Arithmetic Properties of Certain Partition Functions With Parity Restrictions Pujashree Buragohain and Nipen Saikia Communicated by Manoj Kumar Patel Dedicated to Prof. B. M. Pandeya on his 78th birthday. MSC 2020 Classification: Primary 11P83; Secondary 05A17. Keywords and phrases: integer partition with restricted odd and even parts, congruence, q-identities. **Abstract** Andrews (2010) investigated the Rogers-Ramanujan-Gordon partitions of positive integers with some restrictions on even and odd parts, and introduced two partition functions, $W_{r,s}(n)$ and $\overline{W}_{r,s}(n)$, where r and s are positive integers. Sang, Shi and Yee (2020) defined two Rogers-Ramanujan-Gordon type overpartition functions, $U_{r,s}$ and $\overline{U}_{r,s}$, with similar parity restrictions on even and odd parts. In this paper, we give partition-interpretations of $U_{r,s}$ and $\overline{U}_{r,s}$ using the notion of colour partition of integers and prove some congruences for the partition functions $W_{r,s}(n)$, $\overline{W}_{r,s}(n)$, $U_{r,s}(n)$ and $\overline{U}_{r,s}(n)$ for some particular values of r and s. #### 1 Introduction For any complex numbers B and q, define $$(B)_n := (B;q)_n := \prod_{k=0}^{n-1} (1 - Bq^k), \text{ for } n \ge 1$$ and $$(B)_{\infty} := (B; q)_{\infty} := \prod_{k=0}^{\infty} (1 - Bq^k).$$ For brevity, we write $$\prod_{i=0}^k (B_i;q)_{\infty} = (B_1,B_2,\ldots,B_k;q)_{\infty}$$ and $g_t = (q^t; q^t)_{\infty}$ for any integer $t \ge 1$. A partition of a positive integer n is a sequence of integers $\delta_1 \geq \delta_2 \geq \delta_3 \geq \cdots \geq \delta_k \geq 1$ such that $\sum_{j=1}^k \delta_j = n$. The integers δ_j are called parts or summands of the partition. If p(n) denotes the number of partitions of n, then its generating function satisfies the identity $$\sum_{n=0}^{\infty} p(n)q^n = \frac{1}{g_1}.$$ A summand in a partition of n has t colours if there are t copies of each summand available and all of them are viewed as distinct objects. If a, b and t are positive integers, then the coefficient of q^n in the expansion of $(q^a; q^b)^{-t}$ enumerates the number of partitions n where summands are congruent to a modulo b with each summand having t colours. If the number of partitions of n with distinct even summands is denoted by ped(n), then $$\sum_{n=0}^{\infty} ped(n)q^n = \frac{g_4}{g_1}.$$ (1.1) Andrews et al. [3] proved that $$ped\left(3^{2\alpha+1}n + \frac{17\cdot 3^{2\alpha} - 1}{8}\right) \equiv 0 \pmod{6}$$ (1.2) and $$ped\left(3^{2\alpha+2}n + \frac{19 \cdot 3^{2\alpha+1} - 1}{8}\right) \equiv 0 \pmod{6}$$ (1.3) for all $\alpha \geq 1$ and $n \geq 0$. Next we recall the following theorem of Gordon (see [8]). **Theorem 1.1.** For $r \ge s \ge 1$, the number of partitions of n of the form $\xi_1 + \xi_2 + \cdots + \xi_k$ such that $\xi_j \ge \xi_{j+1}$, $\xi_j - \xi_{j+r-1} \ge 2$ and part 1 appears at most s-1 times is denoted by $B_{r,s}(n)$. Let $A_{r,s}(n)$ represent the number of partitions of n into parts $\ne 0, \pm s \pmod{2r+1}$. Then for any $n \ge 0$, $A_{r,s}(n) = B_{r,s}(n)$. For $r, s \ge 1$, the Andrews-Gordon identity (see [1]) $$\sum_{\substack{k_1 > k_2 > \dots > k_{r-1} > 0}} \frac{q^{k_1^2 + k_2^2 + \dots + k_{r-1}^2 + k_s + \dots + k_{r-1}}}{(q)_{k_1 - k_2} \cdots (q)_{k_{r-2} - k_{r-1}}} = \frac{(q^s, q^{2r+1-s}, q^{2r+1}; q^{2r+1})_{\infty}}{(q)_{\infty}}$$ (1.4) generalizes Theorem 1.1. In [2] Andrews established analogous results for the function $W_{r,s}(n)$ (resp. $\overline{W}_{r,s}(n)$) which counts the partitions enumerated by $B_{r,s}(n)$ where even (resp. odd) parts occur an even number of times. **Theorem 1.2.** ([13, p. 39, Entry 24] & [2]) For $r \ge s \ge 1$ with $r \equiv s \pmod{2}$, $$\sum_{n\geq 0} W_{r,s}(n)q^n = \frac{(-q;q^2)_{\infty}\mathfrak{f}(-q^s, -q^{2r+2-s})}{(q^2;q^2)_{\infty}},$$ (1.5) where f(x, y) [5, p. 34, 18.1] is given by $$f(x,y) = \sum_{n=-\infty}^{\infty} x^{n(n+1)/2} y^{n(n-1)/2}.$$ (1.6) If $r \ge s \ge 2$ with r odd and s even, then $$\sum_{n>0} \overline{W}_{r,s}(n)q^n = \frac{\mathfrak{f}(-q^s, -q^{2r+2-s})}{(-q; q^2)_{\infty}(q; q)_{\infty}},\tag{1.7}$$ An overpartition of a positive integer n is a partition of n such that the first occurrence of any part may be overlined. Let $\overline{\lambda}(n)$ denote the number of overpartitions of n, then its generating function satisfies the identity $$\sum_{n\geq 0} \overline{\lambda}(n)q^n = \frac{g_2}{g_1^2}.$$ Kursungöz [12] and Kim and Yee [13] studied the partition functions $W_{r,s}(n)$ and $\overline{W}_{r,s}(n)$ by considering different parities of r and s. Andrew [2] posted fifteen open problems, of which the eleventh was related to the overpartition of integers. Chen et al. [6] investigated the eleventh problem of Andrews and derived the overpartition analogies of Theorems 1.1 and (1.4). For an overpartition λ and for any integer ℓ , the numbers of occurrences of non-overlined and overlined parts of size ℓ in λ are denoted by $M_{\ell}(\lambda)$ and $M_{\bar{\ell}}(\lambda)$, respectively. Sang et al. [14] proved the following results on restricted overpartition functions: **Theorem 1.3.** [14] Suppose $r \ge s \ge 1$, ℓ is any integer, and denote by $U_{r,s}(n)$ the number of overpartitions λ of n satisfying - (i) $M_1(\lambda) \leq s 1 + M_{\bar{1}}(\lambda)$; - (ii) $M_{2\ell-1}(\lambda) \geq M_{\overline{2\ell-1}}(\lambda)$; - (iii) $M_{2\ell}(\lambda) + M_{\overline{2\ell}}(\lambda) \equiv 0 \pmod{2}$; - (iv) $M_{\ell}(\lambda) + M_{\overline{\ell}}(\lambda) + M_{\ell+1}(\lambda) \le r 1 + M_{\overline{\ell+1}}(\lambda)$. If $r \equiv s \pmod{2}$, then $$\sum_{n \ge 0} U_{r,s}(n)q^n = \frac{(-q;q)_{\infty} \mathfrak{f}(-q^s, -q^{2r-s})}{(q^2; q^2)_{\infty}}.$$ (1.8) **Theorem 1.4.** [14] Suppose $r \geq s \geq 1$, ℓ is any integer, and denote by $\overline{U}_{r,s}(n)$ the number of overpartitions λ of n satisfying (i) $M_1(\lambda) \leq s - 1 + M_{\bar{1}}(\lambda)$; (ii) $M_{2\ell}(\lambda) \geq M_{\overline{2\ell}}(\lambda)$; $\begin{array}{l} (iii) \ M_{2\ell-1}(\lambda) + M_{\overline{2\ell-1}}(\lambda) \equiv 0 \pmod{2}; \\ (iv) \ M_{\ell}(\lambda) + M_{\overline{\ell}}(\lambda) + M_{\ell+1}(\lambda) \leq r - 1 + M_{\overline{\ell+1}}(\lambda). \end{array}$ If $r \ge s \ge 2$ and s = even, then $$\sum_{n>0} \overline{U}_{r,s}(n) q^n = \frac{(-q^2; q^2)_{\infty}^2 \mathfrak{f}(-q^s, -q^{2r-s})}{(q^2; q^2)_{\infty}}.$$ (1.9) In this paper, we investigate some arithmetic properties of the partition functions $W_{r,s}(n)$, $\overline{W}_{r,s}(n), U_{r,s}(n)$ and $\overline{U}_{r,s}(n)$. We establish congruences modulo 3, 4, 6 and 12 for $W_{5,3}(n)$ and $\overline{W}_{3,2}(n)$. For example, we prove for all $\alpha \geq 1$ and $n \geq 0$, $$\begin{split} W_{5,3}\left(9^{\alpha}n + \frac{7\cdot 3^{2\alpha - 1} - 1}{4}\right) &\equiv 0 \pmod{3}, \\ \overline{W}_{3,2}\left(2\cdot 3^{2\alpha + 1}n + \frac{17\cdot 3^{2\alpha} - 1}{4}\right) &\equiv 0 \pmod{6}, \\ \overline{W}_{3,2}\left(2\cdot 3^{2\alpha + 2}n + \frac{19\cdot 3^{2\alpha + 1} - 1}{4}\right) &\equiv 0 \pmod{6}. \end{split}$$ In Sect. 3, we give colour partition interpretations of $U_{r,s}(n)$ and $\overline{U}_{r,s}(n)$ which are analogues of Theorem 1.1. In Sect. 4, we prove some particular and infinite families of congruences for the partition functions $W_{5,3}(n)$, $\overline{\overline{W}}_{3,2}(n)$ and $\overline{\overline{W}}_{5,4}(n)$, and in Sect. 5, we prove congruences for the partition functions $U_{5,5}(n)$, $\overline{U}_{3,2}(n)$, $\overline{U}_{4,2}(n)$, and $\overline{U}_{6,2}(n)$. In order to prove our results, we will employ some *q*-identities collected in Sect. 2. ### 2 Preliminaries Four important special cases of (1.6) considered by Ramanujan satisfy the identities [5, p. 36, Entry 22 (i), (ii), (iii)] $$\phi(q) := \mathfrak{f}(q, q) = \sum_{t = -\infty}^{\infty} q^{t^2} = \frac{g_2^5}{g_1^2 g_4^2},\tag{2.1}$$ $$\psi(q) := \mathfrak{f}(q, q^3) = \sum_{t=0}^{\infty} q^{t(t+1)/2} = \frac{g_2^2}{g_1},\tag{2.2}$$ $$f(-q) := \mathfrak{f}(-q, -q^2) = \sum_{t=-\infty}^{\infty} (-1)^t q^{t(3t+1)/2} = g_1$$ (2.3) and [5, p. 37, Entry 22 (iv)] $$\chi(q) := (-q; q^2) = \frac{g_2^2}{g_1 g_4}.$$ (2.4) One can use elementary q-operations to show that $$\phi(-q) = \frac{g_1^2}{q_2}, \quad \chi(-q) = \frac{g_1}{q_2}, \quad \psi(-q) = \frac{g_1 g_4}{q_2}.$$ (2.5) We now collect some identities involving the theta-function f(x, y) defined in (1.6). **Lemma 2.1.** [5, p. 35, Entry 19] We have $$f(x,y) = (-x; xy)_{\infty} (-y; xy)_{\infty} (xy; xy)_{\infty}.$$ (2.6) **Lemma 2.2.** [7, Theorem 2.2] Suppose $p \ge 5$ is any prime. Then we have $$g_1 = \sum_{\substack{k = -(p-1)/2 \\ k \neq (\pm p-1)/6}}^{(p-1)/2} (-1)^k q^{(3k^2+k)/2} \mathfrak{f}\left(-q^{(3p^2+(6k+1)p)/2}, -q^{(3p^2-(6k+1)p)/2}\right) + (-1)^{(\pm p-1)/6} q^{(p^2-1)/24} g_{p^2},$$ where $$\frac{\pm p - 1}{6} := \begin{cases} \frac{(p - 1)}{6}, & \text{if } p \equiv 1 \pmod{6} \\ \frac{(-p - 1)}{6}, & \text{if } p \equiv -1 \pmod{6}. \end{cases}$$ Furthermore, if $$\frac{-(p-1)}{2} \le k \le \frac{(p-1)}{2} \text{ and } k \ne \frac{(\pm p-1)}{6}$$ then $$\frac{3k^2+k}{2} \not\equiv \frac{p^2-1}{24} \pmod{p}.$$ **Lemma 2.3.** [7, Theorem 2.1] Suppose $p \ge 3$ is any prime. Then we have $$\psi(q) = \sum_{i=0}^{(p-3)/2} q^{(i^2+i)/2} \mathfrak{f}\left(q^{(p^2+(2i+1)p)/2}, q^{(p^2-(2i+1)p)/2}\right) + q^{(p^2-1)/8} \psi(q^{p^2}).$$ Furthermore, $\frac{(i^2+i)}{2} \not\equiv \frac{(p^2-1)}{8} \pmod{p}$, when $0 \leq i \leq \frac{(p-3)}{2}$. **Lemma 2.4.** [5, p. 49, Cor. (ii)] We have $$\psi(q) = \mathfrak{f}(q^3, q^6) + q\psi(q^9). \tag{2.7}$$ **Lemma 2.5.** [5, p. 51, Example (v)] We have $$f(q, q^5) = \psi(-q^3)\chi(q). \tag{2.8}$$ **Lemma 2.6.** [11, Eqn. (3.2.7)] We have $$\frac{1}{g_1} \equiv \frac{1}{g_5} \left(A_0 B_0 + (A_0 B_1 + A_1 B_0) + (A_1 B_1 + A_2 B_0) + A_2 B_1 \right) \pmod{5},$$ where $$\begin{split} A_0 &= \sum_{m=-\infty}^{\infty} (-1)^m q^{5(15m^2+m)/2} + \sum_{k=-\infty}^{\infty} (-1)^k q^{5(15k^2+11k+2)/2}, \\ A_1 &= -q \sum_{m=-\infty}^{\infty} (-1)^m q^{25(3m^2+m)/2}, \\ A_2 &= -q^2 \bigg[\sum_{m=-\infty}^{\infty} (-1)^{m+1} q^{5(15m^2+13m+2)/2} + \sum_{k=-\infty}^{\infty} (-1)^{k+1} q^{5(15k^2+23k+8)/2} \bigg], \\ B_0 &= \sum_{m=-\infty}^{\infty} (-1)^m q^{(25m^2-5m)/2}, \\ B_1 &= -3q \sum_{m=-\infty}^{\infty} (-1)^m q^{(25m^2-15m)/2}. \end{split}$$ Next lemma is a easy consequence of (1) and the binomial theorem. **Lemma 2.7.** Suppose $k \ge 1$, $m \ge 1$ are any integer, and p is any prime. Then we have $$g_{pm}^{p^{k-1}} \equiv g_m^{p^k} \pmod{p^k}. \tag{2.9}$$ Lemma 2.8. We have $$\frac{1}{g_1^2} = \frac{g_8^5}{g_2^5 g_{16}^2} + 2q \frac{g_4^2 g_{16}^2}{g_2^5 g_8},\tag{2.10}$$ $$\frac{g_1^2}{g_2} = \frac{g_9^2}{g_{18}} - 2q \frac{g_3 g_{18}^2}{g_6 g_9},\tag{2.11}$$ $$\frac{g_2}{g_1^2} = \frac{g_6^4 g_9^6}{g_3^8 g_{18}^3} + 2q \frac{g_6^3 g_9^3}{g_3^7} + 4q^2 \frac{g_6^2 g_{18}^3}{g_3^6},\tag{2.12}$$ $$\frac{g_2^2}{q_1} = \frac{g_6 g_9^2}{q_3 q_{18}} + q \frac{g_{18}^2}{q_9},\tag{2.13}$$ $$\frac{g_3}{g_1} = \frac{g_4 g_6 g_{16} g_{24}^2}{g_2^2 g_8 g_{12} g_{48}} + q \frac{g_6 g_8^2 g_{48}}{g_2^2 g_{16} g_{24}},\tag{2.14}$$ $$\frac{g_4}{g_1} = \frac{g_{12}g_{18}^4}{g_3^3g_{36}^2} + q\frac{g_6^2g_9^3g_{36}}{g_3^4g_{18}^2} + 2q^2\frac{g_6g_{18}g_{36}}{g_3^3}. (2.15)$$ *Proof.* Using (2.1) and (2.2) in (1.9.4) of [11], we obtain $$\frac{g_2^5}{g_1^2 g_4^2} = \frac{g_8^5}{g_4^2 g_{16}^2} + 2q \frac{g_{16}^2}{g_8}. (2.16)$$ Now (2.10) follows from (2.16). (2.11) and (2.13) follow from (14.3.2) and (14.3.3) of [11], respectively. (2.12) is from [9], (2.14) is from [15] and (2.15) is the Lemma 2.6 of [4]. \Box ## 3 Colour Partition Interpretations of $U_{r,s}(n)$ and $\overline{U}_{r,s}(n)$ In this section, we give colour partition interpretations of the partition functions $U_{r,s}(n)$ and $\overline{U}_{r,s}(n)$. **Theorem 3.1.** (a) Suppose r and s satisfy $1 \le s < r$ and $r \equiv s \pmod{2}$. Then $U_{r,s}(n)$ is equal to the number of partitions of n containing no summand congruent to 0, s or 2r - s modulo 2r. (b) Suppose r and s are positive integers such that s is even and $2 \le s < r$. Then, $\overline{U}_{r,s}(n)$ is equal to the number of partitions of n into summands congruent to 2 modulo 4 in two colours and even summands in a third color congruent to neither 0, s nor 2r - s modulo 2r. *Proof.* Using (1.8) and (2.6), we obtain $$\sum_{n\geq 0} U_{r,s}(n)q^n = \frac{(-q;q)_{\infty}(q^s;q^{2r})_{\infty}(q^{2r-s};q^{2r})_{\infty}(q^{2r};q^{2r})_{\infty}}{(q^2;q^2)_{\infty}} = \frac{(q^s;q^{2r})_{\infty}(q^{2r-s};q^{2r})_{\infty}(q^{2r};q^{2r})_{\infty}}{(q,q)_{\infty}},$$ (3.1) from which our result (a) follows. Similarly, we can prove (b). ## 4 Congruences for $W_{r,s}(n)$ and $\overline{W}_{r,s}(n)$ In this section, we prove congruences for the partition functions $W_{5,3}(n)$, $\overline{W}_{3,2}(n)$ and $\overline{W}_{5,4}(n)$. **Theorem 4.1.** Let $p \equiv 3 \pmod{4}$ be prime, $1 \le j \le p-1$ and α , $\beta \ge 0$. Then $$\sum_{n\geq 0} W_{5,3} \left(2 \cdot 9^{\alpha+1} p^{2\beta} n + \frac{5 \cdot 9^{\alpha+1} p^{2\beta} - 1}{4} \right) q^n \equiv \psi(q) \psi(q^4) \pmod{3}, \tag{4.1}$$ and for all $n \ge 0$ we have $$W_{5,3}\left(2\cdot 9^{\alpha+1}p^{2\beta+2}n+2\cdot 9^{\alpha+1}p^{2\beta+1}j+\frac{5\cdot 9^{\alpha+1}p^{2\beta+2}-1}{4}\right)\equiv 0\pmod{3}. \tag{4.2}$$ *Proof.* Setting r = 5 and s = 3 in (1.5), we obtain $$\sum_{n>0} W_{5,3}(n)q^n = \frac{(-q;q^2)_{\infty} \mathfrak{f}(-q^3,-q^9)}{g_2}.$$ (4.3) Simplifying (4.3) using (2.2), (2.4) and (2.5), we obtain $$\sum_{n>0} W_{5,3}(n)q^n = \frac{g_2 g_3 g_{12}}{g_1 g_4 g_6}.$$ (4.4) Utilizing (2.14) in (4.4), we obtain $$\sum_{n>0} W_{5,3}(n)q^n = \frac{g_{16}g_{24}^2}{g_2g_8g_{48}} + q\frac{g_8^2g_{12}g_{48}}{g_2g_4g_{16}g_{24}}.$$ (4.5) Collecting the terms involving odd powers of q from both sides of (4.5) and simplifying, we obtain $$\sum_{n>0} W_{5,3}(2n+1)q^n = \frac{g_4^2 g_6 g_{24}}{g_1 g_2 g_8 g_{12}}.$$ (4.6) Utilizing (2.9) in (4.6) and then applying (2.2), we obtain $$\sum_{n>0} W_{5,3}(2n+1)q^n \equiv \frac{g_2^2 g_8^2}{g_1 g_4} \equiv \psi(q)\psi(q^4) \pmod{3}. \tag{4.7}$$ Substituting (2.13) in (4.7) and simplifying, we get $$\sum_{n\geq 0} W_{5,3}(2n+1)q^n \equiv \frac{g_6g_9^2g_{24}g_{36}^2}{g_3g_{12}g_{18}g_{72}} + q \frac{g_{18}^2g_{24}g_{36}^2}{g_9g_{12}g_{72}} + q^4 \frac{g_6g_9^2g_{72}^2}{g_3g_{18}g_{36}} + q^5 \frac{g_{18}^2g_{72}^2}{g_9g_{36}} \pmod{3}. \tag{4.8}$$ Collecting the terms involving powers of q that are congruent to 2 modulo 3 from both sides of (4.8) and simplifying the resulting equality yields $$\sum_{n>0} W_{5,3}(6n+5)q^n \equiv q \frac{g_6^2 g_{24}^2}{g_3 g_{12}} \pmod{3}. \tag{4.9}$$ Collecting the terms involving powers of q that are congruent to 1 modulo 3 from both sides of (4.9) and simplifying the resulting equality and then applying (2.2) yields $$\sum_{n>0} W_{5,3}(18n+11)q^n \equiv \frac{g_2^2 g_8^2}{g_1 g_4} \equiv \psi(q)\psi(q^4) \pmod{3}. \tag{4.10}$$ From (4.7) and (4.10), we see that $$W_{5,3}(18n+11) \equiv W_{5,3}(2n+1) \pmod{3},$$ (4.11) and iterating (4.11) yields $$W_{5,3}\left(2\cdot 9^{\alpha+1}n + \frac{5\cdot 9^{\alpha+1} - 1}{4}\right) \equiv W_{5,3}(2n+1) \pmod{3}, \quad \text{for all} \quad \alpha \ge 1. \tag{4.12}$$ By substituting (4.7) in (4.12), we obtain $$\sum_{n\geq 0} W_{5,3} \left(2 \cdot 9^{\alpha+1} n + \frac{5 \cdot 9^{\alpha+1} - 1}{4} \right) q^n \equiv \psi(q) \psi(q^4) \pmod{3}, \tag{4.13}$$ which is the $\beta = 0$ case of (4.1). Now suppose that (4.1) holds for some $\beta \ge 0$. Lemma 2.3 then yields $$\sum_{n\geq 0} W_{5,3} \left(2 \cdot 9^{\alpha+1} p^{2\beta} n + \frac{5 \cdot 9^{\alpha+1} p^{2\beta} - 1}{4} \right) q^{n}$$ $$\equiv \left[\sum_{m=0}^{(p-3)/2} q^{(m^{2}+m)/2} \mathfrak{f} \left(q^{(p^{2}+(2m+1)p)/2}, q^{(p^{2}-(2m+1)p)/2} \right) + q^{(p^{2}-1)/8} \psi(q^{p^{2}}) \right]$$ $$\times \left[\sum_{k=0}^{(p-3)/2} q^{4(k^{2}+k)/2} \mathfrak{f} \left(q^{2(p^{2}+(2k+1)p)}, q^{2(p^{2}-(2k+1)p)} \right) + q^{(p^{2}-1)/2} \psi(q^{4p^{2}}) \right] \pmod{3}.$$ (4.14) Next consider the congruence $$\left(\frac{m^2+m}{2}\right)+4\left(\frac{k^2+k}{2}\right)\equiv 5\left(\frac{p^2-1}{8}\right)\pmod{p},\quad \text{for}\quad 0\leq k,m\leq p-1,\qquad (4.15)$$ which is equivalent to $$(2m+1)^2 + (4k+2)^2 \equiv 0 \pmod{p}.$$ (4.16) Since $\left(\frac{-1}{p}\right) = -1$, the only solution of (4.16) is k = m = (p-1)/2. Therefore, collecting the terms involving powers of q that are congruent to $5(p^2-1)/8$ modulo p from both sides of (4.14) and simplifying the resulting equality yields $$\sum_{n\geq 0} W_{5,3} \left(2 \cdot 9^{\alpha+1} p^{2\beta+1} n + \frac{5 \cdot 9^{\alpha+1} p^{2\beta+2} - 1}{4} \right) q^n \equiv \psi(q^p) \psi(q^{4p}) \pmod{3}. \tag{4.17}$$ Collecting the terms involving powers of q that are congruent to 0 modulo p from both sides of (4.17) and simplifying the resulting equality yields $$\sum_{n\geq 0} W_{5,3} \left(2 \cdot 9^{\alpha+1} p^{2\beta+2} n + \frac{5 \cdot 9^{\alpha+1} p^{2\beta+2} - 1}{4} \right) q^n \equiv \psi(q) \psi(q^4) \pmod{3}, \tag{4.18}$$ which is the $\beta + 1$ case of (4.1). Finally, collecting the terms involving powers of q that are congruent to j modulo p from both sides of (4.17) yields (4.2). **Corollary 4.2.** Nothing that the power of q in every term on the right hand side of (4.9) is congruent to 1 modulo 3 immediately yields the following: $$W_{5,3}(18n+5) \equiv W_{5,3}(18n+17) \equiv 0 \pmod{3}$$. **Theorem 4.3.** For any integer $\alpha \geq 1$, we have $$W_{5,3}\left(9^{\alpha}n + \frac{9^{\alpha} - 1}{4}\right) \equiv W_{5,3}(n) \pmod{3},\tag{4.19}$$ $$W_{5,3}\left(9^{\alpha}n + \frac{7\cdot 3^{2\alpha - 1} - 1}{4}\right) \equiv 0 \pmod{3},\tag{4.20}$$ $$W_{5,3}\left(9^{\alpha}n + \frac{11\cdot 3^{2\alpha - 1} - 1}{4}\right) \equiv 0 \pmod{3}.$$ (4.21) *Proof.* Simplifying (4.4) using (2.9) and employing (2.5), we obtain $$\sum_{n>0} W_{5,3}(n)q^n \equiv \left(\frac{g_1g_4}{g_2}\right)^2 \equiv \psi^2(-q) \pmod{3}.$$ (4.22) Then (2.7) yields $$\sum_{n>0} W_{5,3}(n)q^n \equiv \mathfrak{f}^2(-q^3, q^6) - 2q \,\mathfrak{f}(-q^3, q^6)\psi(-q^9) + q^2\psi^2(-q^9) \pmod{3}. \tag{4.23}$$ Collecting the terms involving powers of q that are congruent to 2 modulo 3 from both sides of (4.23) and simplifying the resulting equality yields $$\sum_{n>0} W_{5,3}(3n+2)q^n \equiv \psi^2(-q^3) \pmod{3}. \tag{4.24}$$ Collecting the terms involving powers of q that are congruent to 0 modulo 3 from both sides of (4.24) and simplifying the resulting equality yields $$\sum_{n\geq 0} W_{5,3}(9n+2)q^n \equiv \psi^2(-q) \pmod{3}. \tag{4.25}$$ Combining (4.22) and (4.25), we find $$W_{5,3}(9n+2) \equiv W_{5,3}(n) \pmod{3},$$ (4.26) and iterating (4.26) yields (4.19). Next note that since the right hand side of (4.24) is a series in q^3 , we have $$W_{5,3}(9n+5) \equiv 0 \pmod{3}$$ and $W_{5,3}(9n+8) \equiv 0 \pmod{3}$, (4.27) which are the $\alpha=1$ cases of (4.20) and (4.21). Finally, replacing n by 9n+5 and 9n+8 in (4.19) yields (4.20) and (4.21) for $\alpha \geq 2$. **Theorem 4.4.** For any integers $\alpha \geq 1$ and $n \geq 0$, we have $$\overline{W}_{3,2}\left(2\cdot 9^{\alpha}n + \frac{9^{\alpha} - 1}{4}\right) \equiv \overline{W}_{3,2}(2n) \pmod{4},\tag{4.28}$$ $$\overline{W}_{3,2}\left(2\cdot 3^{2\alpha+1}n + \frac{17\cdot 3^{2\alpha} - 1}{4}\right) \equiv 0 \pmod{6},\tag{4.29}$$ $$\overline{W}_{3,2}\left(2\cdot 3^{2\alpha+2}n + \frac{19\cdot 3^{2\alpha+1} - 1}{4}\right) \equiv 0 \pmod{6}.$$ (4.30) *Proof.* Setting r = 3 and s = 2 in (1.7) and simplifying using (2.2) and (2.4) and then applying (2.5), we obtain $$\sum_{n>0} \overline{W}_{3,2}(n)q^n = \frac{g_8}{g_2}.$$ (4.31) Since the right hand side of (4.31) is a series in q^2 , it follows that $$\sum_{n>0} \overline{W}_{3,2}(2n)q^n = \frac{g_4}{g_1}. (4.32)$$ Next, using (2.15), we obtain $$\sum_{n=0}^{\infty} \overline{W}_{3,2}(2n)q^n = \frac{g_{12}g_{18}^4}{g_3^3g_{36}^2} + q\frac{g_6^2g_9^3g_{36}}{g_3^4g_{18}^2} + 2q^2\frac{g_6g_{18}g_{36}}{g_3^3}.$$ (4.33) Collecting the terms involving powers of q that are congruent to 1 modulo 3 from both sides of (4.33) and simplifying the resulting equality yields $$\sum_{n=0}^{\infty} \overline{W}_{3,2}(6n+2)q^n = \frac{g_2^2 g_3^3 g_{12}}{g_1^4 g_6^2} = \left(\frac{g_2}{g_1^2}\right)^2 \frac{g_3^3 g_{12}}{g_6^2}.$$ (4.34) Employing (2.12) then yields $$\sum_{n=0}^{\infty} \overline{W}_{3,2}(6n+2)q^n = \frac{g_6^6 g_9^{12} g_{12}}{g_3^{13} g_{18}^6} + 4q \frac{g_6^5 g_9^9 g_{12}}{g_3^{12} g_{18}^3} + 12q^2 \frac{g_6^4 g_9^6 g_{12}}{g_3^{11}} + 16q^3 \frac{g_6^3 g_9^3 g_{12} g_{18}^3}{g_3^{10}} + 16q^4 \frac{g_6^2 g_{12} g_{18}^6}{g_9^3}.$$ (4.35) Collecting the terms involving powers of q that are congruent to 0 modulo 3 from both sides of (4.35) and simplifying the resulting equality yields $$\sum_{n=0}^{\infty} \overline{W}_{3,2}(18n+2)q^n \equiv \frac{g_2^6 g_3^{12} g_4}{g_1^{13} g_6^6} \pmod{16}. \tag{4.36}$$ Using (2.9), we obtain $$\sum_{n=0}^{\infty} \overline{W}_{3,2}(18n+2)q^n \equiv \frac{g_4}{g_1} \pmod{4},\tag{4.37}$$ which by (4.32) yields $$\overline{W}_{3,2}(18n+2) \equiv \overline{W}_{3,2}(2n) \pmod{4}.$$ (4.38) Iterating (4.38), we acquire (4.28). Combining (1.1) and (4.32), we obtain $$\overline{W}_{3,2}(2n) = ped(n). \tag{4.39}$$ Employing (1.2) and (1.3) in (4.39), we arrive at (4.29) and (4.30), respectively. **Corollary 4.5.** For any integer $n \ge 0$, we have $$\overline{W}_{3,2}(18n+8) \equiv 0 \pmod{4},$$ (4.40) $$\overline{W}_{3,2}(18n+14) \equiv 0 \pmod{12}.$$ (4.41) *Proof.* Collecting the terms involving powers of q that are congruent to 1 modulo 3 and congruent to 2 modulo 3 from both sides of (4.35), we complete the proof of (4.40) and (4.41), respectively. **Theorem 4.6.** Suppose p is an odd prime such that $\left(\frac{-3}{p}\right) = -1$, $1 \le j \le p-1$ and $\alpha \ge 0$. Then $$\sum_{n>0} \overline{W}_{5,4} \left(4p^{2\alpha} n + \frac{13p^{2\alpha} - 1}{6} \right) q^n \equiv 2(-1)^{\alpha(\pm p - 1)/6} g_1 \psi(q^4) \pmod{8}, \tag{4.42}$$ and for all $n \ge 0$ we have $$\overline{W}_{5,4}\left(4p^{2\alpha+2}n + 4p^{2\alpha+1}j + \frac{13p^{2\alpha+2} - 1}{6}\right) \equiv 0 \pmod{8}. \tag{4.43}$$ *Proof.* Setting r = 5 and s = 4 in (1.7) and employing (2.3) and (2.4), we obtain $$\sum_{n\geq 0} \overline{W}_{5,4}(n)q^n = \frac{\mathfrak{f}(-q^4, -q^8)}{(-q; q^2)_{\infty}(q; q)_{\infty}} = \frac{g_4^2}{g_2^2}.$$ (4.44) Since the right hand side of (4.44) is a series in q^2 , it follows that $$\sum_{n>0} \overline{W}_{5,4}(n)q^n = \frac{g_2^2}{g_1^2}.$$ (4.45) Employing (2.10) then yields $$\sum_{n\geq 0} \overline{W}_{5,4}(2n)q^n = \frac{g_5^8}{g_2^3 g_{16}^2} + 2q \frac{g_4^2 g_{16}^2}{g_2^3 g_8}.$$ (4.46) Collecting the terms involving odd powers of q from both sides of (4.46) and simplifying, we obtain $$\sum_{n>0} \overline{W}_{5,4}(4n+2)q^n = 2\frac{g_2^2 g_8^2}{g_1^3 g_4}.$$ (4.47) Employing (2.9) in (4.47) and then applying (2.2), we obtain $$\sum_{n>0} \overline{W}_{5,4}(4n+2)q^n \equiv 2g_1\psi(q^4) \pmod{8},\tag{4.48}$$ which is the $\alpha = 0$ case of (4.42). Now suppose that (4.42) holds for some $\alpha \geq 0$. Lemmas 2.2 and 2.3 then yields $$\begin{split} \sum_{n=0}^{\infty} \overline{W}_{5,4} \left(4p^{2\alpha}n + \frac{13p^{2\alpha} - 1}{6} \right) q^n \\ &\equiv 2(-1)^{\alpha(\pm p - 1)/6} \bigg[\sum_{\substack{k = -(p - 1)/2 \\ k \neq (\pm p - 1)/6}}^{(p - 1)/2} (-1)^k q^{(3k^2 + k)/2} \mathfrak{f} \left(-q^{(3p^2 + (6k + 1)p)/2}, -q^{(3p^2 - (6k + 1)p)/2} \right) \\ &\qquad \qquad + (-1)^{(\pm p - 1)/6} q^{(p^2 - 1)/24} g_{p^2} \bigg] \\ &\times \bigg[\sum_{m=0}^{(p - 3)/2} q^{4(m^2 + m)/2} \mathfrak{f} \left(q^{2(p^2 + (2m + 1)p)}, q^{2(p^2 - (2m + 1)p)} \right) \\ &\qquad \qquad + q^{(p^2 - 1)/2} \psi(q^{4p^2}) \bigg] \pmod{8}. \end{split} \tag{4.49}$$ Next, consider the congruence $$\left(\frac{3k^2 + k}{2}\right) + 4\left(\frac{m^2 + m}{2}\right) \equiv 13\left(\frac{p^2 - 1}{24}\right) \pmod{p}, \quad \text{for} \quad 0 \le k, m \le p - 1, \quad (4.50)$$ which is equivalent to $$(6k+1)^2 + 3(4m+2)^2 \equiv 0 \pmod{p}.$$ (4.51) Since $\left(\frac{-3}{p}\right) = -1$, the only solution of (4.51) is $k = (\pm p - 1)/6$ and m = (p - 1)/2. Therefore, collecting the terms involving powers of q that are congruent to $13(p^2 - 1)/24$ modulo p from both sides of (4.49) and simplifying the resulting equality yields $$\sum_{n=0}^{\infty} \overline{W}_{5,4} \left(4p^{2\alpha+1}n + \frac{13p^{2\alpha+2} - 1}{6} \right) q^n \equiv 2(-1)^{(\alpha+1)(\pm p - 1)/6} g_p \psi(q^{4p}) \pmod{8}. \tag{4.52}$$ Collecting the terms involving powers of q that are congruent to 0 modulo p from both sides of (4.52) and simplifying the resulting equality yields $$\sum_{n=0}^{\infty} \overline{W}_{5,4} \left(4p^{2\alpha+2}n + \frac{13p^{2\alpha+2}-1}{6} \right) q^n \equiv 2(-1)^{(\alpha+1)(\pm p-1)/6} g_1 \psi(q^4) \pmod{8}, \tag{4.53}$$ which is the $\alpha + 1$ case of (4.42). Finally, collecting the terms involving powers of q that are congruent to j modulo p from both sides of (4.52) yields (4.43). ## 5 Congruences for $U_{r,s}(n)$ and $\overline{U}_{r,s}(n)$ **Theorem 5.1.** For any integer $n \ge 0$, we have $$U_{5.5}(5n+4) \equiv 0 \pmod{5}$$. *Proof.* Setting r = s = 5 in (1.8) and using (2.1) and Lemma 2.6, we obtain $$\sum_{n>0} U_{5,5}(n)q^n \equiv \frac{\phi(-q^5)}{g_5} \left(A_0 B_0 + (A_0 B_1 + A_1 B_0) + (A_1 B_1 + A_2 B_0) + A_2 B_1 \right) \pmod{5}. \tag{5.1}$$ Our result follows by observing that the series on the right hand side of (5.1) has no term whose exponent is congruent to 4 modulo 5. **Remark 5.2.** Setting r = 3 and s = 2 in (1.9) and simplifying (2.3), we obtain $$\sum_{n>0} \overline{U}_{3,2}(n)q^n = \frac{(-q^2; q^2)_{\infty}^2 f(-q^2, -q^4)}{(q^2; q^2)_{\infty}} = \frac{1}{(q^2; q^4)_{\infty}^2} = \frac{g_4^2}{g_2^2},\tag{5.2}$$ where we also used the well-known result, $$(q;q^2)^{-1}_{\infty} = (-q;q)_{\infty}.$$ (5.3) Combining (4.44) and (5.2), we find $$\overline{U}_{3,2}(n) = \overline{W}_{5,4}(n). \tag{5.4}$$ As a consequence, $\overline{U}_{3,2}(n)$ satisfies the congruences given in Theorem 4.6. **Theorem 5.3.** Suppose p is an odd prime such that $\left(\frac{-6}{p}\right) = -1$, $1 \le j \le p-1$ and $\alpha \ge 0$. Then $$\sum_{n>0} \overline{U}_{4,2} \left(8p^{2\alpha} n + \frac{7p^{2\alpha} - 1}{3} \right) q^n \equiv 2(-1)^{\alpha(\pm p - 1)/6} g_1 \psi(q^2) \pmod{8}, \tag{5.5}$$ and for all n > 0 we have $$\overline{U}_{4,2}\left(8p^{2\alpha+2}n + 8p^{2\alpha+1}j + \frac{7p^{2\alpha+2} - 1}{3}\right) \equiv 0 \pmod{8}.$$ (5.6) *Proof.* Setting r = 4 and s = 2 in (1.9), we have $$\sum_{n>0} \overline{U}_{4,2}(n)q^n = \frac{(-q^2; q^2)_{\infty}^2 \mathfrak{f}(-q^2, -q^6)}{(q^2; q^2)_{\infty}} = \frac{(-q^2; q^2)_{\infty}^2 \mathfrak{f}(-q^2, -q^6)}{g_2}.$$ (5.7) Simplifying (5.7) using (5.3), (2.2) and (2.5), we obtain $$\sum_{n>0} \overline{U}_{4,2}(n)q^n = \frac{\psi(-q^2)}{(q^2; q^4)^2 g_2} = \frac{g_4 g_8}{g_2^2}.$$ (5.8) Collecting the terms involving even powers of q from (5.8) and then applying (2.10) in the resulting equation, we obtain $$\sum_{n>0} \overline{U}_{4,2}(2n)q^n = \frac{g_4 g_5^5}{g_2^4 g_{16}^2} + 2q \frac{g_4^3 g_{16}^2}{g_2^4 g_8}.$$ (5.9) Collecting the terms involving odd powers of q from both sides of (5.9) and simplifying, we obtain $$\sum_{n>0} \overline{U}_{4,2}(4n+2)q^n = 2\frac{g_2^3 g_8^2}{g_1^4 g_4}.$$ (5.10) Using (2.9) in (5.10), we obtain $$\sum_{n \ge 0} \overline{U}_{4,2}(4n+2)q^n \equiv 2\frac{g_2 g_8^2}{g_4} \pmod{8}.$$ (5.11) Collecting the terms involving powers of q that are congruent to 0 modulo 2 from both sides of (5.11) and simplifying the resulting equality and then applying (2.2) yields $$\sum_{n>0} \overline{U}_{4,2}(8n+2)q^n \equiv 2g_1\psi(q^2) \pmod{8},\tag{5.12}$$ which is the $\alpha = 0$ case of (5.5). As one can now proceed via the same argument used in our proof of Theorem 4.6, we omit the remaining details. **Theorem 5.4.** Suppose p is an odd prime such that $\left(\frac{-2}{p}\right) = -1$, $1 \le j \le p-1$ and $\alpha \ge 0$. Then $$\sum_{n \ge 0} \overline{U}_{6,2} \left(54p^{2\alpha} n + \frac{99p^{2\alpha} - 3}{4} \right) q^n \equiv 2g_2 \psi(q^3) \pmod{4}, \tag{5.13}$$ $$\sum_{n\geq 0} \overline{U}_{6,2} \left(6p^{2\alpha} n + \frac{11p^{2\alpha} - 3}{4} \right) q^n \equiv 2(-1)^{\alpha(\pm p - 1)/6} g_2 \psi(q^3) \pmod{8}, \tag{5.14}$$ and for all $n \geq 0$, we have $$\overline{U}_{6,2}\left(54p^{2\alpha+2}n + 54p^{2\alpha+1}j + \frac{99p^{2\alpha+2} - 3}{4}\right) \equiv 0 \pmod{4},\tag{5.15}$$ $$\overline{U}_{6,2}\left(6p^{2\alpha+2}n + 6p^{2\alpha+1}j + \frac{11p^{2\alpha+2} - 3}{4}\right) \equiv 0 \pmod{8}.$$ (5.16) *Proof.* Setting r = 6, s = 2 in (1.9), we obtain $$\sum_{n>0} \overline{U}_{6,2}(n)q^n = \frac{(-q^2; q^2)_{\infty}^2 f(-q^2, -q^{10})}{g_2}.$$ (5.17) Simplifying (5.17) using (5.3) and (2.8), we obtain $$\sum_{n>0} \overline{U}_{6,2}(n)q^n = \frac{\psi(q^6)\chi(-q^2)}{(q^2; q^4)_{\infty}^2}.$$ (5.18) Collecting the terms involving powers of q that are congruent to 0 modulo 2 from both sides of (5.18) and simplifying the resulting equality and then applying (2.2) and (2.5) yields $$\sum_{n\geq 0} \overline{U}_{6,2}(2n)q^n = \frac{\psi(q^3)\chi(-q)}{(q;q^2)_{\infty}^2 g_1} = \frac{g_2 g_6^2}{g_1^2 g_3}.$$ (5.19) Employing (2.12) then yields $$\sum_{n\geq 0} \overline{U}_{6,2}(2n)q^n = \frac{g_6^6 g_9^6}{g_3^9 g_{18}^3} + 2q \frac{g_6^5 g_9^3}{g_8^8} + 4q^2 \frac{g_6^4 g_{18}^3}{g_3^7}.$$ (5.20) Collecting the terms involving powers of q that are congruent to 0 modulo 3 from both sides of (5.20) and simplifying the resulting equality yields $$\sum_{n>0} \overline{U}_{6,2}(6n)q^n = \frac{g_2^6 g_3^6}{g_1^9 g_3^3}.$$ (5.21) Employing (2.9) in (5.21), we obtain $$\sum_{n>0} \overline{U}_{6,2}(6n)q^n \equiv \frac{g_2^2 g_3^6}{g_1 g_6^3} \pmod{8}. \tag{5.22}$$ Next, using (2.13) we obtain $$\sum_{n>0} \overline{U}_{6,2}(6n)q^n \equiv \frac{g_3^5 g_9^2}{g_6^2 g_{18}} + q \frac{g_3^6 g_{18}^2}{g_6^3 g_9} \pmod{8}.$$ (5.23) Collecting the terms involving powers of q that are congruent to 1 modulo 3 from both sides of (5.23) and simplifying the resulting equality yields $$\sum_{n>0} \overline{U}_{6,2}(18n+6)q^n \equiv \frac{g_1^6 g_6^2}{g_2^3 g_3} \pmod{8}. \tag{5.24}$$ Using (2.9) in (5.24), we obtain $$\sum_{n>0} \overline{U}_{6,2}(18n+6)q^n \equiv \frac{g_1^2 g_6^2}{g_2 g_3} \pmod{4}.$$ (5.25) Substituting (2.11) in (5.25), we obtain $$\sum_{n>0} \overline{U}_{6,2}(18n+6)q^n \equiv \frac{g_6^2 g_9^2}{g_3 g_{18}} - 2q \frac{g_6 g_{18}^2}{g_9} \pmod{4}. \tag{5.26}$$ Collecting the terms involving powers of q that are congruent to 1 modulo 3 from both sides of (5.26) and simplifying the resulting equality and then applying (2.2) yields $$\sum_{n>0} \overline{U}_{6,2}(54n+24)q^n \equiv 2g_2\psi(q^3) \pmod{4},\tag{5.27}$$ which is the $\alpha=0$ case of (5.13). As one can now proceed via the same argument used in our proof of Theorem 4.6, we omit the remaining details. Collecting the terms involving powers of q that are congruent to 1 modulo 3 from both sides of (5.20) and simplifying the resulting equality yields $$\sum_{n>0} \overline{U}_{6,2}(6n+2)q^n = 2\frac{g_2^5 g_3^3}{g_1^8} = 2\frac{g_2 g_2^4 g_3^4}{g_1^8 g_3}.$$ (5.28) Employing (2.9) in (5.28) and then applying (2.2), we obtain $$\sum_{n>0} \overline{U}_{6,2}(6n+2)q^n \equiv 2g_2\psi(q^3) \pmod{8},\tag{5.29}$$ which is the $\alpha = 0$ case of (5.14). As one can now proceed via the same argument used in our proof of Theorem 4.6, we omit the remaining details. **Corollary 5.5.** For any integer $n \geq 0$, $$\overline{U}_{6,2}(54n+24) \equiv \overline{U}_{6,2}(6n+2) \pmod{4},$$ (5.30) $$\overline{U}_{6,2}(18n+12) \equiv 0 \pmod{8}. \tag{5.31}$$ *Proof.* Combining (5.27) and (5.29), we arrive at (5.30). Collecting the terms involving powers of q that are congruent to 2 modulo 3 from both sides of (5.23), we complete the proof of (5.31). #### References - [1] G. E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Natl. Acad. Sci. U.S.A, 71(10); 4082-4085, 1974. - [2] G. E. Andrews, Parity in partition identities, Ramanujan J., 23; 45-90, 2010. - [3] G. E. Andrews, M. D. Hirschhorn and J. A. Sellers, Arithmetic properties of partitions with even parts distinct, Ramanujan J., 23; 169-181, 2010. - [4] N. D. Baruah and K. K. Ojah, Partitions with designated summands in which all parts are odd, Integers, 15; A9, 2015. - [5] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991. - [6] W. Y. C. Chen, D. D. M. Sang and D. Y. H. Shi, An overpartition analogue of Bressoud's theorem of Rogers-Ramanujan-Gordon type, Ramanujan J., 36; 69-80, 2015. - [7] S. P. Cui and N. S. S. Gu, Arithmetic properties of l-regular partitions, Adv. Appl. Math., 51; 507-523, 2013. - [8] B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math., 83, 393-399, 1961. - [9] M. D. Hirschhorn and J. A. Sellers, Arithmetic relations for overpartitions, J. Comb. Math. Comb. Comput., 53; 65-73, 2005. - [10] M. D. Hirschhorn and J. A. Sellers, An infinite family of overpartition congruences modulo 12, Integers, 5; A20, 1-4, 2005. - [11] M. D. Hirschhorn, The Power of q, A Personal Journey, Developments in Mathematics, 49 Springer, Cham, 2017. - [12] K. Kursungöz, Parity considerations in Andrews-Gordon identities, European J. Combin., 31; 976-1000, 2010. - [13] S. Kim and A. Yee, Rogers-Ramanujan-Gordon identities, generalized Göllnitz-Gordon identities, and parity questions, J. Comb. Theory, Ser. A, 120(5); 1038-1056, 2013. - [14] D. D. M. Sang, D. Y. H. Shi and A. J. Yee, Parity considerations in Rogers-Ramanujan-Gordon type overpartitions, J. Number Theory, 215; 297-320, 2020. - [15] E. X. W. Xia and O. X. M. Yao, New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions, J. Number Theory 133; 1932-1949, 2013. #### **Author information** Pujashree Buragohain and Nipen Saikia, Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, India. E-mail: pujashree.buragohain@rgu.ac.in, nipennak@yahoo.com