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Abstract In this paper, we characterize the complex symmetric Toeplitz operator on the
Hardy space via a kind of canonical conjugation on H2 introduced by M.S. Ferreira in [1]. In
model space equipped with a conjugation, we prove some results for truncated toeplitz operators
in relationship with complex symmetry according to [2].

1 Introduction

The concept of Toeplitz operators is related to the matrix defined by O.Toeplitz whose its name,
Toeplitz matrices have infinitely many rows and columns, indexed by non-negative integers, and
the coefficients of the matrix are complex numbers. Thus a Toeplitz matrix is determined by
a sequence (an)n∈Z of complex numbers, with the coefficients in row i, column j for (i; j =
....,−1, 0, 1, ....) of the Toeplitz matrix equal to aij . We can think of the Toeplitz matrix above
as acting on the usual Hilbert space l2 of summable sequences into squares of complex numbers,
with its standard orthonormal basis. The question then arises of characterizing the sequences
(an) of complex numbers such that the corresponding Toeplitz matrix is the matrix of an operator
bounded on l2. The answer to this question highlights the fascinating link between Toeplitz
operators and complex analysis and theory of functions.

Complex symmetric operators on Hilbert spaces are natural generalizations of complex sym-
metric matrices, and their general study was initiated by Putinar, Wogen and Garcia in [2],[3].
The class of complex symmetric operators includes a large examples including all Hankel oper-
ators, normal operators, the Volterra intetrgal operator and truncated Toeplitz operators.

In the field of applied mathematics, complex symmetric matrices appear in the study of the
dynamics of quantum reactions, the modeling of electrical energy, digital simulation of high volt-
age insulators, propagation of thermoelastic waves, the maximum clique graph theory problem,
inverse spectral problems for semi-simple damped vibrating systems, study of decay phenomena,
the diffusion matrices in the theory of atomic collisions and the numerical solution of the time-
harmonic Maxwell equation in an axi-symmetric cavity. Over the years, complex symmetric
matrices have also been the subject of spor-adic digital work.

This paper is organized as following. In Section 2, we collect some preliminaries concerning
the notion of complex semmytry in relation to the Toeplitz operators, especially we recall the
notion of canonical conjugation introduced by [1], and we close with a result on the symmetry
of the matrix associated with such operator. In Section 3, we caracterized truncared toeplitz
operators with complex symmetric. We start by citing some basic properties and we finished
by demonstrating a statement concerning the complex symmetry of the Truncated operator of
Toeplitz and a result of unitarity equivalence with complex symmetry was proved in Hu.

2 Complex symmetric Toeplitz operator

A bounded operator T on a Hilbert space H is complex symmetric if there exists an orthonormal
basis for H with respect to which T has a self-transpose matrix representation. An equivalent
definition also exists. A conjugation is a conjugate-linear operator C : H → H that satisfes the
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conditions:

(a) C is isometric: < Cf ;Cg >=< g; f > ∀ f g ∈ H

(b) C is involutive: C2 = I .

We say that T is C-symmetric ifCT = T ∗C, and complex symmetric if there exists a conjugation
C with respect to which T is C-symmetric.This is equivalent to the symmetry of T with respect
to the bilinear form [f ; g] =< f ;Cg >.It was showing in [7, Lemma 1] that there exists an
orthonormal basis (ei)i∈I of H which is left invariant by C : Cei = ei.

Lemma 2.1. If C is a conjugation on H , then there exists an orthonormal basis(ei) of H such
that Cei = ei ∀i. In particular,

C(
∑
i

αi ei) =
∑
i=0

αiC(ei)

where (αi) is in l2.

Proof. Consider the R-linear subspace, R = (I + C)H .of H and note ∀f ∈ R we have
Cf = f .Consequently R is a real Hilbert space under the inner product < ·; · > since,

< f ; g >=< Cg;Cf >=< g; f >= < f ; g >, ∀f , g ∈ R

Let (ei) be an orthonormal basis for R. Since H = R + iR, it follows easily that (ei) is an
orthonormal basis for space H as well.2

Definition 2.2. A f ∈ H that satisfies Cf = f is called a C-real vector. We refer to a basis
having the properties described in Lemma 1.1 as a C-real orthonormal basis.

With respect to the basis (ei)i∈I , C-symmetry is simply complex symmetry of the associated
matrix.

Some authors prefer to use the term conjugate linear instead of anti-linear. So with this
perspective, a function that satisfies the first and last conditions listed previously is called anti-
unitary operator. A conjugation is simply an involution operator that is unitary conjugate-linear.
In light of the polarization identity:

4 < f, g >= ||f + g||2 − ||f − g||2 + i||f + ig||2 − i||f − ig||2,

the isometric condition is equivalent to asserting that ||Cf || = ||f || ∀f ∈ H . Let us consider a
few standard examples of conjugations.

Example 2.3. One of the simplest, and perhaps most important, families of C-symmetric oper-
ators are the finite Jordan blocks. Let λ be a complex number and consider the Jordan block

Jn(λ) of order n corresponding to λ: Jn(λ) =



λ 1
λ 1

. . . . . .
1
λ


If Cn denotes the isometric antilinear operator(conjugation):

Cn(z1, z2, ..., zn) := (zn, ..., z2, z1)

on Cn, then that Jn(λ) is a Cn-symmetric for any λ.

Example 2.4. The operator and its adjoint

Ffv(a) =
∫ a

0
v(x) dx F∗v(a) =

∫ 1

a

v(x) dx

on L2([0, 1]) satisfy F = CF∗C where Cv(x) = v(1 − x) denotes the conjugation, and the
orthonormal basis en = e[πin(2x−1)],∀n ∈ Z is C-real
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Let L2 = {f :
∫
|f |2dm <∞} L∞ the space of essentially bounded functions, and C(T) the

space of continuous functions on the unit circle T. The Hardy space, denoted by H2, consists
of all analytic functions f(z) =

∑
n≥0 anz

n on the unit disk D such that
∑∞
n=0 |an|2 < ∞. It

is clear that {zn : n = 0, 1, 2, ...} is an orthonormal basis for H2.Analogously, For an analytic
function f on D the map :

r 7→ 1
2π

∫
T
|f(rθ))|2 dθ,

is increasing on ]0, 1[.So if f(z) =
∑
n≥0 anz

n then

1
2π

∫
T
|f(rθ))|2 dθ =

∞∑
n=0

|an|2r2n.

This fact leads to define the Hardy space H2: the function f such that:

||f || = lim
r→1−

(
1

2π

∫
T

|f(rθ)|2 dθ
) 1

2

<∞ (2.1)

Remark 2.5. Fatou’s and Riesz’s lemmas show that the limit:

f(θ) = lim
r→1−

f(rθ)

exist a.e in T.
So that

||f ||H2 ≡ ||f ||L2(T)

Indeed, The bilinear form on the Hardy space H2 defined by:

< f ; g >=
1

2π

∫
T
f(θ) g(θ) dθ =

∞∑
n=0

anbn

is a inner product where f(z) =
∑
n≥0 anz

n and g(z) =
∑
n≥0 bnz

n denote the elements of
H2.
Recall that for z0 ∈ D, the Function defined by:

kz0(z) =
1

1 − z0z

is called the reproducing kernel. For fixed z0 ∈ D functional f 7→ f(z0) are bounded on H2 and,
by the Riesz Representation Theorem, we have:

f(z0) =< f ; kz0 >

or, with Cauchy integral form:

f(z0) =
1

2π

∫
T

f(θ)

1 − z0θ
dθ

For each ψ ∈ L∞, the Toeplitz operator Tψ : H2 → H2 is defined by:

Tψf = P (ψf)

with P is the projection of L2 onto H2 and ψ is called the symbol of Tψ.
The concept of Toeplitz operators was introcuced in [4] by Halomos and its a generalization of
Toeplitz matrices concept. The question of characterizing complex symmetric Toeplitz operators
on H2 in the unit disk is lifting by Guo and Zhu in [5]. Ko and Lee [6] introduced the family of
conjugations Sµ : H2 → H2, given by:

Sµf(z) = f(µz)

with µ ∈ T and proved the following result:
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Theorem 2.6. [6, Theorem2.4] Let ψ(z) =
∑+∞
n=−∞ ψ̂(n)zn ∈ L∞ then Tψ is Sµ-symmetric if,

and only if, ψ̂(−n) = µnψ̂(n), ∀n ∈ Z

M.S. Ferreira define the conjugation J by:J f(z) = f(z) for each f ∈ H2, the conjugation is
a kind of canonical conjugation on H2, and he proved in [1, theorem 2.1] this relationship with
conjugations of H2

Theorem 2.7. If C is an conjugation on H2, then exists an unitary operator T on H2 such that
TC = J T .

For the proof we need this Lemma:

Lemma 2.8. [7] If C and J are conjugations on a Hilbert space H, then U = CJ is a unitary
operator. Moreover, U is both C-symmetric and J-symmetric.

Proof[Theorem1.7] according to the assumpation we just take U = CJ and we have the
result.

Remark 2.9. M.S.Ferreirra used the caracterization of conjugation C with respect to an C-real
orthonormal basis to prove the result.

Note that the converse of Theorem 1.7 is a simple corollary of The Godi�c-Lucenko Theorem[7,
theorem 3.1]. summerized

Corollary 2.10. If T an isomorphism linear on H2 and C = T−1J T , then T is unitary if,and
only if, C is a conjugation.

In the next result we determine the matrix of operators J -symmetic on H2

Proposition 2.11. Let T an Bounded operator on H2.Then T is J -symmetric if, and only if, the
matrix of T with respect the canonical basis of H2 is symmetric.

Proof. suppose that T = J T ∗J et let {zn : n = 0, 1, 2, ...} the standard basis ofH2 andM =
mij the matrix of T with respect of standard basis on H2. it’s clear that {zn : n = 0, 1, 2, ...} is
J -real (J zn = zn).

mij =< Tzj , zi >=< J T ∗J zj , zi >

=< J zi, T ∗J zj >

=< zi, T ∗zj >

=< Tzi, zj >

= mji

Then M is symmetric. The converse sense is showing by similar computation.2

3 Truncated Toeplitz operators on model spaces

3.1 Basics properties

H2 is a linear space, it is its multiplicative structure that reveals its true function-theoretic depth.
We recall here somes important facts on H2 of H2 functions.

Definition 3.1. An inner function is a bounded analytic function u on D such that :

|u(eiθ)| = 1, ∀ eiθ ∈ T , 0 ≤ θ ≤ 2π
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Example 3.2. The Möbius transformation is giving by :

eiθ
λ− z

1 − λz

with λ ∈ D and, 0 ≤ θ ≤ 2π, it’s easy to see that an automorphism mapping T to T.

Recall that Shift operators play a major role in functions theory. the forward shift F : H2 →
H2 defined by:

F g(z) = z g(z),

or, by Taylor coefficients:
F (a0, a1, · · · ) = (0, a0, a1, · · · )

It’s so easy to verifie that F is isometrie. The adjoint F ∗ is the backward shift

F ∗ g(z) =
g(z)− g(0)

z
,

or, by Taylor coefficients:
F ∗(a0, a1, · · · ) = (a1, a2, · · · )

the operator f 7→ u f is an isometry for u is a inner function ; so uH2 is a closed subspace of H2

(i.e., a closed linear manifold). Moreover, we have that F (uH2) ⊂ uH2 (Beurling’s).

3.2 Model spaces

We are now ready to introduce the model spaces.

Definition 3.3. If u is an inner function, then the corresponding model space is:

Hu = (uH2)⊥ = H2 ⊖ uH2 (3.1)

Let consider the Functions,

Kw(z) =
1 − u(w)u(z)

1 − w z
, w , z ∈ D (3.2)

It’s clair that Kw(z) ∈ Hu and

f(w) =< f, Kw >, w ∈ D , f ∈ Hu (3.3)

Remark 3.4. For w ∈ T formula remains valid such that u has an angular derivative at sense of
Caratheodory.

For fixed u the function Kw is called the reproducing kernel for Hu,it follows that if (en) is
un othogonal basis for Hu,then

Kw(z) =
∑
n≥1

en(w) en(z) (3.4)

The orthogonal projection:
Pu : L2 7→ Hu (3.5)

plays an axial role in the studies of certain types of operators such as of truncated Toeplitz
operators, Hankel operators and model Toeplitz operators. this importance is expressed via the
use of the reproducing kernels

Proposition 3.5. Let f ∈ L2, w ∈ D

Puf(w) =< f,Kw > (3.6)
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Proof. Pu is self-adjoint then we have :

< f,Kw >=< f, PuKw >=< Puf,Kw >= Puf(w) 2

An alternative definition of Hu,via the functions defined on T, is giving by :

Proposition 3.6. Let u an inner function,Then

Hu = H2 ∩ uzH2 (3.7)

Proof. Let f ∈ H2, < f, ug >= 0, ∀g ∈ H2 if,and only if,< uf, g >= 0, ∀g ∈ H2 if,and
only if uf ∈ zH2. Since |u(w)|2 = 1 For(a.e.) w ∈ T, we have f ∈ (uH2)⊥ ⇐⇒ f ∈
uzH2. 2

we state the following:

Corollary 3.7. Let u an inner function, Then

F ∗Hu ⊂ Hu.

where F ∗ the operator shift defined previously.

On Hu define ,for functions on T, the operator by:

Cf = fzu (3.8)

Proposition 3.8. C is a anti-linear involution isometrie on Hu

Proof. Since uu = 1 on T (a.e), Then C is anti-linear, isometric and involution. verify that C
is on Hu. Let f ∈ (uH2)⊥,by computing we have :

< Cf ; zg > =< fzu; zg >

=
1

2π

∫
T
f(λ)λu(λ)λg(λ) dλ.

=< ug; f >

= 0.

for each g ∈ H2, then Cf ∈ H2. by similar argument we get

< Cf ;ug >=< fzu;ug >=< fz, g >

(i.e) Cf ∈ Hu. 2

Example 3.9. For the reproducing kernel Kw we have

CKw(z) =

(
1 − u(w)u(z)

1 − w z

)
z u(z)

=
1 − u(w)u(z)

1 − wz

u(z)

z

=
u(z)− u(w)

z − w
.

We note Qλ = CKw is called the conjugate kernel.
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3.3 Truncated Toeplitz operators

For each symbol ϕ ∈ L2 the corresponding truncated Toeplitz operator Tuϕ is the densely defined
operator on Hu given by:

Tuϕf = Pu(ϕ f) ∀f ∈ L∞ (3.9)

or
Tuϕ = PuTϕPu.

where Tϕ is Toerplitz operator defined on H2, and Pu : L2 7→ Hu othogonal projection.

Recall that operator Cf = fzu is a conjugation on Hu. The following result is from [9]

Proposition 3.10. Each Truncated Toeplitz operator Tuϕ is C-symmetric

Proof. For f , g ∈ Hu

< CTuϕ f ; g > =< Cg;Tuϕ f >=< Cg;PuTϕPuf >

=< PuCg;Tϕf >=< Cg;P (ϕ f) >

=< PCg;ϕ f >=< Cg;ϕ f >

=< gzu;ϕ f >=< fzu;ϕ g >

=< Cf ;P (ϕ g) >

=< Cf ;PuTϕPug >

=< (Tuϕ )
∗Cf ; g >

Then CTuϕ = (Tuϕ)
∗C 2

According to [1, Remark2.2] we have the following result:

Corollary 3.11. For each truncated Toeplitz operator Tuϕ, the operator Tu = UTuϕU
∗ is UCU∗-

symmetric where U unitary operator on Hu.

Proof. Via [9, Lemma 1] and we have the result by [7, p.1291].2

Recall the canonical conjugation introduced previously f 7→ J f on H2 by:

J f(z) := f(z)

Now let JC denote the corresponding conjugation on the model space HJu.

Remark 3.12. u is an inner function ⇐⇒ J u is inner

Proposition 3.13. The operator JC : Hu → HJu is unitary.

Proof. Since J et C is a conjugations then by [9, Lemma 1] we have the unitary.2

4 Conclusion

In summary, the operator Tψ on H2 symbol ψ ∈ L∞ is defined by P (ψf), where P is the
orthogonal projection from L2 ontoH2.One can show that Tψ is a bounded operator that satisfies
T ∗
ψ = Tψ and ||Tψ|| = ||ψ||∞. The coefficients (ti,j) of the matrix representation of Tψ in

a standard orthonormal basis {1, z1, z2, ...}of H2 is ψ̂(j − i)(Fourier coefficients) , which an
infinite Toeplitz matrix (constant in a diagonals). It’s was a algebriac caracterization of Toeplitz
operators giving by the forward shift F on H2 due to Halmos [4], a bounded operator T on H2

is a Toeplitz operator if and only:
T = FTF ∗
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There are some similarities between truncated Toeplitz operators and Toeplitz operators. For
instance, one has the adjoint formula, and an analogue of Halmos’s caracterization.However the
However, the differences are greater. for examples , the inequality:

||Tψ|| ≤ ||ψ||∞

is large for Toepltiz operators and it’s frequently strict for truncatred Toeplitz operators; and
there are somes of bounded truncated Toeplitz operator cannot be represented with a bounded
symbol. Finally, The class of complex symmetric operators is surprisingly large and many of
them can be shown to be unitarily equivalent to truncated Toeplitz operators.
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