GENERALIZATIONS OF $(\in, \in \lor (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -ANTI-FUZZY B-IDEALS OF BCI-ALGEBRAS

M. Balamurugan, G. Muhiuddin and K. Dhilipkumar

Communicated by Manoj Kumar Patel

Dedicated to Prof. B. M. Pandeya on his 78th birthday

MSC 2010 Classifications: Primary 03G25; Secondary 06F35; 03B52.

Keywords and phrases: BCI-algebra; $(\in, \in \lor q)$ -anti-fuzzy b-ideal (AFBI); $(\in, \in \lor (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI; $(\in \lor (\dot{\kappa}^*, q_{\dot{\kappa}}), \in \lor (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI.

Abstract In this paper, we introduce the concept of $(\in, \in \lor(\kappa^*, q_{\dot{\kappa}}))$ -anti-fuzzy b-ideal (AFBI) in BCI-algebra and explores its properties. It can be extended the notion of $(\in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}), \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI is then presented and related properties are explored. We discuss the relations between $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI and $(\in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}), \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI. Furthermore, the concept of $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -level subset applied to anti-fuzzy b-ideal.

1 Introduction

The father of fuzzy set theory is Lotfi A. Zadeh. He introduced fuzzy sets in 1965 as an extension of classical set theory. Zadeh's [1] work on fuzzy sets provided a mathematical framework for dealing with uncertainty and vagueness in information and has since had significant applications in various fields, including artificial intelligence, control systems, decision-making, and pattern recognition. Imai et al. [2, 3] developed the thoughts of BCK/BCI-algebras. From that point forward, countless investigations of the hypothesis of BCK/BCI-algebras. Many researchers (See e.g., [4, 5, 6, 7, 8, 9, 10, 11, 29, 30, 31, 32, 33]) contemplated different parts of BCK/BCI-algebras in light of ideal hypothesis.

The possibility of quasi-coincidence with a fuzzy set, as expressed in [12], was basic in the improvement of different sorts of (α, β) -fuzzy subgroups, as demarcated by Bhakat et al. [13]. Jun [14, 15] introduced (α, β) -fuzzy ideals are a type of fuzzy ideal that incorporates two parameters: α and β . These parameters determine the degree to which elements satisfy the defining properties of the fuzzy ideal. Zhang et al. [16] introduced the notions of $(\in, \in \lor q)$ -fuzzy p-ideal is a fuzzy set that satisfies certain conditions with respect to the \in , \vee , and q operations. Here, "q" represents some additional operation or condition specific to the definition you are using. The precise conditions for an $(\in, \in \lor q)$ -fuzzy p-ideal would depend on the specific definition or framework you are working with. Similarly, an $(\in, \in \lor q)$ -fuzzy q-ideal satisfies certain conditions with respect to the \in , \vee , and q operations, but the conditions for this type of fuzzy ideal may be different from those of a p-ideal. The concepts of $(\in, \in \lor q)$ -intervalvalued fuzzy ideals of BCI-algebras introduced by Mama et al. [18]. Al-Masarwah et al. [19], and Muhiuddin et al. [20] proposed a new system of m-polar (α, β) -fuzzy ideals in BCK/BCIalgebras by extending the concept of fuzzy point to m-polar fuzzy sets. Numerous scientists have additionally expanded the fuzzy set hypothesis and related ideas to other algebras and different designs (see, for e.g., [10, 21, 22, 23, 24, 25, 26, 27]).

In this paper, we introduce the concept of $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI in BCI-algebra and explores its properties. This concept extends the notion of $(\in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}), \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBIs are then presented and related properties are explored. We discuss the relations between $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI and $(\in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}), \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI. It examines how these two concepts are related and identifies their similarities and differences. Furthermore, the concept of $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -level subset is applied to anti-fuzzy b-ideal.

2 Preliminaries

Definition 2.1. [3, 4] An algebra $\tilde{E} = (\tilde{E}; *, 0)$ of type (2,0) is a BCI-algebra if

- (i) $((\dot{\omega} * \dot{\rho}) * (\omega * \dot{\theta})) * (\dot{\rho} * \dot{\theta}) = 0$,
- (ii) $(\dot{\omega} * (\dot{\omega} * \dot{\theta})) * \dot{\theta} = 0$,
- (iii) $\dot{\omega} * \dot{\omega} = 0$,
- (iv) $\dot{\omega} * \dot{\theta} = 0$ and $\dot{\theta} * \dot{\omega} = 0 \Rightarrow \dot{\omega} = \dot{\theta}, \forall \dot{\omega}, \ \dot{\theta}, \ \dot{\rho} \in \tilde{E}$.

Every BCI-algebra E meets the following:

- $(1) \dot{\omega} * 0 = \dot{\omega},$
- (2) $(\dot{\omega} * \dot{\theta}) * \dot{\rho} = (\dot{\omega} * \dot{\rho}) * \dot{\theta}$.

Define an order \leq over \tilde{E} as $\dot{\omega} \leq \dot{\theta} \Leftrightarrow \dot{\omega} * \dot{\theta} = 0$.

Let \tilde{E} be a BCI-algebra. Then $\Im: \tilde{E} \to [0,1]$ is a fuzzy subset (briefly, FSU) of \tilde{E} .

Definition 2.2. [16] Let $\zeta \in (0,1]$, $a \in \tilde{E}$. Then

$$a_{\zeta}(\dot{\omega}) := \begin{cases} 0 & \text{if } \dot{\omega} \notin (a], \\ \zeta & \text{if } \dot{\omega} \in (a], \end{cases}$$

is an *ordered fuzzy point* (brief, OFP) a_{ζ} , for all $\dot{\omega} \in \tilde{\mathbb{E}}$. Consequently, a_{ζ} is a FSU of $\tilde{\mathbb{E}}$. For a FS \Im of $\tilde{\mathbb{E}}$, we write $a_{\zeta} \subseteq \Im$ as $a_{\zeta} \in \Im$ in the sequel. So, $a_{\zeta} \in \Im \Leftrightarrow \Im(a) \geq \zeta$.

Definition 2.3. [33] A FSU \Im of \tilde{E} is an $(\in, \in \lor(\dot{\kappa}^*, q))$ -AFI of \tilde{E} if $\dot{\rho}_{\zeta} \in \Im$ and $\dot{\omega}_{\eta} \in \Im \Rightarrow (\dot{\rho} * \dot{\omega})_{\zeta \lor \eta} \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}})\Im$, for all $\zeta, \eta \in (0, 1]$ and $\dot{\rho}, \dot{\omega} \in \tilde{E}$.

Lemma 2.4. [33] Let \Im be a FSU of $\tilde{\mathbf{E}}$. Then, $\dot{\rho}_{\zeta} \in \Im \Rightarrow 0_{\zeta} \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}) \Im \Leftrightarrow \forall \dot{\rho} \in \tilde{\mathbf{E}}, \Im(\dot{\rho}) \vee (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}) \geq \Im(0)$.

Lemma 2.5. [33] Let \Im be an $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFI of \tilde{E} such that $\dot{\rho} \leq \dot{\omega}$. Then, $\Im(\dot{\omega}) \lor (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}) \geq \Im(\dot{\omega})$.

3 $(\in, \in \vee(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -Anti Fuzzy b-Ideals

Definition 3.1. Let a_{ζ} be an OFP of $\tilde{\mathbb{E}}$ and $\dot{\kappa}^* \in (0,1]$. Then, a_{ζ} is termed as $(\dot{\kappa}^*,q)$ -quasi-coincident with a FS \Im of $\tilde{\mathbb{E}}$, and can be written as $a_{\zeta}(\dot{\kappa}^*,q)\Im$, if $\dot{\kappa}^* < \Im(a) + \zeta$.

Let $0 \le \dot{\kappa} < \dot{\kappa}^* \le 1$. Then an OFP $\dot{\rho}_{\zeta}$,

- (1) if $\dot{\kappa}^* < \Im(\dot{\rho}) + \zeta + \dot{\kappa}$, then $\dot{\rho}_{\zeta}(\dot{\kappa}^*, q_{\kappa})\Im$,
- (2) if $\dot{\rho}_{\zeta} \in \Im$ or $\dot{\rho}_{\zeta}(\dot{\kappa}^*, q_{\kappa})\Im$, $\dot{\rho}_{\zeta} \in \vee(\dot{\kappa}^*, q_{\kappa})\Im$,
- (3) if $\dot{\rho}_{\zeta}\alpha\Im$ does not hold for $\alpha \in \{(\dot{\kappa}^*, q_{\dot{\kappa}}), \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}})\}$, then $\dot{\rho}_{\zeta}\overline{\alpha}\Im$.

Definition 3.2. A FSU \Im of \tilde{E} is an $(\in, \in \lor q)$ -AFBI of \tilde{E} if

- $(1) \dot{\rho}_{\zeta} \in \Im \Rightarrow 0_{\zeta} \in \forall q \Im$
- (2) $((\dot{\omega} * \dot{\rho}) * \dot{\theta})_{\zeta} \in \Im$ and $\dot{\theta}_{\eta} \in \Im \Rightarrow \dot{\omega}_{\zeta \vee \eta} \in \vee q\Im, \forall \dot{\omega}, \dot{\theta}, \dot{\rho} \in \tilde{E}$ and $\zeta, \eta \in (0, 1]$.

Example 3.3. Take a BCI-algebra $\tilde{E} = \{0, \dot{\omega}, \dot{\theta}, \dot{\rho}\}$ with (*) which is described in Table 1.

Table 1: Cayley table for $(\in, \in \lor (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI.

Define a FSU 3 on E as

$$\Im(\dot{\omega}) = \left\{ \begin{array}{ll} 0, & \text{if } \dot{\omega} = 0, \\ 0.5, & \text{if } \dot{\omega} \in \{\dot{\omega}, \dot{\theta}\}. \end{array} \right.$$

Then \Im is an $(\in, \in \lor q)$ -AFBI of $\tilde{\mathbf{E}}$.

Definition 3.4. A FSU \Im of \tilde{E} is an $(\in, \in \vee(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI of \tilde{E} if

$$(1) \dot{\rho}_{\zeta} \in \Im \Rightarrow 0_{\zeta} \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}) \Im$$

Example 3.5. Take a BCI-algebra $\tilde{E} = \{0, \dot{\omega}, \dot{\theta}, \dot{\rho}, \dot{\varpi}\}$ with (*) which is defined in Table 2.

Table 2: Cayley table for $(\in, \in \lor (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI.

Define a FUS 3 on E as

$$\Im(\dot{\omega}) = \begin{cases} 0.1, & \text{if } \dot{\omega} = 0, \\ 0.2, & \text{if } \dot{\omega} \in \{\dot{\omega}, \dot{\varpi}\}, \\ 0, & \text{if } \dot{\omega} = \dot{\theta}, \\ 0.5, & \text{if } \dot{\omega} = \dot{\rho}. \end{cases}$$

Take $\dot{\kappa} = 0.3$ and $\dot{\kappa}^* = 0.7$. Then \Im is an $(\in, \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI of \tilde{E} .

Lemma 3.6. In $\tilde{\mathbb{E}}$, every $(\in, \in \vee q)$ -AFBI is $(\in, \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI.

Proof. Let \Im be an $(\in, \in \vee q)$ -AFBI of \widetilde{E} . Let $\dot{\rho}_{\zeta} \in \Im$ for $\dot{\rho} \in \widetilde{E}$ and $\zeta \in (0,1]$. Then, by speculation, $0_{\zeta} \in \forall q \Im \Rightarrow \zeta \geq \Im(0)$ or $1 \geq \Im(0) - \zeta$. Thus, $\zeta \geq \Im(0)$ or $\kappa^* > \Im(0) - \kappa - \zeta$. Therefore, $0_{\zeta} \in \vee (\dot{\kappa}^*, q_{\kappa}) \Im$. Next, take any $((\dot{\omega} * \dot{\rho}) * \dot{\theta})_{\zeta} \in \Im$ and $\dot{\theta}_{\eta} \in \Im$. So, $\dot{\omega}_{\zeta \vee \eta} \in \vee q \Im \Rightarrow$ $\zeta \vee \eta \geq \Im(\dot{\omega}) \text{ or } 1 > \Im(\dot{\omega}) - \zeta \vee \eta. \text{ Therefore, } \zeta \vee \eta \geq \Im(\dot{\omega}) \text{ or } \dot{\kappa}^* > \Im(\dot{\omega}) - \dot{\kappa} - \zeta \vee \eta. \text{ Thus,}$ $\dot{\omega}_{\zeta \vee \eta} \in \forall (\dot{\kappa}^*, q_{\dot{\kappa}}) \Im$. Hence, \Im is an $(\in, \in \forall (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI of \tilde{E} .

Generally, the reverse of Lemma 3.4 is invalid, as shown in the succeeding example.

Example 3.7. Consider $\tilde{E} = \{0, \dot{\omega}, \dot{\theta}, \dot{\rho}\}$ as a BCI-algebra with (*) described in Table 3.

Table 3: Cayley table for $(\in, \in \lor (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI.

Define a FSU 3 on E as

$$\Im(\dot{\omega}) = \begin{cases} 0.3, & \text{if } \dot{\omega} = 0, \\ 0.5, & \text{if } \dot{\omega} = \dot{\omega}, \\ 0.6, & \text{if } \dot{\omega} \in \{\dot{\theta}, \dot{\rho}\}. \end{cases}$$

Take $\dot{\kappa} = 0.01$ and $\dot{\kappa}^* = 0.81$. Then \Im is an $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI of \tilde{E} but not an $(\in, \in \lor q)$ -AFBI because $(\dot{\rho} * (0 * \dot{\omega}))_{\zeta=0.5} \in \Im$, $0_{\eta=0.5} \in \Im$ but $(\dot{\rho} * \dot{\omega})_{\zeta \vee \eta=0.5} \overline{\in \vee q} \Im$.

Lemma 3.8. Let \Im be a FSU of \widetilde{E} . Then, $((\dot{\omega} * \dot{\rho}) * \dot{\theta})_{\zeta} \in \Im$ and $\dot{\theta}_{\eta} \in \Im \Rightarrow \dot{\omega}_{\zeta \vee \eta} \in \lor (\dot{\kappa}^*, q_{\dot{\kappa}})\Im \Leftrightarrow$ $\Im(\dot{\omega}) \leq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}).$

Proof. On the contrary, let us assume that $\Im(\dot{\omega}) > \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})$ for some $\dot{\omega}, \dot{\theta}, \dot{\rho} \in \tilde{\mathbf{E}}$. Let $\zeta \in (0, (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})]$ be such that $\Im(\dot{\omega}) > \zeta \geq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})$. Then, $((\dot{\omega} * \dot{\rho}) * \dot{\theta}))_{\zeta} \in \Im$ and $\dot{\theta}_{\zeta} \in \Im$, but $\dot{\theta}_{\zeta} \in V(\dot{\kappa}^*, q_{\dot{\kappa}})\Im$, which is not possible. Thus, $\Im(\dot{\omega}) \leq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})$.

 $\Im(\dot{\omega}) \leq \Im((\dot{\omega} \divideontimes \dot{\rho}) \divideontimes \dot{\theta}) \vee \Im(\dot{\theta}) \vee (\frac{\dot{\kappa}^{\divideontimes}}{2} - \frac{\dot{\kappa}}{2}).$ Conversely, suppose $((\dot{\omega} \divideontimes \dot{\rho}) \divideontimes \dot{\theta})_{\zeta} \in \Im$ and $\dot{\theta}_{\eta} \in \Im, \forall \zeta, \eta \in (0,1]$. Then, $\Im((\dot{\omega} \divideontimes \dot{\rho}) \divideontimes \dot{\theta}) \leq \zeta$ and $\Im(\dot{\theta}) \leq \eta$. Thus,

$$\Im(\dot{\omega}) \leq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} \leq \zeta \vee \eta \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}.$$

Now, if $\zeta \vee \eta \geq (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})$, then $\Im(\dot{\omega}) \leq \zeta \vee \eta$. Hence, $\dot{\omega}_{\zeta \vee \eta} \in \Im$. Otherwise, if $\zeta \vee \eta < (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})$, then $\Im(\dot{\omega}) \leq (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})$. So,

$$\Im(\dot{\omega}) + \zeta \vee \eta < \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} + \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} = \dot{\kappa}^* - \dot{\kappa} \Rightarrow \dot{\omega}_{\zeta \vee \eta}(\dot{\kappa}^*, q_{\kappa})\Im.$$

Therefore, $\dot{\omega}_{\zeta\vee\eta}\in\vee(\dot{\kappa}^*,q_{\dot{\kappa}})\Im$.

Combining Lemma 2.4 with Lemma 3.8 yields the next theorem.

Theorem 3.9. A FSU \Im of $\tilde{\mathbb{E}}$ is an $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}})) - AFBI$ of $\tilde{\mathbb{E}} \Leftrightarrow (1) \Im(0) \leq \Im(\dot{\rho}) \lor (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})$

$$(2) \Im(\dot{\omega}) \leq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}), \forall \dot{\omega}, \dot{\theta}, \dot{\rho} \in \tilde{E}.$$

Theorem 3.10. Every $(\in, \in \vee(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI of $\tilde{\mathbb{E}}$ is an $(\in, \in \vee(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFI.

Proof. Suppose \Im is an $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI of \tilde{E} . Then, $\forall \dot{\omega}, \dot{\theta}, \dot{\rho} \in \tilde{E}$,

$$\Im(\dot{\omega}) \leq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}.$$

Substitute $\dot{\rho}$ by 0, to obtain

$$\Im(\dot{\omega}) \leq \Im((\dot{\omega} \divideontimes 0) \divideontimes \dot{\theta})) \vee \Im(\dot{\theta}) \vee \frac{\dot{\kappa}^{\divideontimes}}{2} - \frac{\dot{\kappa}}{2}.$$

Thus,
$$\Im(\dot{\omega}) \leq \Im(\dot{\omega} * \dot{\theta}) \vee \Im(\dot{\theta}) \vee (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}).$$

Usually, the converse of Theorem 3.10 is invalid, as shown in the subsequent example.

Example 3.11. Consider a BCI-algebra $\tilde{E} = \{0, \dot{\omega}, \dot{\theta}, \dot{\rho}, \dot{\varpi}\}$ with (*) defined in Table 4.

Table 4: Cayley table for binary *.

Define a FST on \tilde{E} as

$$\Im(\dot{\omega}) = \begin{cases} 0, & \text{if } \dot{\omega} = 0\\ 0.2, & \text{if } \dot{\omega} = \dot{\omega}\\ 0.3, & \text{if } \dot{\omega} \in \{\dot{\theta}, \dot{\rho}, \dot{\varpi}\} \end{cases}$$

Put $\dot{\kappa} = 0.5$, $\dot{\kappa}^* = 0.5$. Then \Im is an $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFI of \tilde{E} , but it is not an $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI because $0.2 = \Im(\dot{\omega}) \nleq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \lor \Im(\dot{\theta}) \lor 0 = \Im(0) = 0$.

4 $(\in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}), \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -Anti-fuzzy b-Ideals

Definition 4.1. A FSU \Im of \widetilde{E} is called an $(\in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}), \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI of \widetilde{E} if

 $(1) \dot{\rho}_{\zeta} \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}) \Im \Rightarrow 0_{\zeta} \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}) \Im$

(2) $((\dot{\omega} * \dot{\rho}) * \dot{\theta})_{\zeta} \in \forall (\dot{\kappa}^*, q_{\dot{\kappa}}) \Im$ and $\dot{\theta}_{\eta} \in \forall (\dot{\kappa}^*, q_{\dot{\kappa}}) \Im \Rightarrow \dot{\omega}_{\zeta \vee \eta} \in \forall (\dot{\kappa}^*, q_{\dot{\kappa}}) \Im, \zeta, \eta \in (0, 1]$ and $\forall \dot{\omega}, \dot{\theta}, \dot{\rho} \in \tilde{E}$.

Example 4.2. Take a BCI-algebra $\tilde{E} = \{0, \dot{\omega}, \dot{\theta}, \dot{\rho}\}$ with (*) which is described in Table 5.

Table 5: Cayley table for binary *.

Define $\Im : \tilde{E} \to [0,1]$ by

$$\Im(\dot{\omega}) = \begin{cases} 0.2, & \text{if } \dot{\omega} = 0\\ 0.8, & \text{if } \dot{\omega} \in \{\dot{\omega}, \dot{\theta}, \dot{\rho}\} \end{cases}$$

Take $\dot{\kappa}^* = 0.15$ and $\dot{\kappa} = 0.05$. Then \Im is an $(\in \vee(\dot{\kappa}^*, q_{\dot{\kappa}}), \in \vee(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI of \tilde{E} .

Lemma 4.3. In \tilde{E} , $(\in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}), \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI is $(\in, \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI.

Proof. Let \Im be $(\in \lor(\dot{\kappa}^*,q_{\dot{\kappa}}),\in \lor(\dot{\kappa}^*,q))$ -AFBI of $\tilde{\mathbf{E}}$. Then, for any $\dot{\rho}_{\zeta}\in\Im$ for $\dot{\rho}\in\tilde{\mathbf{E}}$ and $\zeta \in (0,1]$. Thus, $\dot{\rho}_{\zeta} \in \vee(\dot{\kappa}^*,q_{\dot{\kappa}})$ So, by speculation, $0_{\zeta} \in \vee(\dot{\kappa}^*,q_{\dot{\kappa}})$ Let us assume that $((\dot{\omega}*\dot{\rho})*\dot{\theta})_{\zeta} \in \Im$ and $\dot{\theta}_{\eta} \in \Im$. Then, $((\dot{\omega}*\dot{\rho})*\dot{\theta})_{\zeta} \in \vee(\dot{\kappa}^*,q_{\dot{\kappa}})$ and $\dot{\theta}_{\eta} \in \vee(\dot{\kappa}^*,q_{\dot{\kappa}})$ $\Rightarrow \dot{\omega}_{\zeta \wedge \eta} \in \vee(\dot{\kappa}^*,q_{\dot{\kappa}})$ Thus, \Im is an $(\in,\in\vee(\dot{\kappa}^*,q))$ -AFBI of $\check{\mathbf{E}}$.

Generally, the inverse of Lemma 4.3 is invalid, as examined by the following example.

Example 4.4. Consider a BCI-algebra $\tilde{E} = \{0, \dot{\omega}, \dot{\theta}, \dot{\rho}, \dot{\varpi}\}$ with (*) described in Table 6.

Table 6: Cayley table for binary $(\in, \in \lor (\dot{\kappa}^*, q))$ -AFBI.

*	0	$\dot{\omega}$	$\dot{ heta}$	$\dot{ ho}$	$\dot{\varpi}$
0	0	0	0	0 0 θ 0 ±	0
$\dot{\omega}$	$\dot{\omega}$	0	$\dot{\omega}$	0	$\dot{\omega}$
$\dot{ heta}$	$\dot{\theta}$	$\dot{ heta}$	0	$\dot{ heta}$	0
$\dot{ ho}$	$\dot{ ho}$	$\dot{\omega}$	$\dot{ ho}$	0	$\dot{ ho}$
$\dot{\varpi}$	$\dot{\varpi}$	$\dot{\varpi}$	$\dot{ heta}$	$\dot{\varpi}$	0

Define $\Im : \tilde{E} \to [0,1]$ by

$$\Im(\dot{\omega}) = \begin{cases} 0, & \text{if } \dot{\omega} = 0\\ 0.5, & \text{if } \dot{\omega} \in \{\dot{\omega}, \dot{\rho}\}\\ 0.3, & \text{if } \dot{\omega} = \{\dot{\theta}, \dot{\varpi}\} \end{cases}$$

Take $\dot{\kappa} = 0$, $\dot{\kappa}^* = 0.6$. Then, \Im is an $(\in, \in \vee (\dot{\kappa}^*, q))$ -AFBI of \tilde{E} , but it is not an $(\in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}), \in$ $(\dot{\kappa}^*, q)$ -AFBI of \tilde{E} as $\dot{\theta}_{\zeta=0.90} = (\dot{\theta} * (0 * \dot{\omega}))_{\zeta=0.90} \in (\dot{\kappa}^*, q_{\dot{\kappa}})$ and $0_{\eta=0.5} \in (\dot{\kappa}^*, q_{\dot{\kappa}})$ 3, but $\dot{\theta} = (\dot{\theta} * \dot{\omega})_{\zeta \vee \eta = 0.5} \overline{\in \vee (\dot{\kappa}^*, q_{\dot{\kappa}})} \Im.$

5 Level Subsets of $(\in, \in \vee(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -Anti Fuzzy b-Ideals

Definition 5.1. Let \Im be a FS of \widetilde{E} . Then the level subset is defined as

$$\Im_{\zeta} = \{ \dot{\rho} \in \tilde{\mathbf{E}} \mid \Im(\dot{\rho}) \geq \zeta, where \zeta \in (0,1] \}.$$

Theorem 5.2. If \Im be a FSU of $\widetilde{\mathbb{E}}$, then, the set $\Im_{\zeta} \neq \varnothing$ is a b-ideal of $\widetilde{\mathbb{E}}$, $\forall \zeta \in (0, (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})] \Leftrightarrow \Im$ is an $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI of $\widetilde{\mathbb{E}}$.

Proof. Assume that \Im_{ζ} is b-ideal of $\tilde{\mathbb{E}}$, $\forall \zeta \in (0, (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})]$. Take $\Im(0) > \Im(\dot{\rho}) \lor (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}), \exists \dot{\rho} \in \tilde{\mathbb{E}}$. Then $\exists \zeta \in (0, (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})]$ be such that $\Im(0) > \zeta \geq \Im(\dot{\rho}) \lor (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})$. That's what it follows $\dot{\rho} \in \Im_{\zeta}$ but $0 \not\in \Im_{\zeta}$, a contradiction. Thus, $\Im(0) \leq \Im(\dot{\theta}) \lor (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})$. Also, let $\Im(\dot{\omega}) > \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \lor \Im(\dot{\theta}) \lor (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}), \exists \dot{\omega}, \dot{\theta}, \dot{\rho} \in \tilde{\mathbb{E}}$. Then $\zeta \in (0, (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})]$ be such that

$$\Im(\dot{\omega}) > \zeta \ge \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}.$$

This follows that $((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \in \Im_{\zeta}$ and $\dot{\theta} \in \Im_{\zeta}$ but $\dot{\omega} \notin \Im_{\zeta}$, which is again a contradiction. Thus, $\Im(\dot{\omega}) \leq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})$. Therefore, \Im is an $(\in, \in \vee(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI of $\widetilde{\mathbf{F}}$

Conversely, let $\zeta \in (0, (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})]$ with $\Im_{\zeta} \neq \emptyset$. By Theorem 3.9, we have

$$\Im(0) \leq \Im(\dot{\rho}) \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2},$$

with $\dot{\rho} \in \Im_{\zeta} \Rightarrow \Im(0) \leq \zeta \vee (\frac{\dot{\kappa}^{*}}{2} - \frac{\dot{\kappa}}{2}) = \zeta$. Therefore, $0 \in \Im_{\zeta}$.

Next, assume that $((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \in \Im_{\zeta}$ and $\dot{\theta} \in \Im_{\zeta}$. Then, $\Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \leq \zeta$ and $\Im(\dot{\theta}) \leq \zeta$. Again, by Theorem 3.9, we have

$$\Im(\dot{\omega}) \leq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} \leq \zeta \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} = \zeta.$$

Thus, $\dot{\omega} \in \Im_{\zeta}$. Therefore, \Im_{ζ} is a b-ideal of \tilde{E} .

Definition 5.3. Let \Im be a FSU of $\widetilde{\mathbb{E}}$. Then the $(\in \vee(\kappa^*, q_{\kappa}))$ -level subset of \Im is defined as

$$\overline{[\mathfrak{I}]}_{\zeta} = \{\dot{\rho} \in \tilde{\mathbf{E}} \mid \dot{\rho}_{\zeta} \in \vee (\dot{\kappa}^{\bigstar}, q_{\dot{\kappa}}) \mathfrak{I}, where \ \zeta \in (0, 1]\}.$$

Theorem 5.4. Let \Im be a FSU of $\widetilde{\mathbb{E}}$. Then, the $(\in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -level subset $\overline{[\Im]}_{\zeta}$ of \Im is a b-ideal of $\widetilde{\mathbb{E}}, \forall \zeta \in (0, 1] \Leftrightarrow \Im$ is an $(\in, \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI of $\widetilde{\mathbb{E}}$.

Proof. Let $\overline{[\Im]}_{\zeta}$ be a b-ideal of $\tilde{E}, \forall \zeta \in (0,1]$. On the contrary, let

$$\Im(\dot{\rho})\vee\frac{\dot{\kappa}^*}{2}-\frac{\dot{\kappa}}{2}>\Im(0),$$

for some $\dot{\rho} \in \tilde{\mathbb{E}}$. Then, $\exists \zeta \in (0,1]$ be such that $\Im(\dot{\rho}) \vee (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}) \geq \zeta > \Im(0)$. It follows that $\dot{\rho} \in \overline{[\Im]_{\zeta}}$, but $0 \notin \overline{[\Im]_{\zeta}}$, which is not possible. Therefore,

$$\Im(\dot{\rho}) \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} \leq \Im(0).$$

Also, if $\Im((\dot{\omega}*\dot{\rho})*\dot{\theta})\vee\Im(\dot{\theta})\vee(\frac{\dot{\kappa}^*}{2}-\frac{\dot{\kappa}}{2})<\Im(\dot{\omega})$ for some, $\dot{\omega}\in\tilde{\mathbf{E}}$, then $\zeta\in(0,1]$ be such that

$$\Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} \ge \zeta > \Im(\dot{\omega}).$$

Thus, $((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \in \overline{[\Im]}_{\zeta}$ and $\dot{\theta} \in \overline{[\Im]}_{\zeta}$, but $\dot{\omega} \not\in \overline{[\Im]}_{\zeta}$, which is again a contradiction. Hence, $\Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}) \geq \Im(\dot{\omega})$. Therefore, \Im is an $(\in, \in \vee (\dot{\kappa}^*, q))$ -AFBI of \tilde{E} .

Conversely, suppose \Im is an $(\in, \in \lor(\dot{\kappa}^*, \mathbf{q}))$ -AFBI of $\widetilde{\mathbb{E}}$. Then for any $\dot{\rho} \in \overline{[\Im]}_{\zeta}$. So, $\dot{\rho}_{\zeta} \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}})\Im$. Thus, $\zeta \geq \Im(\dot{\rho})$ or $\dot{\kappa}^* - \dot{\kappa} > \Im(\dot{\rho}) + \zeta$. Now, by using Theorem 3.9, we get $\Im(\dot{\rho}) \lor (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}) \geq \Im(0)$. Therefore, $\zeta \lor (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}) \geq \Im(0)$ when $\zeta \geq \Im(\dot{\rho})$. Let $(\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}) > \zeta$. Then $(\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}) \geq \Im(0) \Rightarrow 0 \in \overline{[\Im]}_{\zeta}$. Also, let $(\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}) \leq \zeta$. Then $\zeta \geq \Im(0) \Rightarrow 0 \in \overline{[\Im]}_{\zeta}$. Similarly, $0 \in \overline{[\Im]}_{\zeta}$ when $\dot{\kappa}^* - \dot{\kappa} > \Im(\dot{\rho}) + \zeta$.

Next, let us take any $((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \in \overline{[\Im]}_{\zeta}$ and $\dot{\theta} \in \overline{[\Im]}_{\zeta}$. Then, $((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}})\Im$ and $\dot{\theta} \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}})\Im$, i.e., either $\zeta \geq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta})$ or $\dot{\kappa}^* - \dot{\kappa} > \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) - \zeta$ and either $\zeta \geq \Im(\dot{\theta})$ or $\dot{\kappa}^* - \dot{\kappa} > \Im(\dot{\theta}) \vee (\dot{\kappa}^* - \dot{\kappa}) \geq \Im(\dot{\omega})$. Thus, the following cases arise.

Case 1. Let $\zeta \geq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta})$ and $\zeta \geq \Im(\dot{\theta})$. If $(\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}) > \zeta$, then

$$\Im(\dot{\omega}) \leq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} \leq \zeta \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} = \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2},$$

and so, $\dot{\omega}_{\zeta} \in (\dot{\kappa}^*, q_{\dot{\kappa}}) \Im$. If $\zeta \geq (\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2})$, then

$$\Im(\dot{\omega}) \leq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} \leq \zeta \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} = \zeta.$$

So, $\dot{\omega}_{\zeta} \in \Im$. Thus, $\dot{\omega}_{\zeta} \in \vee (\dot{\kappa}^*, q_{\dot{\kappa}})\Im$.

Case 2. Let $\zeta \geq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta})$ and $\dot{\kappa}^* - \dot{\kappa} \geq \Im(\dot{\theta}) - \zeta$. If $(\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}) > \zeta$, then

$$\Im(\dot{\omega}) \leq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}), \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} \leq \zeta \vee \dot{\kappa}^* - \dot{\kappa} - \zeta \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} = \dot{\kappa}^* - \dot{\kappa} - \zeta,$$

i.e., $\dot{\kappa}^* - \dot{\kappa} > \Im(\dot{\omega}) - \zeta$, and thus, $\dot{\omega}_{\zeta} \in (\dot{\kappa}^*, q_{\dot{\kappa}})\Im$. If $(\frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2}) \ge \zeta$, then

$$\Im(\dot{\omega}) \leq \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) \vee \Im(\dot{\theta}) \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} \leq \zeta \vee \dot{\kappa}^* - \dot{\kappa} - \zeta \vee \frac{\dot{\kappa}^*}{2} - \frac{\dot{\kappa}}{2} = \zeta.$$

Therefore, $\dot{\omega}_{\zeta} \in \Im$. Hence, $\dot{\omega}_{\zeta} \in \lor (\dot{\kappa}^*, q_{\dot{\kappa}})\Im$.

Similarly, for other cases, i.e., when $\dot{\kappa}^* - \dot{\kappa} > \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) + \zeta$, $\zeta \geq \Im(\dot{\theta})$, $\dot{\kappa}^* - \dot{\kappa} > \Im((\dot{\omega} * \dot{\rho}) * \dot{\theta}) + \zeta$, and $\dot{\kappa}^* - \dot{\kappa} > \Im(\dot{\theta}) + \zeta$, we have $\dot{\omega}_{\zeta} \in \vee(\dot{\kappa}^*, q_{\dot{\kappa}})\Im$. Therefore, for each case, $\dot{\omega}_{\zeta} \in \vee(\dot{\kappa}^*, q_{\dot{\kappa}})\Im$, and thus, $\dot{\omega} \in \boxed{\Im}_{\zeta}$.

6 Conclusions

In this paper, we introduced the concept of $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI in BCI-algebra and explores its properties. This concept extends the notion of $(\in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}), \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBIs are then presented and related properties are explored. We discussed the relations between $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI and $(\in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}), \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -AFBI. It examined how these two concepts are related and identifies their similarities and differences. Furthermore, the concept of $(\in, \in \lor(\dot{\kappa}^*, q_{\dot{\kappa}}))$ -level subset were applied to anti-fuzzy b-ideal. In future review, these ideas might be reached out to BCH-algebras, BG-algebras, b-algebras, and EQ-algebras.

Acknowledgments

The authors are thankful to the referee for his/her remarks which improved the presentation of the paper.

References

- [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3), 338–353, (1965).
- [2] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV. Proc. Japan Acad. 42(1), 19–22, (1966).
- [3] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad. 42(1), 26–29, (1966).
- [4] Y. L. Liu, J. Meng and X. H. Zhang, q-Ideals and a-Ideals in BCI-Algebras, SEA Bull. math. 24, 243–253, (2000)
- [5] H. M. Khalid and B. Ahmad, Fuzzy h-ideals in BCI-algebras, Fuzzy Sets and Systems, 101(1), 153–158, (1999).

- [6] Y. B. Jun, K. J. Lee and J. Zhan, Soft p-ideals of soft BCI-algebras, *Computers & Mathematics with Applications*, **58(10)**, 2060–2068, (2009).
- [7] Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, *Information Sciences: an International Journal*, **178**(11), 2466–2475, (2008).
- [8] T. M. Mohseni, H. Bordbar, R.A. Borzooei and Y. B. Jun. BMBJ-neutrosophic ideals in BCK/BCIalgebras, *Neutrosophic Sets and Systems*, 27, 1–16, (2019).
- [9] G. Muhiuddin, D. Al-Kadi, A. Mahboob and A. Aljohani, Generalized fuzzy ideals of BCI-algebras based on interval valued m-polar fuzzy structures, *International Journal of Computational Intelligence Systems*, **14(1)**, 1–9, (2021).
- [10] G. Muhiuddin, D. Al-Kadi and A. Mahboob, Hybrid structures applied to ideals in BCI-algebras, *Journal of Mathematics*, 2020, Article ID 2365078, 1-7, (2020).
- [11] A. Al-Masarwah, B. Ahmad, m-polar fuzzy ideals of BCK/BCI- algebras, *Journal of King Saud University Science*, **31(4)**, 1220–1226, (2019).
- [12] P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, *Journal of Mathematical Analysis and Applications*, **76**, 571–599, (1980).
- [13] S. K. Bhakat and P. Das, $(\in, \in \lor q)$ -fuzzy subgroup, Fuzzy Sets and Systems, **80(3)**, 359–368, (1996).
- [14] Y. B. Jun, On (α, β) -fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc. **42(4)**, 703–711, (2005).
- [15] Y. B. Jun, On (α, β) -fuzzy ideals of BCKIBCI-algebras, *Scientiae Mathematicae Japonicae*, 60(3), 613–617, (2004).
- [16] J. Zhan, Y. B. Jun and B. Davvaz, On $(\in, \in \lor q)$ -fuzzy ideals of BCI-algebras, *Iranian Journal of Fuzzy Syst.* **6(1)**, 81–94, (2009).
- [17] X. Ma, J. Zhan, B. Davvaz and Y. B. Jun, Some kinds of $(\in, \in \lor q)$ -interval-valued fuzzy ideals of BCI-algebras, *Information Science*, **178**, 3738–3754, (2008).
- [18] X. Ma, J. Zhan and Y. B. Jun, Some types of $(\in, \in \lor q)$ -interval-valued fuzzy ideals of BCI-algebras, *Iranian Journal of Fuzzy Systems*, **6**, 53–63, (2009).
- [19] A. Al-Masarwah and A. G. Ahmad, m-Polar (α, β) -Fuzzy Ideals in BCK/BCI-Algebras, *Symmetry*, **11**(1), 44, (2019).
- [20] G. Muhiuddin, M. M. Takallo, R. A. Borzooei and Y. B. Jun, m-polar fuzzy q-ideals in BCI-algebras, *Journal of King Saud University Science*, **32(6)**, 2803–2809, (2020).
- [21] M. Akram, Spherical fuzzy K-algebras, *Journal of Algebraic Hyper Structures and Logical Algebras*, **2(3)**, 85–98, (2021).
- [22] M. Akram and B. Davvaz, Generalized fuzzy ideals of K-algebras, Journal of Multiple-Valued Logic & Soft Computing, 19(5-6), 475–491, (2012).
- [23] M. Akram, K. H. Da and K. P. Shum, Interval-valued-fuzzy K-algebras, Applied Soft Computing, 11(1), 1213–1222, (2011).
- [24] G. Muhiuddin, p-ideals of BCI-algebras based on neutrosophic N-structures, *Journal of Intelligent & Fuzzy Systems*, **40(1)**, 1097–1105, (2021).
- [25] G. Muhiuddin and Y. B. Jun, p-semisimple neutrosophic quadruple BCI-algebras and neutrosophic quadruple p-ideals, *Annals of Communication in Mathematics*, **1(1)**, 26–37, (2018).
- [26] T. Senapati, C. Jana, M. Pal and Y. B. Jun, Cubic intuitionistic q-ideals of BCI-algebras, Symmetry, 10(2), 752, (2018).
- [27] X. Yuan, C. Zhang and Y. Rena, Generalized fuzzy groups and many-valued implications, *Fuzzy Sets and Systems*, **138**, 205–211, (2003).
- [28] Y. B. Jun, K. J. Lee and C. H. Park, New types of fuzzy ideals in BCK/BCI-algebras, Computers & Mathematics with Applications, 60, 771–785, (2010).
- [29] Manivannan Balamurugan, Nazek Alessa, Karuppusamy Loganathan and Neela Amar Nath, $(\acute{\in}, \acute{\in} \lor \acute{q}_{k})$ Uni-Intuitionistic Fuzzy Soft h-ideals in Subtraction BG-algebras, *Mathematics*, **11(10)**, 2296, 1-15, (2023).
- [30] Ghulam Muhiuddin, Nabilah Abughazalah, Afaf Aljuhani and Manivannan Balamurugan, Tripolar Picture Fuzzy Ideals of BCK-Algebras, *Symmetry*, **14(8)**, 1562, 1-20, (2022).
- [31] Aiyared Iamapan, M. Balamurugan, V. Govindan, $(\in, \in \lor q_{\bar{k}})$ -Anti-Intuitionistic Fuzzy Soft b-Ideals in BCK/BCI-Algebras, *Mathematics and Statistics*, **10(3)**, 515-522, (2022).
- [32] Manivannan Balamurugan, Nazek Alessa, K. Loganathan and Sudheer Kumar, Bipolar Intuitionistic fuzzy soft ideals of BCK/BCI-algebras and its applications in decision-making, *Mathematics*, **11**(**21**), 4471, 1-18, (2023).

[33] G. Muhiuddin, D. Al-Kadi, A. Mahboob, A. Assiry and Abdullah Alsubhil, Generalizations of Fuzzy q-Ideals of BCI-Algebras, *Journal of Mathematics*, 2022, Article ID 2388199, 1-7, (2022).

Author information

M. Balamurugan, Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai - 600 0062, Tamil Nadu, India.

E-mail: balamurugansvm@gmail.com

G. Muhiuddin, Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.

E-mail: chishtygm@gmail.com

K. Dhilipkumar, KPR College of Arts Science and Reserach, Coimbatore 641 407, Tamil Nadu, India.

E-mail: dhilipkumarmaths@gmail.com