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Abstract Air quality forecasting has highly become critical given the serious negative ef-
fects on human health, caused by exposure to atmospheric pollutants in urban air. One of the
pollutants associated with air pollution issues in Tangier city is troposphere ozone (O3), which
is becoming more and more concerned. Predicting daily concentrations of this pollutant can be
greatly beneficial in reducing possible risks. This study investigates the potential of using two
types of recurrent neural networks (RNN): simple RNN and Long-Short-Term Memory (LSTM)
model to forecast ozone concentrations in the Tangier area. In each experiment utilizing these
two algorithms, we adjusted the input data to examine the relation between predictors and per-
formance. When evaluating our forecasting model, the predicted and observed values were dis-
played graphically. The error was also measured using a number of evaluation metrics, including
Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and
the Index of Agreement. The computational results demonstrate that both approaches functioned
as intended, although the LSTM model outperforms a simpleRNN architecture in forecasting
ozone (O3) concentrations.

1 Introduction

Nowadays, forecasting air pollution has become a significant concern. Air quality directly affects
both our health and the ecosystem, especially in large cities. The numerous changes seen in the
biosphere, oceans, and atmosphere are mainly a consequence of human contribution. Therefore,
there is no doubt that the increase in the majority of pollutants in the ambient air around the
industrial region [1]. Tangier, north of Morroco, has seen significant growth in a number of
industrial sectors. However, the environment and public health have been negatively impacted
by this development. Most of Tangier’s air pollution issues are caused by a number of pollutants,
including tropospheric ozone (O3) [2].

Ozone in the troposphere is produced by a unique mechanism since it is not generated directly
by people’s activities: it is a secondary pollutant that results from photochemical reactions within
the atmosphere that need sun energy [3]. Furthermore, multiple lines of scientific evidence
support the claim that there are lots of elements available that contribute to the generation of O3
molecules, including nitrogen dioxide (NO2), volatile organic compounds (VOC) or the carbon
monoxide (CO) and in the presence of Ultra-Violet radiation [1]. There is also an elevated level
of confidence that human changes and an increase in precursor emissions over the last decade
have led to a rise in tropospheric ozone [4].

On plants, ozone has an adverse influence. As a strong oxidant, it destroys plant cells by
interacting with their surface elements, which is typically observed on the leaves where necrosis
can occur. Ozone may also enter through the small airways in humans, which can lead to asthma
episodes and coughing. In addition, it has been shown that exposure to high concentrations of
ozone increases death and hospitalization [5].

At the national level, more assistance is required for the successful implementation of air pol-
lution control and the reduction of precursor emissions that cause ozone. In Morroco, legislation
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governing air quality is being developed, but we still don’t have a solid forecasting system to
deal with the escalating effects of air pollution and climate change. As a result, the creation of
prediction models and the fusion of innovative technology with the particular conditions in Tang-
ier region can close the air quality monitoring gaps and allow authorities to put ozone precursor
mitigation measures into action.

Literature review
The precision of the prediction is an essential part of air quality forecasting. As a result, great

efforts have been made to improve the accuracy of this measurement method. In this work’s
paper, the accuracy is achieved by applying some error measuring techniques, which include
RMSE, MAPE and the index of agreement, and then comparing the actual pollution levels with
the expected results produced by our proposed models. The following section reviews some of
the associated research studies. The deterministic and statistical models are now two distinctive
types of models as a result of recent advances in air quality approaches [6]. On the one hand,
statistical models need to identify the underlying links between the various components that
affect air quality to be able to provide accurate predictions. On the other hand, deterministic
models work on the basis of solving differential equations that describe the atmospheric process
[3].

There is no one perfect solution that can address all time series forecasting concerns. How-
ever, each problem could be resolved in a different way [8]. The Moving Average (MA) is
considered one of the most simple forecasting techniques for time series without an identifi-
able seasonal trend [9].A more sophisticated version of MA known as Autoregressive Integrated
Moving Average (ARIMA) has been employed in multiple articles, and the results show that the
latter is credible for the prediction of time series [10].

Some studies have compared several alternative regression methods to predict daily ozone,
these estimations are frequently based on statistical correlations between meteorological vari-
ables and levels of air pollution in the environment [12]. Furthermore, numerous researchers
have employed multivariate linear regression models for this objective, and they can produce
reliable findings. However, the interactions between pollution and meteorological factors tend
to be complicated and nonlinear, particularly for ozone characteristics, which neural networks
techniques may be better suited to model [13].

A different approach to prediction is the use of artificial neural networks (ANN). The end
result of a research investigation that contrasts artificial neural networks with conventional ap-
proaches, such as exponential smoothing, the Box-Jenkins ARIMA model, and multivariate
regression, revealed that the neural network model is generally more precise than alternative
methods and is capable of understanding dynamic nonlinear trends and seasonal patterns [14].
Additionally, Artificial Neural Networks (ANNs) have produced favorable forecasts of ozone
levels one hour in advance using data locally obtained in Corsica [7].

Recurrent Neural Network (RNN) is another technique that has received a lot of attention
recently. RNNs are essentially networks composed of loops, which allows them to remember
past events. Therefore, they can be quite helpful in time series prediction [15]. Long-Short-
Term Memory (LSTM) technology is among the distinctive varieties of RNN, but what makes
it so unique is how the hidden layer is monitored. As an illustration, [16] offers a time series
anomaly detection model that uses LSTM.

Research contributions

• This study combines information on ozone concentration with meteorological data. First,
to better comprehend the time series, a different exploratory data analysis is also needed.

• To obtain an accurate forecast of daily ozone in the city of Tangier, we use certain innovative
artificial neural network-based forecasting techniques, including Simple RNN and LSTM
[17].

• Using index of agreement and other accuracy measuring techniques, the results are re-
viewed.

• Finally,the best prediction techniques are selected after a careful analysis of the outcomes.
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2 Materials and Methods

2.1 Study area and data samples

Tangier city in northern Morocco is the second economic heart of the country and capital of the
Tangier-Tetouan-Al Hoceima region. It is located between 35 ° 46′ 01′′ north and 5 ° 48′ 00′′

east, with an area of about 124 km2, see Figure 1.

Figure 1: The location of Tangier, Morocco

There has been incredible business sector development in the Tangier region. However, this
had an adverse effect on the ecology of the area, particularly on air quality and conditions for
hygiene and population health. Gases and particulates emitted into the atmosphere by a variety
of sources cause air pollution in Tangier. Road transportation and industrial sectors are the main
sources of pollution in the atmosphere of Tangier [9]. In the current study, we used both the
concentrations of air pollutant O3 and the meteorological factors. The air pollution data was
measured and collected by the National Direction of Meteorology. The sampling period was
from 01 January 2010 to 04 April 2014 in Tangier. We adopted K-Nearest Neighbors (KNN)
imputation for interpolating the values that are lacking in the data and it offers higher precision
and the finest performance.

2.2 Forecasting with Artificial Neural Networks

Several linked nodes, known as neurons, join together to create a neural network. Typically,
a feedforward has three layers that make up its structure: an input layer, a hidden layer, and
an output layer [13]. The number of attributes you wish to enter into the neural network is
represented by the input layer’s nodes. Additionally, the output nodes display the number of
objects you desire to forecast or classify. Without forgetting that The hidden layer’s function
at this point will be to deal with the nonlinearity issue in particular. When calculating, every
input xi is multiplied by a specific weight wi, and the sum of all weights is increased by a bias b
specific to each neuron. in accordance with the formula 2.1:

n∑
t=1

(wi ∗ xi) + b (2.1)
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The activation function utilizes the determined quantity to obtain the yi result based on Equa-
tion 2.2. The parameters of the neuron network are its weights and biases, and the algorithm
used for training must determine them during a period of supervised learning. See Figure 2.

yi = σ

(
n∑

i=1

(wi ∗ xi) + b

)
(2.2)

Figure 2: Schematic view of feed forward neural network

One of the frequent activation functions is the sigmoid that produces an output in the range
between 0 and 1, according to this definition:

σ(x) =
1

1 + exp(−x)

The primary advantage of this function is that it is simple to derive. Its derivative, a crucial
element of learning algorithms, is given by the following:

∂σ

∂x
(x) = σ(x)(1 − σ(x))

After that, we trained our networks using the Gradient Descent Algorithm (DG), which al-
lows us to determine the error gradient for each neuron in the network beginning with the last
layer and ending up with a hidden layer. Gradient backpropagation adjusts the weights of the
interconnections to decrease the MSE of the squared error between the output of our model and
the target data [18].

min
1
2

N∑
i=1

(
yi − σ

(
n∑

i=1

wi ∗ xi + b

))2

where, N stands for the dimension of the output vectors.

2.3 Forecasting with Recurrent Model Network

Time-series forecasting can benefit greatly from RNN’s capacity to save previous events in its
memory. The process goes like this: Data are sent from the input layer to the hidden layer, which
consists of a repeating loop at the back. Then, the output is an expression of the preceding input,
increased by the activation value of what was previously in hidden layers, as defined in Equation
2.3. RNN is shown in Figure 3 [20].

Each recurrent neural network receives a series of events as input X = (x1, x2, .., xN ). The
series of hidden states is defined by h = (h1, h2, .., hN ) to produce the sequence of output vectors
y = (y1, y2, ..., yN ) from 1 to N iterations of t.

ht = H(wxhxt + whhht−1 + bh),

yt = whyht + by
(2.3)
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Figure 3: The process of a recurrent neural network (RNN)

where,

• N represents the overall number of input vectors,

• wαβ stands for weight matrix between the layers α and β,

• H is the hyperbolic tangent (tanh).

However, these networks have restrictions since, with accumulated computations, the error
acquired with backpropagation of the gradient decreases towards zero or, less commonly, in-
creases to infinity. The terms "vanishing gradient" and "gradient explosion" refer to these two
issues, respectively.

2.4 Forecasting with LSTM

The Long-Short-Term Memory Network (LSTM) is a more powerful sequential network, often
known as an RNN, that allows information persistence. It helps to resolve the issues of over-
coming and vanishing RNN gradient [17].

The distinctive characteristic of LSTM is the way the hidden state is regulated, as shown in
Figure 4. A "memory cell", which substitutes the hidden layer in LSTMs, is used to manage
recurrence, which in the case of basic RNNs is ensured by an easy function known as the hy-
perbolic tangent (Tanh). The LSTM cell possesses a central node that stores the inside state (
memories) of the cell in addition to certain "gates" [19].

it = σ(wxixt + whiht−1 + wciht−1 + bi),

ft = σ
(
wxfxt + whf

ht−1 + wcfct−1 + bf
)

ct = ftct−1 + it tanh (wxcxt + whcht−1 + bc)

ot = σ (wxoxt + who
ht−1 + wcoct + bo)

ht = ot tanh (ct)

where,

• it represents Input gate

• ft represents Forgot gate

• ot represents Output gate

• ht represents hidden state vector

• ct represents cell state vector
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Figure 4: The process of Long Short-Term Memory Network (LSTM)

• w represents weight matrices
• b represents bias vector

It is desirable to resize the dataset to an interval from 0 to 1 in the initial stages of prediction
due to the sensitive nature of LSTM. It is then possible to create the model. Additionally, it is
beneficial to forecast future O3 concentrations after fitting. For this purpose, using the Keras
package to generate an LSTM model requires converting the time series into a supervised learn-
ing problem by using the previous data, such as t− 20 as input and what was actually observed
at time t as output [21].

2.5 forecasting error metrics

The assessments of forecasting time series reflect how effective the model is. There are many
distinct approaches to evaluate models. Three widely utilized metrics are used in this stage, such
as Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE). The expression of these assessment metrics shows that as the three values decrease, the
model’s prediction error also decreases.

Willmott introduced the index of agreement (d) as a standard technique to analyze the level
of model prediction error [22]. This shows how the projected error and mean square error are
related. A score of 0 denotes total disagreement, while a score of 1 denotes ideal agreement.

These metrics are calculated using the formulas (2.4-2.7).

MSE =
1
n

n∑
t=1

(yt − ŷt)
2 (2.4)

MAE =
1
n

n∑
t=1

(|yt − ŷt|) (2.5)

RMSE =

√√√√ 1
n

n∑
t=1

(yt − ŷt)
2 (2.6)

d = 1 −
∑n

t=1 (yt − ŷt)
2∑n

t=1

(∣∣yt − ¯̂yt
∣∣+ ∣∣ŷt − ¯̂yt

∣∣) (2.7)

where,
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• yt represents the observed value.
• ŷt represents the forecasted value.
• ¯̂yt represents the average of forecasted value.
• n represents the number of total observations.

3 Experiments

3.1 Prediction of time series

Forecasting time series is a significant subject in machine learning. A normal machine learning
dataset is a collection of observations. A typical machine learning dataset is made up of several
observations. However, a time series dataset differs because it includes a time dimension as
additional information. In general, analyzing the ozone dataset and making predictions about
the same pollutant are the two aims associated with this work.

The collection of data for the present investigation includes the number of daily O3 concen-
trations in the air from January 2010 to April 2014. The values are a count of concentrations, and
there are 1556 observations. We split up the dataset into two groups: one for model development
(dataset) and the other for validation (validation). The dataset was made up of observations from
January 2010 to December 2013. Validation: data made between January and April 2014.

(a) (b)

Figure 5: Histogram Plot and Line plot of O3 distribution

In time series analysis and forecasting, visualization is crucial. Graphical representations of
raw sample data can help diagnose the temporal structures that may affect the selection of the
model. As well, we can observe that our series tends to increase over time, which justifies the
choice of this pollutant, see Figure 5.

The analysis of time series is the main concern in order to achieve the objective of the study.
Time series analysis is creating models that best capture or explain our actual data when at-
tempting to comprehend what is causing them. This frequently means establishing hypotheses
regarding the structure of the data that is divided into its four constituent parts, Level, Trend,
Seasonality and Noise, as demonstrated in Figure 6.

These elements can aid us in formulating hypotheses about how they interact and how the
observed time series will behave. They might also be a useful technique to forecast future values
and provide us with the option to select the best prediction methodology. We are able to see
that the O3 series behaves in a way that tends to rise over time, with a negligibly pronounced
seasonality and a minor repeating pattern over time,and evidently some variation in our time
series that the model is unable to account for, that is referred to as noise.

The graph of autocorrelation expresses the character and degree of the link between the ob-
servations and their lags. After the resulting graph, the autocorrelation value of the daily O3
dataset tends to zero, as shown in Figure 7. On observing the plot, it is clear that the autocorrela-
tion value of the daily O3 dataset tends to zero, as seen in Figure 7. It appears that there is only a
minimal relationship between the original series and its lag. This illustrates a minor correlation
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Figure 6: Decomposing of the O3 time series into four constitution components

Figure 7: Autocorrelation Plot of O3 concentrations

between current observations and previous ones, during similar and opposite seasons of the year.
This plot is a sign of low seasonality in the dataset [23].

Table 1: Statistics of the measured values during the study period

pollutants/Variables Min Max Mean Std Dev
O3 (µg/m3) 0 210 33.58 23.06
Relative Humidity -25 99 71.41 17.6
Temperature ◦C -55 30 17.04 11.5
Wind Speed(ms) 0 3.8 0.99 0.70
Pressure(mmHg) 98 102 101 0.55
Precipation 0 76.4 2.13 6.16
Wind Direction 14 334 185.1 85.5
GWETTOP 0.2 0.95 0.63 0.15
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If we want to find out more about the significance of the distribution, we can develop descrip-
tive statistics for our time series which includes the average, standard deviation, minimum, and
maximum of the data, view Table 1, we can deduce that the average of the distribution is equal
to 33.58, that is a significant value and presents a sufficient reason to conduct for an exploratory
study and then a predictive research as a way to safeguard our planet and individuals from this
hazardous pollutant.

3.2 Process Of A Machine Learning Application

Preparation of Data
Information preparation is the procedure for transforming raw data into a format that is more

appropriate for modeling. This initial phase of data processing is crucial in a machine learning
application and might involve basic tasks such as feature engineering, data transformations, and
data cleaning [24]. In addition, the data, as we might anticipate, influence the sorts of data
processing that are selected.

Handling Missing Data
For a variety of causes, many real-world datasets could have missing values, which might

dramatically lower the machine learning model’s quality and have an impact on the outcomes.
There are many ways to handle this problem in the current study; the K-Nearest Neighbor was
used. In fact, KNN is more versatile overall than the other methods because it works for all kinds
of data [25].

Scale Numerical Data Numerous machine learning methods worked better when the range
of numerical input variables was regulated to a standard value. As a result, the tropospheric
ozone (O3) dataset was directly submitted to the MinMaxScaler transform to normalize the input
variables and scale values to an interval between 0 and 1. This approach succeeded excellently
and achieved the desired outcomes [24]. Notably, when compared to other traditional alterna-
tives, such as interpolation with the mean, the median, or the mode. Input and output attributes
are not present in our time series data. Instead, we must select the variable to be forecasted
and build all the input necessary to create predictions for the next time steps through feature
engineering.

4 Results and Discussion

Artificial neural networks (ANNs) represent statistical techniques of machine learning that can
uncover complicated links between inputs and outcomes. For time series data, other sequential
data are best processed using recurrent neural networks (RNNs), a kind of neural networks.
The work being done aims to construct two types of RNN: a simple RNN and LSTM models,
realizing predictions of daily ozone (O3) in Tangier in order to be able to predict the emergence
of pollution peaks and to take the necessary preventive actions. During operational forecasting,
the two models will be applied to data on pollutants and weather conditions.

In our research, the first decision we make relates to how our dataset is split into the training
dataset and the test dataset. After doing multiple tests, we found that 70 % for both models is
the ideal percentage to use as the training database.

Time series data should be reframed as a supervised learning dataset, before starting to use
machine learning algorithms. So the dataset will be separated into input as well as output samples
following this formulation: we are going back as lookback timesteps (for 20 days), then we take
the value directly after this time step as being the corresponding target.

In this stage, we built both a simple RNN and an LSTM model using only pollutant data of
O3. Each of the RNN models requires the adjustment of a number of parameters, including: the
number of layers, the number of neurons of each layer, and the activation function of neurons.
In order to enable our LSTM to simulate non-linear interactions between inputs and outputs [3],
we started with just one layer. And to train the network, we employed the descent of gradient
technique.

Then, we tested three distinct data input configurations for information collected in Tangier
city using consecutive: O3 concentration data, (O3 + NO2) pollution data, (O3 + NOX), and
finally (O3 + meteorological) pollution and meteorological data. We repeatedly changed our
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Table 2: Error indices

Model with input datasets MSE RMSE MAE d
SimpleRNN(O3) 0.59 0.77 0.46 0.84
SimpleRNN(O3+NO2) 0.56 0.74 0.46 0.85
SimpleRNN(O3+NOX) 0.54 0.73 0.44 0.86
SimpleRNN(O3+ METEO) 0.55 0.74 0.45 0.86
LSTM(O3) 0.55 0.74 0.45 0.86
LSTM(O3+NO2) 0.54 0.73 0.46 0.870
LSTM(O3+NOX) 0.52 0.72 0.45 0.877
LSTM(O3+ METEO) 0.61 0.79 0.49 0.84

configuration and investigated the previous input data configurations for data recorded and ob-
served if that increased the performance. This process was repeated until the model was good
and the configuration was kept with the best results. Within the training phase, efficiency was
assessed using the Mean Squared Error (MSE), and during the test phase, the Root Mean Square
Error (RMSE), Mean Absolute Error (MAE) and Index of Agreement (d) were determined.

In Table 2, the results of simple RNN and LSTM models are presented using various inputs.
To examine the correlation between predictors and performance, we run each RNN experiment
multiple times and provided the average values of error indices. Globally, our research results
have shown that the best choice is to use a minimum number like two of hidden layers, and 64 and
32 neurons for each one, respectively. When it comes to the activation function, it is a function
that transforms the signal entering (neuron) into an output signal (response). Generally, the most
typical activation functions are the hyperbolic tangent and sigmoid logistic. After testing these
two procedures, the results were encouraging and the sigmoid function was revealed to be the
best performing one. Additionally, to ensure that the network can generalize when using novel
data, it is essential to prevent over-fitting within the training process, For that reason, we applied
the dropout method.

According to the numerical results shown in Table 2: In the first simpleRNN model, we can
deduce that the error MSE has decreased and the agreement index d has increased by adding
other predictors as follows: (MSE = 0.59 for O3), (MSE = 0.56 for (O3 + NO2)), (MSE =
0.54 for (O3 + NOX)), (d = 0.84 for O3), (d = 0.85 for (O3 + NO2)), (d = 0.86 for (O3 +
NOX)).

For the second LSTM model, we can determine that the error MSE has been reduced and
the agreement index d has increased by introducing more predictors in this order: (MSE = 0.55
for O3), (MSE = 0.54 for (O3 + NO2)), (MSE = 0.52 for (O3 + NOX)), (d = 0.86 for O3),
(d = 0.870 for (O3 + NO2)), (d = 0.877 for (O3 + NOX)).

Finally, the effectiveness of the model is increased by including: NO2, NOX and meteoro-
logical factors (d = 0.86 for Simple RNN), (d = 0.877 for LSTM), (MSE = 0.59 for Simple
RNN) and (MSE = 0.52 for LSTM) , which means that these factors have an important effect
on the distribution of O3 and promote the pollution due to tropospheric ozone. The results also
demonstrate that both algorithms worked well, but the LSTM model shows that it is more ef-
fective at forecasting O3 concentrations than the simple RNN architecture, especially at peaks
levels.

In this step, we applied the LSTM model for a new period, like three months of 2014 to be
able to compare them with our validation data in the same period. In Figure 9, we can observe
that the predictions given by LSTM (yellow curve) are very close to the validated data, which
are green. This means that the model is validated and both algorithms worked well, but the
LSTM model shows that it is more effective at forecasting O3 concentrations than a simple
RNN architecture.
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Figure 8: Graphical representation of observed and predicted values of the O3 time series for the
two models

Figure 9: Forecasting 90 days of O3 concentration

5 Conclusion

In this work, we focused on predicting the ozone that caused daily air pollution levels in the city
of Tangier the following day to avoid adverse effects from exposure and determine the time of
peaks. The National Direction of Meteorology provided the data needed for the present research,
which shows the number of daily concentrations of the O3 air pollutant from January 2010 to
April 2014. Due to this, the Simple RNN and LSTM algorithms, two types of recurrent neural
networks, were created, trained using pollution and meteorological data, and showed favorable
findings. Its performance is improved by the introduction of NO2, NOX and meteorological
variables, indicating that these factors have an effect on the distribution of O3 and promote pol-
lution due to tropospheric ozone. The measured and forcasted concentrations of the O3 pollutant
in Tangier also showed a good degree of agreement, for instance (d = 0.86 and MSE = 0.54 for
SimpleRNN) and (d = 0.87 and MSE = 0.52 for LSTM) which demonstrated that the LSTM
approach outperformed the Simple RNN methodology.
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