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Abstract We propose in this paper a vertex-centered finite volume scheme that can efficiently
handle the dominant advection in resolving parabolic problems. This scheme offers significant
improvements in accuracy and computational efficiency, making it a promising approach to air
quality problems. Numerical experiments are developed to validate the enhanced performance
of the scheme in comparison to other two-node schemes for dominant advection in both steady
and unsteady problems, whether for pure advection problems or those involving both advection
and diffusion.

1 Introduction

The planet Earth has undergone and is still undergoing significant transformations, including
global climate change caused by the greenhouse effect, as well as pollution of the atmosphere
and groundwater. The dispersion of a pollutant and greenhouse gases in the atmosphere, and the
reactive transport of a contaminant in groundwater can be modeled by physical principles that
describe the distribution of concentration and its evolution over time and space, resulting from
advection, diffusion, and reaction processes [12].

Such problem has shown a strong advective dispersion which dominates over diffusion [1].
The advection term represents a challenge that has attracted the interest of several researchers
since the 1960s. Traditional first-order schemes are stable and monotonic [3], and tend to be ex-
cessively diffusive, leading to inaccurate solutions in solving advection-diffusion-reaction prob-
lems. Alternatively, high-order schemes are less dissipative, but can suffer from numerical insta-
bilities that cause non-physical oscillations [5, 10, 11, 15]. Until now, finite-volume advection
schemes have continued to be an active area of research, with ongoing efforts to improve accu-
racy and reduce numerical diffusion and oscillations [4, 16].

Several authors argue that in order to accomplish this goal, one must utilize nonlinear schemes
known as High Resolution Schemes (HRS) to circumvent the undesirable nonphysical oscilla-
tions presented in HO schemes, or to minimize the diffusivity of stable first-order schemes.
These HRS are typically based on flux-correlated transport (FCT) [6, 16], flux limiters that meet
the Total Variation Diminishing (TVD) Boundedness criteria, or Normalized Variable Formula-
tion (NVF) that satisfy the Convection Boundedness Criterion (CBC) [8, 9, 17]. HRS nonlinear
schemes require at least three nodes and may be computationally demanding and difficult to
implement for complicated problems.

In general, the choice of finite-volume scheme depends on the specific problem being solved,
as well as the available computational resources and desired accuracy. While finite-volume
schemes have many strengths, they can also suffer from limitations such as numerical diffusion,
oscillations, and the computational resources and times required.

This paper aims at presenting a scheme for approximating the advection term using only two
nodes in a vertex-centered mesh. Through our analysis, we demonstrate the superior perfor-
mance, efficiency, and simplicity of this scheme for the dominant advection problem compared
to other two-node schemes.

This paper is organized as next; In the next Section, we introduce the advection diffusion
reaction problem and the discretization steps involved in its resolution using a finite-volume
method. Moving on to Section 3, we give an overview of some existing two-node schemes used
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to approximate the advection term. Section 4 presents our proposed scheme and explains its
implementation. In Section 5, we conclude our work by presenting numerical results and ex-
periments that illustrate the performance of the new scheme in comparison to other two-node
schemes for dominant advection in both steady and unsteady problems, whether for pure advec-
tion problems or those involving both advection and diffusion. Section 6 presents a summary
and outlines potential directions for future work.

2 Problem Formulation

To simplify the calculations and without loss of generality, we will assume that the computational
domain is two-dimensional. In the current section, we will outline the mathematical model for
pollutant transport in the atmosphere, along with the description of the finite-volume method and
construction of numerical fluxes.

2.1 Model Description

Pollutants transport is mathematically described by several models. In this work, we will fo-
cus on the unsteady advection-diffusion-reaction model, where every factor plays a role in the
particular species dispersion.

We will consider the study domain Ω as a bounded domain in R2 with a Lipschitzian bound-
ary ∂Ω. Let [0, T ] be the time interval with T being a positive real number. At position
x = (x1, x2) ∈ Ω and time t ∈ [0, T ], the advection-diffusion-reaction equation is described
as follows:

∂c(x, t)

∂t
− div [K(x, t)∇c(x, t)]︸ ︷︷ ︸

Diffusion

+ div [c(x, t)V (x, t)]︸ ︷︷ ︸
Advection

+ rc(x, t)︸ ︷︷ ︸
Reaction

= f(x, t)︸ ︷︷ ︸
Emissions - Losses

, (2.1)

where c is the species concentration, V is the wind velocity vector, K is the diffusion coefficient,
r is the reaction coefficient, and f is the difference between the quantity of the species released
by different sources and losses by the species deposition (dry and/or wet) [13].

By adding the initial condition and the boundary conditions to our model, we obtain the
following continuous model:

∂c

∂t
− div(K∇c) + div(cV ) + rc = f in Ω × (0, T )

c = g on ∂Ω × (0, T )
c(., 0) = c0 in Ω,

(2.2)

where f is a function satisfying f ∈ L2(0, T ;L2(Ω)), g ∈ L2(∂Ω), the scalar r is positive, and
c0 ∈ L2(Ω). Under some assumptions [2, 14] on K, V , r and the initial condition c0, the problem
2.2 admits a unique solution [18].

The resolution of the system 2.2 will be achieved numerically using the finite-volume method
(FVM). In the next section, we introduce the procedure for the temporal and spatial discretization
of the problem 2.2.

2.2 Problem Discretization:

We consider a subdivision of the time interval as follows:

[0, T ] = ∪ [tn−1, tn] , n = 1, · · · ,Mn,

such that: 0 = t0 < t1 < t2 < · · · < tMn−1 < tMn
= T , and ∆tn = tn − tn−1.

There are many approaches to discretize the partial derivative with respect to time, we choose
the implicit one:

∂c(x, t)

∂t
=

cn(x)− cn−1(x)

∆tn
,

where cn(x) = c(x, tn) and cn−1(x) = c(x, tn−1).
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To discretize the domain, there are several options available for the finite-volume method,
including cell-centered and vertex-centered approaches. For our equation, we opt for a vertex-
centered one. To construct a vertex-centered mesh, we start with a given primal finite element
triangulation of Ω. Next, we define the dual mesh constructed by control volumes Vi obtained
by joining the midpoints of the edges having xi as extremity with the barycenters of the triangles
having xi as vertex. Let ∂Vi be the boundary of the control volume Vi and γ the edge that
separates two control volumes Vi and Vj (see Figure 1).

We note that the unknowns, which are the values of the variables that need to be determined
to solve the problem, are associated with the vertices (or nodes) of the triangles within the primal
mesh.

Figure 1: Vertex-Centered Mesh in 2D [14]

Next, we integrate the equation over each control volume Vi, we obtain:∫
Vi

cn − cn−1

∆tn
dx−

∫
Vi

div(K∇cn)dx+

∫
Vi

div(cnV )dx+

∫
Vi

rcndx =

∫
Vi

fndx.

By applying Green’s Formula, we find:∫
Vi

cn − cn−1

∆tn
dx−

∫
∂Vi

K∇cn · n∂Vi
ds+

∫
∂Vi

cnV · n∂Vi
ds+

∫
Vi

rcndx =

∫
Vi

fndx,

where n∂Vi
is the normal vector outward the boundary ∂Vi. Let ∂Vi = ∪γ, we have:∫

Vi

cn − cn−1

∆tn
dx−

∑
γ⊂∂Vi

∫
γ

K∇cn · nγds+
∑

γ⊂∂Vi

∫
γ

cnV · nγds+

∫
Vi

rcndx =

∫
Vi

fndx,

(2.3)
where nγ is the outward unit normal vector of the edge γ.

We note that the numerical flux of diffusion and advection respectively by F and G is ex-
pressed as next∫

γ

K∇cn · nγds ≈ |γ|F (cni , c
n
j ,nγ) and

∫
γ

cnV · nγds ≈ |γ|G (cni , c
n
j ,nγ).

Now, the equation (2.3) becomes:

|Vi|
cni − cn−1

i

∆tn
−

∑
γ⊂∂Vi

|γ|F (cni , c
n
j ,nγ) +

∑
γ⊂∂Vi

|γ|G (cni , c
n
j ,nγ) + |Vi| rcni = |Vi| fn

i .
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Here, |Vi| and |γ| are respectively the area of the control volume Vi and the length of the edge γ.
Now we explicit the expression of fn

i , which is an approximation of fn over the control volume
Vi, and we approximate cn over Vi by cni , with:

fn
i :=

1
|Vi|

∫
Vi

fn(x)dx and cni :=
1
|Vi|

∫
Vi

cn(x)dx.

For the approximation of the diffusion flux, we approach the normal derivative ∇cn · nγ by:

∇cn · nγ ≈
cnj − cni
dij

,

where dij is the distance between the vertices xi and xj .
Therefore, we approach

∫
γ
K∇cn · nγds by:

|γ|F (cni , c
n
j ,nγ) = K|γ|

cnj − cni
dij

.

The remaining tasks are to construct the numerical flux G to approximate the advection flux
and to take into account the boundary condition in the discretization. In the following section,
we focus on exploring some existing finite-volume schemes for dominant advection in parabolic
equations. We provide an overview of the advantages and disadvantages of the most prominent
methods.

3 Approximation of Advection Flux

In order to complete the discretization of the equation using the finite-volume method, we have
to present a numerical approximation of the advection flux, G (cni , c

n
j ,nγ). The main point of

this section is to present an overview of the most prominent finite-volume schemes available for
dominant advection in parabolic equations.

The approximation of the advection term has been a stimulating area of research for many
decades, which enriched the literature with numeros schemes either first-order linear, high-
order or high-resolution schemes. In parabolic equations with dominant advection, finite-volume
methods may suffer from numerical diffusion and oscillations, adversely affecting the solution’s
accuracy. Consequently, several techniques have been developed to address these issues.

Most of the linear schemes developed for the advection term are based on a Taylor series
development on an one-dimensional cell-centered mesh and are also extended to a two- or three-
dimensional cell-centered mesh. We adapt some of famous schemes that are suitable for advec-
tion dominant problem, to a vertex-centered 2D mesh:

Central Differencing Scheme (CDS)

This scheme uses a centered approximation to the solution gradient and is second-order accurate.
However, it can be susceptible to numerical oscillations in the presence of strong advection. In
fact, on an edge γ that separates the control volumes Vi and Vj , we approach cn by:

cnj + cni
2

.

In this context, the numerical approximation of the advection flux is:

G (cni , c
n
j ,nγ) = cni

(
V · nγ

2

)
+ cnj

(
V · nγ

2

)
.

Upwind Differencing Scheme (UDS)

The numerical approximation of the advection flux in Upwind Differencing Scheme is given
by:

G (cni , c
n
j ,nγ) = cni (V · nγ)

+
+ cnj (V · nγ)

−
,
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with:
(V · nγ)

+
= max (V · nγ , 0) and (V · nγ)

−
= min (V · nγ , 0) .

This approach is established according to the sign of the scalar product of the vector V and
the outward unit normal vector of Vi on γ. The Upwind Differencing scheme is a first-order
accurate method that considers advection by approximating the direction of flow at each cell
face. It assumes that the variable being transported moves in the same direction as the flow,
which makes it suitable for problems with strong advection. However, this scheme can be overly
diffusive and may produce numerical oscillations in some cases.

Hybrid Upwinding Differencing Scheme (HDS)

Hybrid schemes are defined as a combination of both centered and upwind schemes utilizing the
Peclet number,

Peij =
V · nγdij

K
,

as a determining factor for the appropriate balance between the two approaches. These schemes
aim to incorporate the advantages of both centered and upwind schemes while reducing their
limitations.

Here, we present two versions of Hybrid Schemes. The first scheme, (HDS1), is described as
next:

G (cni , c
n
j ,nγ) =


cnj (V · nγ) if Peij < −2,
cni (V · nγ) if Peij > 2,

cni

(
V ·nγ

2

)
+ cnj

(
V ·nγ

2

)
otherwise,

while, the second one, (HDS2), is defined by:

G (cni , c
n
j ,nγ) =


cnj (V · nγ) if Peij < −2
cni (V · nγ) if Peij > 2

cni

(
V ·nγ

2 + K
dij

)
+ cnj

(
V ·nγ

2 − K
dij

)
otherwise,

The UDS, HDS1 and HDS2 are two nodes Schemes well-suited for large values of Peclet
number, especially the two hybrid schemes that combine the advantages of both UDS and CDS.
Unfortunately, the truncation error arising from their approximation using the Taylor series is
limited to the first order [7, 10, 11, 15]. Therefore, high-order schemes are developed by using
at least one additional node.

4 Adaptive Two-Node Finite Volume Scheme

In the current section, we present a new scheme for dominant advection that adaptively addresses
the oscillatory and diffusivity concerns. This scheme employs only two nodes to approximate
the unknown quantity c on each edge γ separating the control volumes Vi and Vj . We accomplish
this by incorporating a corrective term that allows both CDS and UDS approaches to consider
the direction of the wind vector and the flow between neighboring volumes. As a result, we can
attain stability and good accuracy even in the presence of a high Peclet number.

We present the formulation of the α-adaptive scheme taking into account the sign of the
Peclet number and introducing a control parameter α, α ∈ [0, 1]. So, in α-adaptive scheme
(α-AS), we approach cγ by

cγ =

{
1
2 (1 − α) cj +

1
2 (1 + α) ci if Peij > 0

1
2 (1 − α) ci +

1
2 (1 + α) cj if Peij < 0.

(4.1)

Or, generally:

cγ =
1
2
(1 − ϵα) cj +

1
2
(1 + ϵα) ci,

with ϵ = sign(Peij).
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This scheme, the α-adaptive scheme, can adaptively address the oscillatory and diffusivity
issues through an adaptive parameter α. It can be re-expressed from the decentered form as
follows:

cγ = ci +
1
2
(1 − ϵα) (cj − ci) ,

and using the centered form, we find this formula:

cγ =
ci + cj

2
− ϵα

2
(cj − ci) .

The therms (1 − ϵα) (cj − ci) /2 and −ϵα (cj − ci) /2 reflect antidispersion and antidiffu-
sion, respectively. The α-adaptive scheme is a generalized form of the two-node schemes, CDS,
UDS and HDS, by varying the values of α. Table 1 gives an overview.

Table 1: Values of α for linear schemes

Values of α Scheme
α = 0 CDS
α = 1 UDS{

α = 1 if |Peij | > 2
α = 0 if 0 ≤ |Peij | ≤ 2

HUDS1{
α = 1 if |Peij | > 2
α = 2

|Peij | if 0 < |Peij | ≤ 2
HUDS2

The choice of α is very important, it can be adapted according to the Peclet number. The
purpose of this scheme is to reduce the dispersion of the centered approach by incorporating
the quantity −ϵα(cj − ci)/2 and to eliminate the inaccurate diffusion caused by the decentered
approximation by including the quantity (1 − ϵα)(cj − ci)/2. Furthermore, both quantities are
calculated as functions of α. As the stability problem arises with high values of the Peclet
number, the choice of α should take into account the presence of high Peclet values, presenting
the local characteristics in each mesh element. This ensures that the method reduces oscillations
and false diffusion while still maintaining a level of accuracy comparable to that of a second-
order scheme.

UDS scheme may introduce excessive artificial diffusion, which leads to a loss of accuracy.
Furthermore, the CDS scheme can be susceptible to stability issues and numerical oscillations
in the presence of strong advection. To address these limitations of both the UDS and CDS
schemes, we use the α-adaptive scheme to balance accuracy and stability by minimizing the
value of α to balance the need for accuracy and stability. High-resolution schemes can be com-
putationally expensive, particularly for large-scale or time-dependent problems. In contrast,
the α-adaptive scheme is relatively easy to implement and can be applied to a wide range of
problems, and ensures that the solution remains physically realistic by correcting the numerical
fluxes.

5 Validation and Results

In the current section, to evaluate the performance of the α-AS scheme, a diverse set of test
cases is selected. These test cases include problems with known analytical solutions for pure ad-
vection problems, and problems involving advection and diffusion, in both steady and unsteady
cases. The chosen test cases are commonly used and are represented by the following analytical
solutions:

For steady problem:
c1(x, y) = sin(πx) sin(πy),

c2(x, y) = (exp(x)− 1)(exp(y)− 1),

c3(x, y) = 0.1 (exp(x) + exp(y)) ,
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c4(x, y) =
(2x− 1)(1 − y) + 1

9
,

c5(x, y) = 0.26(x2 + y2)− 0.48xy,

For unsteady problems:

c1,t(t, x, y) = sin(πx) sin(πy)
exp(−t)

t+ 1
,

c2,t(t, x, y) = (exp(x)− 1)(exp(y)− 1) log(t+ 2),

We will evaluate the accuracy of α-AS in comparison to other schemes, CDS, UDS, HDS1
and HDS2, comparing the numerical solution ch with the analytical solution c, using metrics
such as the L2 norm and L∞ norm.

In all problems, the required parameters f , c0, and others are computed in relation to the
corresponding exact solution. For each problem, we use discretizations of the domain Ω =

(0, 1)2 using a quasi-uniform vertex-centered mesh, and we consider five different meshes with
varying maximum step sizes hmax. For unsteady problems, we use for numerical simulations a
time step ∆tn = 1e− 3.

5.1 First Test: Pure Advection

Here, we consider the following problem of pure advection:{
div(cV ) = f in Ω

c = g on ∂Ω,
(5.1)

where f and g are scalar functions, and V is a vector of real numbers.
In Table 2, we compare the accuracy data of the proposed α-adaptive scheme (α-AS) with

CDS and UDS, in the pure advection problem. These comparisons revealed the superior perfor-
mance of the proposed approach with significant improvements in accuracy and computational
efficiency, in the framework of two-node approximation schemes.

Table 2: Comparison of error data for pure advection problem 5.1 using CDS, UDS, and α-AS
with varying hmax of different quasi-uniform meshes. We used V = [50, 50]

hmax = 0.116 hmax = 0.056 hmax = 0.022
L2 error L∞ error L2 error L∞ error L2 error L∞ error

c1 CDS − − − − 5.80e − 03 2.30e − 02
UDS 1.54e − 01 3.43e − 01 8.09e − 02 1.17e − 01 3.35e − 02 7.02e − 02
α-AS 2.16e − 02 6.89e − 02 5.90e − 03 2.55e − 02 9.63e − 04 8.00e − 03

c2 CDS − − − − 5.50e − 03 2.44e − 02
UDS 5.13e − 02 1.44e − 01 2.83e − 02 8.51e − 02 1.26e − 02 4.67e − 02
α-AS 1.95e − 02 6.14e − 02 3.70e − 03 1.49e − 02 2.64e − 04 1.70e − 03

c3 CDS − − − − 1.53e − 04 5.57e − 04
UDS 4.90e − 03 1.13e − 02 2.70e − 03 6.50e − 03 1.10e − 03 3.30e − 03
α-AS 3.20e − 04 9.44e − 04 1.88e − 05 8.01e − 05 2.04e − 05 1.51e − 04

c4 CDS − − − − 3.00e − 03 1.32e − 02
UDS 1.84e − 02 3.78e − 02 1.02e − 02 2.27e − 02 4.50e − 03 1.17e − 02
α-AS 9.80e − 03 2.80e − 02 2.00e − 03 7.50e − 03 2.69e − 04 1.50e − 03

c5 CDS − − − − 3.99e − 04 1.70e − 03
UDS 1.15e − 02 2.62e − 02 6.30e − 03 1.45e − 02 2.70e − 03 6.20e − 03
α-AS 1.90e − 03 5.90e − 03 4.50e − 04 1.90e − 03 8.02e − 05 5.10e − 04
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Figure 2 presents the evolution of the error with respect to the parameter α. Sensitivity
investigations are performed to determine the optimal α parameter according to the global con-
figuration for various parameters of the problem, such as the mesh density and the Peclet number.
These results provided insight into the scheme’s accuracy and versatility, which confirms its suit-
ability for a wide range of applications. The error fluctuates according to the values α, indicating
that there exists an optimal value α for each function that results in significantly high accuracy.
Typically, our approach yields precise results for various scenarios when α falls within the range
of 0.01 to 0.1.
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Figure 2: Plots of errors, L2 norm (a) and L∞ norm (b), with respect to the α parameter of the
α-adaptive scheme used in numerical resolution of Problem 5.1 for the 5 test functions. Used
parameters: V = [50, 50] and hmax = 0.056

Now we consider the unsteady version of Problem 5.1:
∂c

∂t
+ div(cV ) = f in Ω × (0, T )

c = g on ∂Ω × (0, T )
c(., 0) = c0 in Ω.

(5.2)

As shown in Figure 3, the α-adaptive scheme is validated using the selected test cases and
performance metrics. The results demonstrated that the α-adaptive scheme accurately and effi-
ciently captured the dominant advection in unsteady problems while enhancing accuracy com-
pared to other schemes. We have selected an α value of 1/60 for our simulation, which ensures
that our scheme performs well over time. Figure 3 shows that α-AS minimizes the accumulation
of errors and maintains a good level of accuracy in solving evolutionary problems, compared
to other two-node schemes. Additionally, our scheme remains stable even when dealing with
coarse meshes and strong wind forces.

5.2 Second Test: Advection and Diffusion

Now, we present a numerical experiment aimed at determining the accuracy of the HDS1, HDS2
and α-AS schemes, for addressing problems involving advection and diffusion. Here, we con-
sider the steady advection-diffusion problem:{

− div(K∇c− cV ) + rc = f in Ω

c = g on ∂Ω.
(5.3)

Tables 3 and 4 present accuracy data of α-adaptive scheme (α-AS) in comparisons with HDS1
and HDS2, in the problem of advection and diffusion. These comparisons also confirmed the sig-
nificant improvements in the accuracy of the α adaptive scheme, in the two-node approximation
framework, for dominant advection.
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Figure 3: Plots of errors, L2 and L∞ norms, with respect to time for UDS and α-AS schemes used
in numerical resolution of Problem 5.2 for the 2 test functions c1,t and c2,t. Used parameters:
V = [50, 50], hmax = 0.11 and α = 1/60

Figure 4 presents the evolution of the error, L2 and L∞, with respect to the parameter α.
Sensitivity investigations are performed to determine the optimal α parameter according to the
global configuration for various parameters of the problem, such as the mesh density and the
Peclet number. These analyses provided insights into the scheme’s accuracy and versatility,
which confirm its suitability for a wide range of applications.

As seen in the case of pure advection, each function has an optimal value that typically ranges
between 0.01 and 0.1 for the diffusion-advection scenario. Selecting the most appropriate value
for α can significantly improve the accuracy of solving problems involving advection, diffusion,
and reaction processes, especially in cases where advection dominates diffusion.

Now we consider the unsteady version of Problem 5.3:
∂c

∂t
− div(K∇c− cV ) + rc = f in Ω × (0, T )

c = g on ∂Ω × (0, T )
c(., 0) = c0 in Ω.

(5.4)

In Figure 5, the α-adaptive scheme is validated. The results validated that the α-adaptive
scheme accurately and efficiently captured the dominant advection in unsteady problems while
enhancing accuracy compared to other schemes. Regarding the unsteady version, Figure 5 indi-
cates that our method maintains good accuracy for error over time, both in the norms L2 and L∞.
The two hybrid schemes HDS1 and HDS2 exhibit higher error compared to our approach, and
they coincide, since both schemes have the same behavior as the UDS scheme for large Peclet
values. Furthermore, it is important to mention that α-AS demonstrates excellent performance in
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Table 3: Comparison of error data for diffusion-advection Problem 5.3 using HDS1, HDS2,
and α-AS with varying hmax of different quasi-uniform meshes. Used parameters: K = 0.02,
V = [5, 5], r = 0.1, α = 1/60

hmax = 0.116 hmax = 0.056 hmax = 0.022
L2 error L∞ error L2 error L∞ error L2 error L∞ error

c1 HDS1 1.52e − 01 3.38e − 01 7.99e − 02 1.71e − 01 2.72e − 02 5.35e − 02
HDS2 1.52e − 01 3.38e − 01 8.00e − 02 1.71e − 01 3.33e − 02 7.15e − 02
α-AS 1.19e − 02 3.43e − 02 2.77e − 03 1.29e − 02 1.03e − 03 4.52e − 03

c2 HDS1 5.03e − 02 1.34e − 01 2.78e − 02 8.32e − 02 1.35e − 02 4.81e − 02
HDS2 5.03e − 02 1.34e − 01 2.77e − 02 8.31e − 02 1.23e − 02 4.58e − 02
α-AS 4.90e − 03 2.27e − 02 4.49e − 04 3.33e − 03 3.80e − 04 1.11e − 02

c3 HDS1 4.80e − 03 1.06e − 02 2.60e − 03 6.30e − 03 1.00e − 03 2.90e − 03
HDS2 4.80e − 03 1.06e − 02 2.60e − 03 6.30e − 02 1.10e − 03 3.20e − 02
α-AS 1.59e − 04 9.51e − 04 1.12e − 04 8.27e − 04 4.65e − 05 9.25e − 04

c4 HDS1 1.80e − 02 3.69e − 02 1.00e − 02 2.22e − 02 5.80e − 03 1.47e − 02
HDS2 1.80e − 02 3.69e − 02 9.90e − 03 2.21e − 02 4.30e − 03 1.11e − 02
α-AS 3.70e − 03 1.58e − 02 6.53e − 04 4.80e − 03 2.24e − 04 4.10e − 03

c5 HDS1 1.13e − 02 2.47e − 02 6.10e − 03 1.36e − 02 1.80e − 03 4.00e − 03
HDS2 1.13e − 02 2.47e − 02 6.20e − 03 1.37e − 02 2.70e − 03 6.00e − 03
α-AS 7.98e − 04 4.20e − 03 2.56e − 04 1.90e − 03 1.15e − 04 2.00e − 03

Table 4: Comparison of error data for diffusion-advection Problem 5.3 using HDS1, HDS2, and
α-AS with different Peclet numbers. Used parameters: r = 0.1 and α = 1/60

Pemax
ij = 8.6 Pemax

ij = 57.38 Pemax
ij = 4.3e + 03

L2 error L∞ error L2 error L∞ error L2 error L∞ error
c1 HDS1 2.72e − 02 5.36e − 02 3.35e − 02 7.01e − 02 3.35e − 02 7.02e − 02

HDS2 3.40e − 02 7.16e − 02 3.35e − 02 7.01e − 02 3.35e − 02 7.02e − 02
α-AS 1.00e − 03 4.50e − 03 7.45e − 04 4.70e − 03 9.63e − 04 8.30e − 03

c2 HDS1 1.35e − 02 4.81e − 02 1.26e − 02 4.65e − 02 1.26e − 02 4.67e − 02
HDS2 1.23e − 02 4.58e − 02 1.26e − 02 4.65e − 02 1.26e − 02 4.67e − 02
α-AS 3.80e − 04 1.11e − 03 1.70e − 04 2.50e − 03 2.36e − 04 1.50e − 03

c3 HDS1 1.00e − 03 2.90e − 03 1.10e − 03 3.30e − 03 1.20e − 03 3.30e − 03
HDS2 1.10e − 03 3.20e − 03 1.10e − 03 3.30e − 03 1.20e − 03 3.30e − 03
α-AS 4.65e − 05 9.25e − 04 3.30e − 05 4.02e − 04 2.56e − 05 1.97e − 04

c4 HDS1 5.80e − 03 1.47e − 02 4.50e − 03 1.17e − 02 4.50e − 03 1.17e − 02
HDS2 4.30e − 03 1.11e − 02 4.50e − 03 1.17e − 02 4.50e − 03 1.17e − 02
α-AS 2.24e − 04 4.10e − 03 2.01e − 04 2.20e − 03 2.55e − 04 1.60e − 03

c5 HDS1 1.80e − 03 4.00e − 03 2.70e − 03 6.10e − 03 2.70e − 03 6.20e − 03
HDS2 2.70e − 03 6.00e − 03 2.70e − 03 6.10e − 03 2.70e − 03 6.20e − 03
α-AS 1.15e − 04 2.00e − 03 8.11e − 05 9.15e − 04 8.53e − 05 5.85e − 04

resolving parabolic problems with dominant Advection. In conclusion, the successful validation
of the α-adaptive scheme for dominant advection in elliptic or parabolic equations establishes its
potential compared to existing two-node methods.
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Figure 4: Plots of errors, L2 norm (a) and L∞ norm (b), with respect to the α parameter of the
α-adaptive scheme used in numerical resolution of Problem 5.3 for the 5 test functions. Used
parameters: K = 0.003, V = [5, 5], hmax = 0.056, and r = 0.1
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Figure 5: Plots of errors, L2 and L∞, with respect to time for HDS1, HDS2, and α-AS schemes
used in numerical resolution of Problem 5.4 for the 2 test functions c1,t and c2,t. K = 0.02,
V = [5, 5], r = 1, hmax = 0.11 , and α = 1/60

6 Conclusion

The proposed α-adaptive scheme has demonstrated excellent performance and efficiency in ap-
proximating the advection term, for steady or unsteady problems, and remains effective regard-
less of the existence or absence of diffusion. This scheme has proven to be stable and accurate,
particularly in cases where advection dominates and the Peclet number is large. Compared to
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other two-node schemes, the α-scheme consistently performs well, demonstrating its robustness
and reliability. Furthermore, this scheme is easy to implement, requires minimal resources and
computation time, and can easily be adapted to higher Peclet numbers.

The choice of values α plays a crucial role in determining the effectiveness of the scheme.
Specifically, if α is set to 0, the resulting scheme coincides with the CDS scheme, which is known
to be unstable due to virtual oscillations. On the other hand, if α is set to 1, the scheme becomes
the UDS scheme, which has limited accuracy. Therefore, to obtain more accurate solutions,
we have opted to investigate the optimal α value. By making this choice, it becomes possible
to ensure that the solution remains stable and accurate, even with a high Peclet number. In
conclusion, the successful validation of the α-adaptive scheme for dominant advection in elliptic
or parabolic equations establishes its potential to address real-world problems, offering enhanced
performance and versatility compared to existing two-node methods.

Moving forward, there are numerous potential paths for future investigations about the α-
adaptive scheme. A possible direction to develop an algorithm to find the optimal value for α
according to the local configuration for various parameters of the problem, such as the mesh
density and local Peclet values. Another possible direction could be to create a generalized
scheme by considering the local configuration. This can be done by introducing a real-valued
function α, which depends on the Peclet number.
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