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Abstract Andrews (2010) investigated the Rogers-Ramanujan-Gordon partitions of positive
integers with some restrictions on even and odd parts, and introduced two partition functions,
Wr,s(n) and W r,s(n), where r and s are positive integers. Sang, Shi and Yee (2020) defined
two Rogers-Ramanujan-Gordon type overpartition functions, Ur,s and Ur,s, with similar parity
restrictions on even and odd parts. In this paper, we give partition-interpretations of Ur,s and
Ur,s using the notion of colour partition of integers and prove some congruences for the partition
functions Wr,s(n), W r,s(n), Ur,s(n) and Ur,s(n) for some particular values of r and s.

1 Introduction

For any complex numbers B and q, define

(B)n := (B; q)n :=
n−1∏
k=0

(1 −Bqk), for n ≥ 1

and

(B)∞ := (B; q)∞ :=
∞∏
k=0

(1 −Bqk).

For brevity, we write
k∏

i=0

(Bi; q)∞ = (B1, B2, . . . , Bk; q)∞

and gt = (qt; qt)∞ for any integer t ≥ 1.
A partition of a positive integer n is a sequence of integers δ1 ≥ δ2 ≥ δ3 ≥ · · · ≥ δk ≥ 1 such

that
∑k

j=1 δj = n. The integers δj are called parts or summands of the partition. If p(n) denotes
the number of partitions of n, then its generating function satiesfies the identity

∞∑
n=0

p(n)qn =
1
g1
.

A summand in a partition of n has t colours if there are t copies of each summand available and
all of them are viewed as distinct objects. If a, b and t are positive integers, then the coefficient
of qn in the expansion of (qa; qb)−t enumerates the number of partitions n where summands are
congruent to a modulo b with each summand having t colours.

If the number of partitions of n with distinct even summands is denoted by ped(n), then

∞∑
n=0

ped(n)qn =
g4

g1
. (1.1)
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Andrews et al. [3] proved that

ped

(
32α+1n+

17 · 32α − 1
8

)
≡ 0 (mod 6) (1.2)

and ped

(
32α+2n+

19 · 32α+1 − 1
8

)
≡ 0 (mod 6) (1.3)

for all α ≥ 1 and n ≥ 0. Next we recall the following theorem of Gordon (see [8]).

Theorem 1.1. For r ≥ s ≥ 1, the number of partitions of n of the form ξ1 + ξ2 + · · ·+ ξk such
that ξj ≥ ξj+1, ξj − ξj+r−1 ≥ 2 and part 1 appears at most s − 1 times is denoted by Br,s(n).
Let Ar,s(n) represent the number of partitions of n into parts ̸≡ 0,±s (mod 2r + 1). Then for
any n ≥ 0, Ar,s(n) = Br,s(n).

For r, s ≥ 1, the Andrews-Gordon identity (see [1])∑
k1≥k2≥···≥kr−1≥0

qk
2
1+k2

2+···+k2
r−1+ks+···+kr−1

(q)k1−k2 · · · (q)kr−2−kr−1(q)kr−1

=
(qs, q2r+1−s, q2r+1; q2r+1)∞

(q)∞
(1.4)

generalizes Theorem 1.1. In [2] Andrews established analogous results for the function Wr,s(n)
(resp. W r,s(n)) which counts the partitions enumerated by Br,s(n) where even (resp. odd) parts
occur an even number of times.

Theorem 1.2. ([13, p. 39, Entry 24] & [2]) For r ≥ s ≥ 1 with r ≡ s (mod 2),∑
n≥0

Wr,s(n)q
n =

(−q; q2)∞f(−qs,−q2r+2−s)

(q2; q2)∞
, (1.5)

where f (x, y) [5, p. 34, 18.1] is given by

f(x, y) =
∞∑

n=−∞
xn(n+1)/2yn(n−1)/2. (1.6)

If r ≥ s ≥ 2 with r odd and s even, then∑
n≥0

W r,s(n)q
n =

f(−qs,−q2r+2−s)

(−q; q2)∞(q; q)∞
, (1.7)

An overpartition of a positive integer n is a partition of n such that the first occurence of any
part may be overlined. Let λ(n) denote the number of overpartitions of n, then its generating
function satiesfies the identity ∑

n≥0

λ(n)qn =
g2

g2
1
.

Kursungöz [12] and Kim and Yee [13] studied the partition functions Wr,s(n) and W r,s(n)
by considering different parities of r and s. Andrew [2] posted fifteen open problems, of which
the eleventh was related to the overpartition of integers. Chen et al. [6] investigated the eleventh
problem of Andrews and derived the overpartition analogies of Theorems 1.1 and (1.4).

For an overpartition λ and for any integer ℓ, the numbers of occurences of non-overlined and
overlined parts of size ℓ in λ are denoted by Mℓ(λ) and Mℓ̄(λ), respectively.

Sang et al. [14] proved the following results on restricted overpartition functions:

Theorem 1.3. [14] Suppose r ≥ s ≥ 1, ℓ is any integer, and denote by Ur,s(n) the number of
overpartitions λ of n satisfying
(i)M1(λ) ≤ s− 1 +M1̄(λ);
(ii)M2ℓ−1(λ) ≥M2ℓ−1(λ);
(iii)M2ℓ(λ) +M2ℓ(λ) ≡ 0 (mod 2);
(iv)Mℓ(λ) +Mℓ(λ) +Mℓ+1(λ) ≤ r − 1 +Mℓ+1(λ).
If r ≡ s (mod 2), then ∑

n≥0

Ur,s(n)q
n =

(−q; q)∞f(−qs,−q2r−s)

(q2; q2)∞
. (1.8)
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Theorem 1.4. [14] Suppose r ≥ s ≥ 1, ℓ is any integer, and denote by Ur,s(n) the number of
overpartitions λ of n satisfying
(i)M1(λ) ≤ s− 1 +M1̄(λ);
(ii)M2ℓ(λ) ≥M2ℓ(λ);
(iii)M2ℓ−1(λ) +M2ℓ−1(λ) ≡ 0 (mod 2);
(iv)Mℓ(λ) +Mℓ(λ) +Mℓ+1(λ) ≤ r − 1 +Mℓ+1(λ).
If r ≥ s ≥ 2 and s = even, then

∑
n≥0

Ur,s(n)q
n =

(−q2; q2)2
∞f(−qs,−q2r−s)

(q2; q2)∞
. (1.9)

In this paper, we investigate some arithmetic properties of the partition functions Wr,s(n),
W r,s(n), Ur,s(n) and Ur,s(n). We establish congruences modulo 3, 4, 6 and 12 for W5,3(n) and
W 3,2(n). For example, we prove for all α ≥ 1 and n ≥ 0,

W5,3

(
9αn+

7 · 32α−1 − 1
4

)
≡ 0 (mod 3),

W 3,2

(
2 · 32α+1n+

17 · 32α − 1
4

)
≡ 0 (mod 6),

W 3,2

(
2 · 32α+2n+

19 · 32α+1 − 1
4

)
≡ 0 (mod 6).

In Sect. 3, we give colour partition interpretations of Ur,s(n) and Ur,s(n) which are analogues
of Theorem 1.1. In Sect. 4, we prove some particular and infinite families of congruences for
the partition functions W5,3(n), W 3,2(n) and W 5,4(n), and in Sect. 5, we prove congruences for
the partition functions U5,5(n), U3,2(n), U4,2(n), and U6,2(n). In order to prove our results, we
will employ some q-identities collected in Sect. 2.

2 Preliminaries

Four important special cases of (1.6) considered by Ramanujan satisfy the identities [5, p. 36,
Entry 22 (i), (ii), (iii)]

ϕ(q) := f(q, q) =
∞∑

t=−∞
qt

2
=

g5
2

g1
2g4

2 , (2.1)

ψ(q) := f(q, q3) =
∞∑
t=0

qt(t+1)/2 =
g2

2
g1
, (2.2)

f(−q) := f(−q,−q2) =
∞∑

t=−∞
(−1)tqt(3t+1)/2 = g1 (2.3)

and [5, p. 37, Entry 22 (iv)]

χ(q) := (−q; q2) =
g2

2
g1g4

. (2.4)

One can use elementary q-operations to show that

ϕ(−q) =
g2

1
g2
, χ(−q) = g1

g2
, ψ(−q) = g1g4

g2
. (2.5)

We now collect some identities involving the theta-function f(x, y) defined in (1.6).

Lemma 2.1. [5, p. 35, Entry 19] We have

f(x, y) = (−x;xy)∞(−y;xy)∞(xy;xy)∞. (2.6)
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Lemma 2.2. [7, Theorem 2.2] Suppose p ≥ 5 is any prime. Then we have

g1 =

(p−1)/2∑
k=−(p−1)/2
k ̸=(±p−1)/6

(−1)kq (3k
2+k)/2f

(
−q (3p

2+(6k+1)p)/2,−q (3p
2−(6k+1)p)/2

)
+(−1)(±p−1)/6q (p

2−1)/24gp2 ,

where

±p− 1
6

:=


(p− 1)

6
, if p ≡ 1 (mod 6)

(−p− 1)
6

, if p ≡ −1 (mod 6).

Furthermore, if
−(p− 1)

2
≤ k ≤ (p− 1)

2
and k ̸= (±p− 1)

6
,

then

3k2 + k

2
̸≡ p2 − 1

24
(mod p).

Lemma 2.3. [7, Theorem 2.1] Suppose p ≥ 3 is any prime. Then we have

ψ(q) =

(p−3)/2∑
i=0

q (i
2+i)/2f

(
q (p

2+(2i+1)p)/2, q (p
2−(2i+1)p)/2

)
+ q (p

2−1)/8ψ(qp
2
).

Furthermore,
(i2 + i)

2
̸≡ (p2 − 1)

8
(mod p), when 0 ≤ i ≤ (p− 3)

2
.

Lemma 2.4. [5, p. 49, Cor. (ii)] We have

ψ(q) = f(q3, q6) + qψ(q9). (2.7)

Lemma 2.5. [5, p. 51, Example (v)] We have

f(q, q5) = ψ(−q3)χ(q). (2.8)

Lemma 2.6. [11, Eqn. (3.2.7)] We have

1
g1

≡ 1
g5

(
A0B0 + (A0B1 +A1B0) + (A1B1 +A2B0) +A2B1

)
(mod 5),

where

A0 =
∞∑

m=−∞
(−1)mq5(15m2+m)/2 +

∞∑
k=−∞

(−1)kq5(15k2+11k+2)/2,

A1 = −q
∞∑

m=−∞
(−1)mq25(3m2+m)/2,

A2 = −q2
[ ∞∑
m=−∞

(−1)m+1q5(15m2+13m+2)/2 +
∞∑

k=−∞

(−1)k+1q5(15k2+23k+8)/2
]
,

B0 =
∞∑

m=−∞
(−1)mq(25m2−5m)/2,

B1 = −3q
∞∑

m=−∞
(−1)mq(25m2−15m)/2.

Next lemma is a easy consequence of (1) and the binomial theorem.
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Lemma 2.7. Suppose k ≥ 1, m ≥ 1 are any integer, and p is any prime. Then we have

gp
k−1

pm ≡ gp
k

m (mod pk). (2.9)

Lemma 2.8. We have

1
g2

1
=

g5
8

g5
2g

2
16

+ 2q
g2

4g
2
16

g5
2g8

, (2.10)

g2
1
g2

=
g2

9
g18

− 2q
g3g

2
18

g6g9
, (2.11)

g2

g2
1
=

g4
6g

6
9

g8
3g

3
18

+ 2q
g3

6g
3
9

g7
3

+ 4q2 g
2
6g

3
18

g6
3
, (2.12)

g2
2
g1

=
g6g

2
9

g3g18
+ q

g2
18
g9
, (2.13)

g3

g1
=
g4g6g16g

2
24

g2
2g8g12g48

+ q
g6g

2
8g48

g2
2g16g24

, (2.14)

g4

g1
=
g12g

4
18

g3
3g

2
36

+ q
g2

6g
3
9g36

g4
3g

2
18

+ 2q2 g6g18g36

g3
3

. (2.15)

Proof. Using (2.1) and (2.2) in (1.9.4) of [11], we obtain

g5
2

g2
1g

2
4
=

g5
8

g2
4g

2
16

+ 2q
g2

16
g8
. (2.16)

Now (2.10) follows from (2.16). (2.11) and (2.13) follow from (14.3.2) and (14.3.3) of [11],
respectively. (2.12) is from [9], (2.14) is from [15] and (2.15) is the Lemma 2.6 of [4].

3 Colour Partition Interpretations of Ur,s(n) and U r,s(n)

In this section, we give colour partition interpretations of the partition functions Ur,s(n) and
Ur,s(n).

Theorem 3.1. (a) Suppose r and s satisfy 1 ≤ s < r and r ≡ s (mod 2). Then Ur,s(n) is
equal to the number of partitions of n containing no summand congruent to 0, s or 2r− s
modulo 2r.

(b) Suppose r and s are positive integers such that s is even and 2 ≤ s < r. Then, Ur,s(n)
is equal to the number of partitions of n into summands congruent to 2 modulo 4 in two
colours and even summands in a third color congruent to neither 0, s nor 2r − s modulo
2r.

Proof. Using (1.8) and (2.6), we obtain∑
n≥0

Ur,s(n)q
n =

(−q; q)∞(qs; q2r)∞(q2r−s; q2r)∞(q2r; q2r)∞
(q2; q2)∞

=
(qs; q2r)∞(q2r−s; q2r)∞(q2r; q2r)∞

(q, q)∞
,

(3.1)
from which our result (a) follows. Similarly, we can prove (b).

4 Congruences for Wr,s(n) and W r,s(n)

In this section, we prove congruences for the partition functions W5,3(n), W 3,2(n) and W 5,4(n).

Theorem 4.1. Let p ≡ 3 (mod 4) be prime, 1 ≤ j ≤ p− 1 and α, β ≥ 0. Then∑
n≥0

W5,3

(
2 · 9α+1p2βn+

5 · 9α+1p2β − 1
4

)
qn ≡ ψ(q)ψ(q4) (mod 3), (4.1)
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and for all n ≥ 0 we have

W5,3

(
2 · 9α+1p2β+2n+ 2 · 9α+1p2β+1j +

5 · 9α+1p2β+2 − 1
4

)
≡ 0 (mod 3). (4.2)

Proof. Setting r = 5 and s = 3 in (1.5), we obtain∑
n≥0

W5,3(n)q
n =

(−q; q2)∞f(−q3,−q9)

g2
. (4.3)

Simplifying (4.3) using (2.2), (2.4) and (2.5), we obtain∑
n≥0

W5,3(n)q
n =

g2g3g12

g1g4g6
. (4.4)

Utilizing (2.14) in (4.4), we obtain∑
n≥0

W5,3(n)q
n =

g16g
2
24

g2g8g48
+ q

g2
8g12g48

g2g4g16g24
. (4.5)

Collecting the terms involving odd powers of q from both sides of (4.5) and simplifying, we
obtain ∑

n≥0

W5,3(2n+ 1)qn =
g2

4g6g24

g1g2g8g12
. (4.6)

Utilizing (2.9) in (4.6) and then applying (2.2), we obtain∑
n≥0

W5,3(2n+ 1)qn ≡
g2

2g
2
8

g1g4
≡ ψ(q)ψ(q4) (mod 3). (4.7)

Substituting (2.13) in (4.7) and simplifying, we get∑
n≥0

W5,3(2n+ 1)qn ≡
g6g

2
9g24g

2
36

g3g12g18g72
+ q

g2
18g24g

2
36

g9g12g72
+ q4 g6g

2
9g

2
72

g3g18g36
+ q5 g

2
18g

2
72

g9g36
(mod 3). (4.8)

Collecting the terms involving powers of q that are congruent to 2 modulo 3 from both sides of
(4.8) and simplifying the resulting equality yields∑

n≥0

W5,3(6n+ 5)qn ≡ q
g2

6g
2
24

g3g12
(mod 3). (4.9)

Collecting the terms involving powers of q that are congruent to 1 modulo 3 from both sides of
(4.9) and simplifying the resulting equality and then applying (2.2) yields∑

n≥0

W5,3(18n+ 11)qn ≡
g2

2g
2
8

g1g4
≡ ψ(q)ψ(q4) (mod 3). (4.10)

From (4.7) and (4.10), we see that

W5,3(18n+ 11) ≡W5,3(2n+ 1) (mod 3), (4.11)

and iterating (4.11) yields

W5,3

(
2 · 9α+1n+

5 · 9α+1 − 1
4

)
≡W5,3(2n+ 1) (mod 3), for all α ≥ 1. (4.12)

By substituting (4.7) in (4.12), we obtain∑
n≥0

W5,3

(
2 · 9α+1n+

5 · 9α+1 − 1
4

)
qn ≡ ψ(q)ψ(q4) (mod 3), (4.13)
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which is the β = 0 case of (4.1). Now suppose that (4.1) holds for some β ≥ 0. Lemma 2.3 then
yields

∑
n≥0

W5,3

(
2 · 9α+1p2βn+

5 · 9α+1p2β − 1
4

)
qn

≡
[ (p−3)/2∑

m=0

q (m
2+m)/2f

(
q (p

2+(2m+1)p)/2, q (p
2−(2m+1)p)/2

)
+ q (p

2−1)/8ψ(qp
2
)

]

×
[ (p−3)/2∑

k=0

q4(k2+k)/2f
(
q2(p2+(2k+1)p), q2(p2−(2k+1)p)

)
+ q (p

2−1)/2ψ(q4p2
)

]
(mod 3).

(4.14)

Next consider the congruence(
m2 +m

2

)
+ 4

(
k2 + k

2

)
≡ 5

(
p2 − 1

8

)
(mod p), for 0 ≤ k,m ≤ p− 1, (4.15)

which is equivalent to
(2m+ 1)2

+ (4k + 2)2 ≡ 0 (mod p). (4.16)

Since
(
−1
p

)
= −1, the only solution of (4.16) is k = m = (p− 1)/2. Therefore, collecting

the terms involving powers of q that are congruent to 5(p2 − 1)/8 modulo p from both sides of
(4.14) and simplifying the resulting equality yields

∑
n≥0

W5,3

(
2 · 9α+1p2β+1n+

5 · 9α+1p2β+2 − 1
4

)
qn ≡ ψ(qp)ψ(q4p) (mod 3). (4.17)

Collecting the terms involving powers of q that are congruent to 0 modulo p from both sides of
(4.17) and simplifying the resulting equality yields

∑
n≥0

W5,3

(
2 · 9α+1p2β+2n+

5 · 9α+1p2β+2 − 1
4

)
qn ≡ ψ(q)ψ(q4) (mod 3), (4.18)

which is the β + 1 case of (4.1). Finally, collecting the terms involving powers of q that are
congruent to j modulo p from both sides of (4.17) yields (4.2).

Corollary 4.2. Nothing that the power of q in every term on the right hand side of (4.9) is
congruent to 1 modulo 3 immediately yields the following:

W5,3(18n+ 5) ≡W5,3(18n+ 17) ≡ 0 (mod 3).

Theorem 4.3. For any integer α ≥ 1, we have

W5,3

(
9αn+

9α − 1
4

)
≡W5,3(n) (mod 3), (4.19)

W5,3

(
9αn+

7 · 32α−1 − 1
4

)
≡ 0 (mod 3), (4.20)

W5,3

(
9αn+

11 · 32α−1 − 1
4

)
≡ 0 (mod 3). (4.21)

Proof. Simplifying (4.4) using (2.9) and employing (2.5), we obtain

∑
n≥0

W5,3(n)q
n ≡

(
g1g4

g2

)2

≡ ψ2(−q) (mod 3). (4.22)
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Then (2.7) yields∑
n≥0

W5,3(n)q
n ≡ f2(−q3, q6)− 2q f(−q3, q6)ψ(−q9) + q2ψ2(−q9) (mod 3). (4.23)

Collecting the terms involving powers of q that are congruent to 2 modulo 3 from both sides of
(4.23) and simplifying the resulting equality yields∑

n≥0

W5,3(3n+ 2)qn ≡ ψ2(−q3) (mod 3). (4.24)

Collecting the terms involving powers of q that are congruent to 0 modulo 3 from both sides of
(4.24) and simplifying the resulting equality yields∑

n≥0

W5,3(9n+ 2)qn ≡ ψ2(−q) (mod 3). (4.25)

Combining (4.22) and (4.25), we find

W5,3(9n+ 2) ≡W5,3(n) (mod 3), (4.26)

and iterating (4.26) yields (4.19). Next note that since the right hand side of (4.24) is a series in
q3, we have

W5,3(9n+ 5) ≡ 0 (mod 3) and W5,3(9n+ 8) ≡ 0 (mod 3), (4.27)

which are the α = 1 cases of (4.20) and (4.21). Finally, replacing n by 9n + 5 and 9n + 8 in
(4.19) yields (4.20) and (4.21) for α ≥ 2.

Theorem 4.4. For any integers α ≥ 1 and n ≥ 0, we have

W 3,2

(
2 · 9αn+

9α − 1
4

)
≡W 3,2 (2n) (mod 4), (4.28)

W 3,2

(
2 · 32α+1n+

17 · 32α − 1
4

)
≡ 0 (mod 6), (4.29)

W 3,2

(
2 · 32α+2n+

19 · 32α+1 − 1
4

)
≡ 0 (mod 6). (4.30)

Proof. Setting r = 3 and s = 2 in (1.7) and simplifying using (2.2) and (2.4) and then applying
(2.5), we obtain ∑

n≥0

W 3,2(n)q
n =

g8

g2
. (4.31)

Since the right hand side of (4.31) is a series in q2, it follows that∑
n≥0

W 3,2(2n)qn =
g4

g1
. (4.32)

Next, using (2.15), we obtain

∞∑
n=0

W 3,2(2n)qn =
g12g

4
18

g3
3g

2
36

+ q
g2

6g
3
9g36

g4
3g

2
18

+ 2q2 g6g18g36

g3
3

. (4.33)

Collecting the terms involving powers of q that are congruent to 1 modulo 3 from both sides of
(4.33) and simplifying the resulting equality yields

∞∑
n=0

W 3,2(6n+ 2)qn =
g2

2g
3
3g12

g4
1g

2
6

=

(
g2

g2
1

)2 g3
3g12

g2
6
. (4.34)
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Employing (2.12) then yields

∞∑
n=0

W 3,2(6n+2)qn =
g6

6g
12
9 g12

g13
3 g

6
18

+4q
g5

6g
9
9g12

g12
3 g

3
18

+12q2 g
4
6g

6
9g12

g11
3

+16q3 g
3
6g

3
9g12g

3
18

g10
3

+16q4 g
2
6g12g

6
18

g9
3

.

(4.35)
Collecting the terms involving powers of q that are congruent to 0 modulo 3 from both sides of
(4.35) and simplifying the resulting equality yields

∞∑
n=0

W 3,2(18n+ 2)qn ≡
g6

2g
12
3 g4

g13
1 g

6
6

(mod 16). (4.36)

Using (2.9), we obtain
∞∑
n=0

W 3,2(18n+ 2)qn ≡ g4

g1
(mod 4), (4.37)

which by (4.32) yields
W 3,2(18n+ 2) ≡W 3,2(2n) (mod 4). (4.38)

Iterating (4.38), we acquire (4.28).
Combining (1.1) and (4.32), we obtain

W 3,2(2n) = ped(n). (4.39)

Employing (1.2) and (1.3) in (4.39), we arrive at (4.29) and (4.30), respectively.

Corollary 4.5. For any integer n ≥ 0, we have

W 3,2(18n+ 8) ≡ 0 (mod 4), (4.40)

W 3,2(18n+ 14) ≡ 0 (mod 12). (4.41)

Proof. Collecting the terms involving powers of q that are congruent to 1 modulo 3 and con-
gruent to 2 modulo 3 from both sides of (4.35), we complete the proof of (4.40) and (4.41),
respectively.

Theorem 4.6. Suppose p is an odd prime such that
(
−3
p

)
= −1, 1 ≤ j ≤ p − 1 and α ≥ 0.

Then ∑
n≥0

W 5,4

(
4p2αn+

13p2α − 1
6

)
qn ≡ 2(−1)α(±p−1)/6g1ψ(q

4) (mod 8), (4.42)

and for all n ≥ 0 we have

W 5,4

(
4p2α+2n+ 4p2α+1j +

13p2α+2 − 1
6

)
≡ 0 (mod 8). (4.43)

Proof. Setting r = 5 and s = 4 in (1.7) and employing (2.3) and (2.4), we obtain∑
n≥0

W 5,4(n)q
n =

f(−q4,−q8)

(−q; q2)∞(q; q)∞
=
g2

4

g2
2
. (4.44)

Since the right hand side of (4.44) is a series in q2, it follows that∑
n≥0

W 5,4(n)q
n =

g2
2

g2
1
. (4.45)

Employing (2.10) then yields∑
n≥0

W 5,4(2n)qn =
g5

8

g3
2g

2
16

+ 2q
g2

4g
2
16

g3
2g8

. (4.46)
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Collecting the terms involving odd powers of q from both sides of (4.46) and simplifying, we
obtain ∑

n≥0

W 5,4(4n+ 2)qn = 2
g2

2g
2
8

g3
1g4

. (4.47)

Employing (2.9) in (4.47) and then applying (2.2), we obtain∑
n≥0

W 5,4(4n+ 2)qn ≡ 2g1ψ(q
4) (mod 8), (4.48)

which is the α = 0 case of (4.42). Now suppose that (4.42) holds for some α ≥ 0. Lemmas 2.2
and 2.3 then yields

∞∑
n=0

W 5,4

(
4p2αn+

13p2α − 1
6

)
qn

≡ 2(−1)α(±p−1)/6
[ (p−1)/2∑
k=−(p−1)/2
k ̸=(±p−1)/6

(−1)kq (3k
2+k)/2f

(
−q (3p

2+(6k+1)p)/2,−q (3p
2−(6k+1)p)/2

)

+ (−1)(±p−1)/6q (p
2−1)/24gp2

]

×
[ (p−3)/2∑

m=0

q4(m2+m)/2f
(
q2(p2+(2m+1)p), q2(p2−(2m+1)p)

)
+ q (p

2−1)/2ψ(q4p2
)

]
(mod 8). (4.49)

Next, consider the congruence(
3k2 + k

2

)
+ 4

(
m2 +m

2

)
≡ 13

(
p2 − 1

24

)
(mod p), for 0 ≤ k,m ≤ p− 1, (4.50)

which is equivalent to
(6k + 1)2

+ 3 (4m+ 2)2 ≡ 0 (mod p). (4.51)

Since
(
−3
p

)
= −1, the only solution of (4.51) is k = (±p− 1)/6 and m = (p− 1)/2. There-

fore, collecting the terms involving powers of q that are congruent to 13(p2 − 1)/24 modulo p
from both sides of (4.49) and simplifying the resulting equality yields

∞∑
n=0

W 5,4

(
4p2α+1n+

13p2α+2 − 1
6

)
qn ≡ 2(−1)(α+1)(±p−1)/6gpψ(q

4p) (mod 8). (4.52)

Collecting the terms involving powers of q that are congruent to 0 modulo p from both sides of
(4.52) and simplifying the resulting equality yields

∞∑
n=0

W 5,4

(
4p2α+2n+

13p2α+2 − 1
6

)
qn ≡ 2(−1)(α+1)(±p−1)/6g1ψ(q

4) (mod 8), (4.53)

which is the α + 1 case of (4.42). Finally, collecting the terms involving powers of q that are
congruent to j modulo p from both sides of (4.52) yields (4.43).

5 Congruences for Ur,s(n) and U r,s(n)

Theorem 5.1. For any integer n ≥ 0, we have

U5,5 (5n+ 4) ≡ 0 (mod 5).
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Proof. Setting r = s = 5 in (1.8) and using (2.1) and Lemma 2.6, we obtain

∑
n≥0

U5,5(n)q
n ≡ ϕ(−q5)

g5

(
A0B0+(A0B1+A1B0)+(A1B1+A2B0)+A2B1

)
(mod 5). (5.1)

Our result follows by observing that the series on the right hand side of (5.1) has no term whose
exponent is congruent to 4 modulo 5.

Remark 5.2. Setting r = 3 and s = 2 in (1.9) and simplifying (2.3), we obtain

∑
n≥0

U3,2(n)q
n =

(−q2; q2)2
∞f(−q2,−q4)

(q2; q2)∞
=

1

(q2; q4)
2
∞

=
g2

4

g2
2
, (5.2)

where we also used the well-known result,

(q; q2)−1
∞ = (−q; q)∞. (5.3)

Combining (4.44) and (5.2), we find

U3,2(n) =W 5,4(n). (5.4)

As a consequence, U3,2(n) satisfies the congruences given in Theorem 4.6.

Theorem 5.3. Suppose p is an odd prime such that
(
−6
p

)
= −1, 1 ≤ j ≤ p − 1 and α ≥ 0.

Then ∑
n≥0

U4,2

(
8p2αn+

7p2α − 1
3

)
qn ≡ 2(−1)α(±p−1)/6g1ψ(q

2) (mod 8), (5.5)

and for all n ≥ 0 we have

U4,2

(
8p2α+2n+ 8p2α+1j +

7p2α+2 − 1
3

)
≡ 0 (mod 8). (5.6)

Proof. Setting r = 4 and s = 2 in (1.9), we have

∑
n≥0

U4,2(n)q
n =

(−q2; q2)2
∞f(−q2,−q6)

(q2; q2)∞
=

(−q2; q2)2
∞f(−q2,−q6)

g2
. (5.7)

Simplifying (5.7) using (5.3), (2.2) and (2.5), we obtain

∑
n≥0

U4,2(n)q
n =

ψ(−q2)

(q2; q4)
2
g2

=
g4g8

g2
2
. (5.8)

Collecting the terms involving even powers of q from (5.8) and then applying (2.10) in the
resulting equation, we obtain

∑
n≥0

U4,2(2n)qn =
g4g

5
8

g4
2g

2
16

+ 2q
g3

4g
2
16

g4
2g8

. (5.9)

Collecting the terms involving odd powers of q from both sides of (5.9) and simplifying, we
obtain ∑

n≥0

U4,2(4n+ 2)qn = 2
g3

2g
2
8

g4
1g4

. (5.10)

Using (2.9) in (5.10), we obtain

∑
n≥0

U4,2(4n+ 2)qn ≡ 2
g2g

2
8

g4
(mod 8). (5.11)
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Collecting the terms involving powers of q that are congruent to 0 modulo 2 from both sides of
(5.11) and simplifying the resulting equality and then applying (2.2) yields∑

n≥0

U4,2(8n+ 2)qn ≡ 2g1ψ(q
2) (mod 8), (5.12)

which is the α = 0 case of (5.5). As one can now proceed via the same argument used in our
proof of Theorem 4.6, we omit the remaining details.

Theorem 5.4. Suppose p is an odd prime such that
(
−2
p

)
= −1, 1 ≤ j ≤ p − 1 and α ≥ 0.

Then ∑
n≥0

U6,2

(
54p2αn+

99p2α − 3
4

)
qn ≡ 2g2ψ(q

3) (mod 4), (5.13)

∑
n≥0

U6,2

(
6p2αn+

11p2α − 3
4

)
qn ≡ 2(−1)α(±p−1)/6g2ψ(q

3) (mod 8), (5.14)

and for all n ≥ 0, we have

U6,2

(
54p2α+2n+ 54p2α+1j +

99p2α+2 − 3
4

)
≡ 0 (mod 4), (5.15)

U6,2

(
6p2α+2n+ 6p2α+1j +

11p2α+2 − 3
4

)
≡ 0 (mod 8). (5.16)

Proof. Setting r = 6, s = 2 in (1.9), we obtain

∑
n≥0

U6,2(n)q
n =

(−q2; q2)2
∞f(−q2,−q10)

g2
. (5.17)

Simplifying (5.17) using (5.3) and (2.8), we obtain

∑
n≥0

U6,2(n)q
n =

ψ(q6)χ(−q2)

(q2; q4)
2
∞ g2

. (5.18)

Collecting the terms involving powers of q that are congruent to 0 modulo 2 from both sides of
(5.18) and simplifying the resulting equality and then applying (2.2) and (2.5) yields

∑
n≥0

U6,2(2n)qn =
ψ(q3)χ(−q)
(q; q2)

2
∞ g1

=
g2g

2
6

g2
1g3

. (5.19)

Employing (2.12) then yields

∑
n≥0

U6,2(2n)qn =
g6

6g
6
9

g9
3g

3
18

+ 2q
g5

6g
3
9

g8
3

+ 4q2 g
4
6g

3
18

g7
3
. (5.20)

Collecting the terms involving powers of q that are congruent to 0 modulo 3 from both sides of
(5.20) and simplifying the resulting equality yields

∑
n≥0

U6,2(6n)qn =
g6

2g
6
3

g9
1g

3
6
. (5.21)

Employing (2.9) in (5.21), we obtain

∑
n≥0

U6,2(6n)qn ≡
g2

2g
6
3

g1g
3
6

(mod 8). (5.22)
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Next, using (2.13) we obtain

∑
n≥0

U6,2(6n)qn ≡
g5

3g
2
9

g2
6g18

+ q
g6

3g
2
18

g3
6g9

(mod 8). (5.23)

Collecting the terms involving powers of q that are congruent to 1 modulo 3 from both sides of
(5.23) and simplifying the resulting equality yields∑

n≥0

U6,2(18n+ 6)qn ≡
g6

1g
2
6

g3
2g3

(mod 8). (5.24)

Using (2.9) in (5.24), we obtain∑
n≥0

U6,2(18n+ 6)qn ≡
g2

1g
2
6

g2g3
(mod 4). (5.25)

Substituting (2.11) in (5.25), we obtain

∑
n≥0

U6,2(18n+ 6)qn ≡
g2

6g
2
9

g3g18
− 2q

g6g
2
18

g9
(mod 4). (5.26)

Collecting the terms involving powers of q that are congruent to 1 modulo 3 from both sides of
(5.26) and simplifying the resulting equality and then applying (2.2) yields∑

n≥0

U6,2(54n+ 24)qn ≡ 2g2ψ(q
3) (mod 4), (5.27)

which is the α = 0 case of (5.13). As one can now proceed via the same argument used in our
proof of Theorem 4.6, we omit the remaining details. Collecting the terms involving powers of q
that are congruent to 1 modulo 3 from both sides of (5.20) and simplifying the resulting equality
yields ∑

n≥0

U6,2(6n+ 2)qn = 2
g5

2g
3
3

g8
1

= 2
g2g

4
2g

4
3

g8
1g3

. (5.28)

Employing (2.9) in (5.28) and then applying (2.2), we obtain∑
n≥0

U6,2(6n+ 2)qn ≡ 2g2ψ(q
3) (mod 8), (5.29)

which is the α = 0 case of (5.14). As one can now proceed via the same argument used in our
proof of Theorem 4.6, we omit the remaining details.

Corollary 5.5. For any integer n ≥ 0,

U6,2 (54n+ 24) ≡ U6,2 (6n+ 2) (mod 4), (5.30)

U6,2 (18n+ 12) ≡ 0 (mod 8). (5.31)

Proof. Combining (5.27) and (5.29), we arrive at (5.30). Collecting the terms involving powers
of q that are congruent to 2 modulo 3 from both sides of (5.23), we complete the proof of
(5.31).
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