] R. Löhner and P. Parikh. Generation of three-dimensional unstructured grids by the advancing-front
method. Int. J. Numer. Methods Fluids, 8(10), 1135–1149 (1988).

[11] J. Peraire and P.O. Persson. High-order discontinuous galerkin methods for cfd. In Adaptive high-order
methods in computational fluid dynamics, 119–152. World Scientific (2011).

[12] J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz. Adaptive remeshing for compressible flow
computations. J. Comput. Phys., 72(2), 449–466 (1987).

208 Mrini et al.

[13] P. O. Persson and G. Strang. A simple mesh generator in matlab. SIAM Rev., 46(2), 329–345 (2004).

[14] J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. In Proceedings of
the fourth annual ACM-SIAM Symposium on Discrete algorithms, 93, 83–92 (1993).

[15] K. Shimada and D. C. Gossard. Bubble mesh: automated triangular meshing of non-manifold geometry
by sphere packing. In Proceedings of the third ACM symposium on Solid modeling and applications,
409–419 (1995).

[16] D. J. Tildesley and M. P. Allen. Computer simulation of liquids, Clarendon Press, Oxford (1987).

[17] Z. Wang, A. R. Srinivasa, J. Reddy, and A. Dubrowski. Flowmesher: An automatic unstructured mesh
generation algorithm with applications from finite element analysis to medical simulations. arXiv preprint
arXiv:2103.05640 (2021).

[18] N. P. Weatherill. Delaunay triangulation in computational fluid dynamics. Comput. Math. Appl., 24(5-6),
129–150 (1992).

[19] H. Zhang and A. V. Smirnov. Node placement for triangular mesh generation by monte carlo simulation.
Int. J. Numer. Methods Eng., 64(7), 973–989 (2005).

[20] A. Zheleznyakova and S. T. Surzhikov. Molecular dynamics-based unstructured grid generation method
for aerodynamic applications. Comput. Phys. Commun., 184(12), 2711–2727 (2013).

Author information
Mohamed Mrini, SMAD, FPL, Abdelmalek Essaadi University, Tetouan, Morocco.
E-mail: mohamed.mrini3@etu.uae.ac.ma

Amal Bergam, SMAD, FPL, Abdelmalek Essaadi University, Tetouan, Morocco.
E-mail: abergam@uae.ac.ma

Anouar El Harrak, MMA, FPL, Abdelmalek Essaadi University, Tetouan, Morocco.
E-mail: anouarelharrak1@gmail.com

Hatim Tayeq, SMAD, FPL, Abdelmalek Essaadi University, Tetouan, Morocco.
E-mail: tayeq.hatim@gmail.com

	1 Introduction
	2 Node Placement & Problem Statement
	2.1 Overview on Node Placement
	2.2 Distmesh Algorithm

	3 The Improved Distmesh Algorithm
	3.1 New Node Placement Strategy
	3.2 Attractive Internode Force for Mesh Smoothing

	4 Implementation
	5 Tests and Results
	6 Conclusions
	7 Appendix

