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Abstract The paper deals with the following elliptic equation with a critical potential

div
(
|∇u|p−2∇u

)
+ γ |x|−p |u|p−2

u = 0, x ∈ RN − {0},

where N > p > 2 and γ > 0.
We prove the existence of positive solutions in the radial case. The study relies heavily on

comparing γ with ((N − p)/p)
p.

1 Introduction

This paper is concerned with the following singular radial equation

(
|u′|p−2u′

)′
+
N − 1
r

|u′|p−2u′ + γr−p|u|p−2u = 0, r > 0, (1.1)

where N > p > 2 and γ > 0.
To carefully analyze the radial solutions of (1.1), we study the following problem

(Q)


(
|u′|p−2u′

)′
+
N − 1
r

|u′|p−2u′ + γr−p|u|p−2u = 0, r > 0,

u(0) = ξ,

where N > p > 2, γ > 0 and ξ ∈ R∗.
It’s easy to see that u(r, ξ) = −u(r,−ξ), then we restrict to ξ > 0.
Note that the problem (Q) is a second-order problem with a single initial data. We focus on

the study of the behavior near the origin of solutions of problem (Q). In fact, we will prove that
if u is a solution of problem (Q), then lim

r→0
r(N−1)/(p−1)u′(r) = 0. So we consider this following

problem

(P )


(
|u′|p−2u′

)′
+
N − 1
r

|u′|p−2u′ + γr−p|u|p−2u = 0, r > 0,

u(0) = ξ, lim
r→0

r(N−1)/(p−1)u′(r) = 0,

where N > p > 2, γ > 0 and ξ > 0.
We mean by a solution of problem (P ), a function u defined on [0,+∞[ such that u ∈

C0([0,+∞[) ∩ C1(]0,+∞[), |u′|p−2u′ ∈ C1(]0,+∞[) and satisfying (1.1) in ]0,+∞[ with
u(0) = ξ.

The difficulty lies in the fact that the problem (P ) is singular near the origin. More precisely,
we will show that the problem (P ) has a unique solution u which satisfies

lim
r→0

ru′(r) = −
(

γ

N − p

)1/(p−1)

ξ
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and

lim
r→0

r2u′′(r) =

(
γ

N − p

)1/(p−1)

ξ.

We will then show that this solution is strictly positive on [0,+∞[.
The equation (1.1) has been the subject of study by a number of authors, the main one being

the survey in [1, 2, 3, 4, 8, 10, 7, 11, 12, 14, 15] and the references therein. If p = 2, the
equation (1.1) was studied by [10] and [12]. The non-radial case was studied by [11]. In the
papers [10, 12], there was a large discussion about the sign of the real ((N − p)/p)

p − γ which
has a direct relation with the characteristic equation of (1.1). Specifically, if u = r−α is a simple
solution of the equation (1.1), then we obtain the characteristic equation

χ(α) ≡ |α|p−2
α(N − p− α(p− 1))− γ = 0, α ∈ R.

It has been proven in [12] that

max
α∈R

χ(α) = χ(
N − p

p
) =

(
N − p

p

)p

− γ.

According to the study carried out in [10, 12], the sign of ((N − p)/p)
p − γ influences the

variation of the function χ and consequently the behavior of the solutions of equation (1.1). In
this paper, our main aim is to add value to previous work by proving the existence of positive
solutions of the singular equation (1.1) using the energy method introduced by [13]. We will
also prove that these positive solutions are decreasing on (0,+∞). Throughout the work we will
use some ideas introduced in the papers [2, 3, 4, 5, 6, 9].

The rest of the work is as follows. In the section 2, we present fundamental properties con-
cerning the asymptotic behavior near the origin of solutions of problem (P ). We give a main
result which shows that lim

r→0
u′(r) = −∞ and lim

r→0
u′′(r) = +∞. In the section 3, we prove

the existence of positive solutions of problem (P ). The study strongly depends on the sign of
((N − p)/p)

p − γ. The final section 4 concludes with an overview of the main results and their
prospects.

2 Fundamental properties

This section concerns the study of the asymptotic behavior near 0 of solutions of problem (Q).
We start with this theorem.

Theorem 2.1. Let u be a solution of problem (Q). Then

lim
r→0

r(N−1)/(p−1)u′(r) = 0, (2.1)

lim
r→0

ru′(r) = −
(

γ

N − p

)1/(p−1)

ξ (2.2)

and

lim
r→0

r2u′′(r) =

(
γ

N − p

)1/(p−1)

ξ. (2.3)

Before proving the previous theorem, we will need this following proposition.

Proposition 2.2. Let u be a solution of problem (Q). then

(i) u is strictly monotone near 0.

(ii) lim
r→0

r(N−1)/(p−1)u′(r) = 0.

(iii) lim
r→0

ru′(r) = −
(

γ

N − p

)1/(p−1)

ξ.

In particular, u′(r) < 0 for small r.
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Proof. First, we show that u′(r) ̸= 0 near 0.
Since u(0) = ξ > 0, then by continuity of u, there exists ρ > 0 small enough such that u(r) > 0
for r ∈]0, ρ[. If there exists r0 ∈]0, ρ[ the first zero of u′, then by equation (1.1)(

|u′|p−2u′
)′
(r0) = −γr−p

0 |u|p−2(r0)u(r0) < 0. (2.4)

So u is strictly monotone near 0.
To prove (ii), let

V (r) = rN−1|u′|p−2u′(r), r > 0. (2.5)

Then by (1.1), we have

V ′(r) = −γrN−1−p|u|p−2u(r), for any r > 0. (2.6)

Therefore V ′(r) < 0 for small r. It follows that lim
r→0

V (r) ∈] − ∞,+∞] and so by (2.5),

lim
r→0

r(N−1)/(p−1)u′(r) ∈] − ∞,+∞]. Suppose that r(N−1)/(p−1)u′(r) does not converge to 0

when r → 0, then there exists a small ρ > 0 and a constant C > 0 such that

|u′(r)| > Cr(1−N)/(p−1), for any r ∈ (0, ρ).

But r(1−N)/(p−1) ̸∈ L1(0, ρ). This contradicts u′ ∈ L1(0, ρ). Consequently, r(N−1)/(p−1)u′(r)
converges to 0 when r → 0.

Now, we show (iii). We have by (ii) and (2.5), lim
r→0

V (r) = 0. Therefore, by (2.6) and

Hopital’s rule, we have

lim
r→0

rp−NV (r) =
−γ
N − p

ξp−1. (2.7)

This gives

lim
r→0

rp−1|u′|p−2u′(r) =
−γ
N − p

ξp−1. (2.8)

Which leads to the desired result.

We now give the proof of the Theorem 2.1.

Proof. According to the previous proposition, it remains to show (2.3). Note that since u′ ̸= 0
near 0, then u′′ exists near 0. Multiply equation (1.1) by rp and use Proposition 2.2, we get

lim
r→0

rp
(
|u′|p−2u′

)′
(r) = lim

r→0
(p− 1)rp|u′|p−2u′′(r) =

γ(p− 1)
N − p

ξp−1 (2.9)

and so

lim
r→0

r2u′′(r) =

(
γ

N − p

)1/(p−1)

ξ.

This completes the proof.

3 Existence results

The aim of this section is to give existence results for positive solutions of the problem (P ). We
begin with local and global existence results.

Theorem 3.1. For each ξ > 0, the problem (P) has a unique solution u = u(., ξ) on [0,+∞[.

Proof. . Three stages will be taken in the proving process.
Step 1: Existence of a local solution.
Integrating equation (1.1) twice from 0 to r, we see that the problem (P ) is equivalent to the
following equation.

u(r) = ξ −
∫ r

0
g(f [u](τ))dτ, (3.1)



EQUATION WITH A CRITICAL POTENTIAL 39

where g(s) = |s|(2−p)/(p−1)s and f is a nonlinear function given by

f(u)(τ) = γτ 1−N

∫ τ

0
ρN−p−1(|u|p−2

.u)dρ. (3.2)

For R > 0, the Banach space of real continuous functions on [0, R] with uniform norm ∥ .∥0 is
denoted by C([0, R]). Given ξ, M > 0, we consider the complete metric space

Eξ,M,R = {φ ∈ C([0, R]); ∥φ− ξ∥0 ≤M}. (3.3)

The operator Γ on Eξ,M,R is also defined by

Γ[φ](r) = ξ −
∫ r

0
g(f [φ](τ))dτ. (3.4)

Claim 1: Γ transforms Eξ,M,R into itself when M is small and R > 0.
Obviously, Γ[φ] ∈ C([0, R]. According to the definition of space Eξ,M,R, we have φ ∈ [ξ −
M, ξ+M ] for all r ∈ [0, R]. we show that f [φ] has a constant sign on [0, R] for every φ ∈ Eξ,M,R.
Additionally, there is a constant K > 0 such that

f [φ](τ) ≥ Kτ 1−p for all τ ∈ [0, R], (3.5)

where K =
γ

N − p
ξp−1.

Considering that the function r → g(r)

rp−1 decreases on (0,+∞), we obtain

|Γ[φ](r)− ξ| ≤
∫ r

0

g(f [φ](τ))

f [φ](τ)
|f [φ](τ)|dτ ≤

∫ r

0

g
(
K.τ 1−p

)
Kτ 1−p

|f [φ](τ)|dτ

for r ∈ [0, R]. On the other side,

f [φ](τ) ≤ C · ξ1−p, C =
γ

N − p
(ξ +M)p−1.

We thus get

|Γ[φ](r)− ξ| ≤ C
K2(1−p)+1

p− 1
· rp−1

for every r ∈ [0, R]. Choose R small enough such that

|Γ[φ](r)− ξ| ≤M for φ ∈ Eξ,M,R. (3.6)

This means that Γ[φ] ∈ Eξ,M,R. The Claim 1 is proved.
Claim 2: Γ is a contraction of the interval [0, rξ].
According to Claim 1, if rξ is small enough, the space Eξ,M,rξ applies into itself. For such rξ
and any φ,ψ ∈ Eξ,M,rξ we have

|Γ[φ](r)− Γ[ψ](r)| ≤
∫ r

0
|g(f [φ](τ))− g(f [ψ](τ))|dτ,

where f [φ] is given by (3.2). Next, let

ϕ(τ) = min(f [φ](τ), f [ψ](τ)).

As a result of estimation (3.5), we have

ϕ(τ) ≥ Kτ 1−p for 0 ≤ τ ≤ r < rξ (3.7)

and then

|g(f [φ](τ))− g(f [ψ](τ))| ≤ g(ϕ(τ))

ϕ(τ)
|f [φ](τ)− f [ψ](τ)|

≤
g
(
Kτ 1−p

)
K · τ 1−p

|f [φ](τ)− f [ψ](τ)|.

(3.8)
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Moreover,

|f [φ](τ)− f [ψ](τ)| ≤ C ′ · ∥φ− ψ∥0 · τ 1−p, C ′ =
γ

N − p
(ξ +M)p. (3.9)

Combining (3.7), (3.8) and (3.9), we

|Γ[φ](r)− Γ[ψ](r)| ≤ C ′ · K
2(1−p)+1

p− 1
rp−1 · ∥φ− ψ∥0, for all r ∈ [0, rξ] . (3.10)

Finally, we choose rξ small enough so that

C ′ · K
2(1−p)+1

p− 1
rp−1
ξ < 1.

This means that Γ is a contraction. Consequently, the existence of a unique fixed point of Γ in
Eξ,M,rξ is implied by the Banach fixed point Theorem. This fixed point is a solution of problem
(P ) which can be stretched to a maximum interval [0, rmax[ with 0 < rmax ≤ +∞.
Step 2: Existence of a global solution.
We introduce the energy function

E(r) =
p− 1
P

|u′|p + γ

p
r−p|u|p (3.11)

From equation (1.1), we obtain

E′(r) = −
(
N − 1
r

|u′|p + γr−p−1|u|p
)
. (3.12)

Since γ > 0, then E is positive and decreasing. Therefore E is bounded. Hence u and u′ are also
bounded and u(r) exists for all r ≥ 0.

The existence of positive solutions of problem (P ) is given by this main theorem.

Theorem 3.2. Assume that 0 < γ < ((N − p)/p)
p. Let u be a solution of problem (P ). Then u

is strictly positive on [0,+∞[.

The proof requires this following preliminary results.

Proposition 3.3. Let u be a solution of problem (P ). If r0 > 0 is the first zero of u, then
u′(r0) < 0.

Proof. Let r0 > 0 the first zero of u. Then u′(r0) ≤ 0 and by continuity of u, there exists a left
neighborhood (r0 − ε, r0) (for some ε > 0) where u > 0 and u′ < 0.

Suppose by contradiction that u′(r0) = 0. Then, since u > 0 on (0, r0), we have by (2.5) and
(2.6), V ′(r) < 0 on (0, r0). Therefore

V (r) > V (r0) = 0 for any r ∈ (r0 − ε, r0).

This means that
u′(r) > 0 for any r ∈ (r0 − ε, r0).

This is a contradiction with the fact that u′(r) ≤ 0 in (r0 − ε, r0). Consequently u′(r0) < 0.

Proposition 3.4. Let u be a solution of problem (P ) and let Du := {r > 0 : u(r) > 0}. Then
u′(r) < 0 for any r ∈ Du.

Proof. Suppose by contradiction that there exists r1 > 0 the first zero of u′. Since by Propo-
sition 2.2, u′(r) < 0 for r ∼ 0, then u′ is strictly increasing and strictly negative on a left
neighborhood ]r1 − ε, r1[ (for some ε > 0). This means that (|u′|p−2u′)′(r1) ≥ 0. But by equa-
tion (1.1), we have (|u′|p−2u′)′(r1) = −γr−p

1 |u|p−2u(r1) < 0 because u(r1) > 0, u′(r1) = 0
and γ > 0. This contradiction completes the proof.
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Now, we give the proof of Theorem 3.2.

Proof. Suppose by contradiction that there exists r0 > 0 the first zero of u. Then by Proposi-
tion 3.4, u′(r) < 0 on (0, r0).

Define the energy function

F (r) =
p− 1
p

|u′(r)|p − γ(p− 1)
p

r−p|u(r)|p. (3.13)

So by equation (1.1), we have

F ′(r) = −N − 1
r

|u′|p − γpr−p|u|p−2uu′ + γ(p− 1)r−p−1|u|p. (3.14)

We show that there exists θ ∈ (0, r0) such that F (θ) = 0 and F ′(θ) ≥ 0.
Since u′(r0) < 0 by Proposition 3.3, then F (r0) > 0.
On the other side, the function F can be written as follows:

F (r) =
p− 1
p

r−p|u(r)|p
[
rp|u′|p

|u|p
− γ

]
. (3.15)

According to Proposition 2.2, we see that

lim
r→0

rpF (r) =
p− 1
p

ξp

[(
γ

N − p

)p/(p−1)

− γ

]
.

Since 0 < γ < ((N − p)/p)
p, then lim

r→0
rpF (r) < 0. This means that F (r) < 0 for small r.

Combining this with F (r0) > 0, we deduce that there exists θ ∈ (0, r0) the first zero of F , that
is F (θ) = 0, F ′(θ) ≥ 0 and by (3.14),

F ′(θ) = −
[
N − p− γ1/pp

] |u′(θ)|p

θ
. (3.16)

Again, since 0 < γ < ((N − p)/p)
p and u′(θ) < 0, then F ′(θ) < 0. This contradicts F ′(θ) ≥ 0.

Consequently u(r) > 0 on [0,+∞[.

4 Conclusion

In this work we have used the energy method to study the existence of positive radial solutions
of a nonlinear elliptic equation with a critical potential in the case 0 < γ < ((N − p)/p)

p. These
solutions are strictly decreasing. The question of the existence of positive solutions in the case
γ ≥ ((N − p)/p)

p remains open and will be studied in the future.
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