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Abstract This paper presents and investigate the concept of copure D2 modules, which serve
as a generalization of D2 modules and the dual notion of copure C2 modules [8]. A module
N is considered to be copure D2 if a quotient module determined by a copure submodule of
N , is isomorphic to a summand of N , then that copure submodule is also a summand of N .
In our discussion, we explore summands and direct sums of copure D2 modules and give new
characterizations of semi-simple rings with respect to relative copure D2 modules. Also, we find
connections among copure D2 modules, copure-Rickart modules, and endoregular modules.

1 Introduction

Throughout the paper, we consider an associative ring denoted by R, which is assumed to have
an identity element, unless explicitly stated otherwise, and right R-modules will be considered
as unital. In 1976, Nicholson [9], an R-module N is called D2 if the quotient module N/K is
isomorphic to a summand of N , then K is also a summand of N . D2 modules are alternatively
referred to as Direct-projective modules. In 1984, Hiremath introduced the concept of copurity
[4], as the dual counterpart to the concept of purity by employing co-finitely related modules. In
an R-module N , a submodule L is classified as copure if, for any co-finitely related R-module
K, any homomorphism from L to K can be extended to a homomorphism from N to K. In 2012,
Copure-projectivity was introduced and its properties are investigated in [2].

In recent years various generalizations of D2 modules have been studied like finite-D2 mod-
ules, semi-projective modules, simple-D2 modules, and pure-D2 modules, etc. Motivated by
these generalizations and work done in [8] on copure C2 modules, we present the concept of
copure D2 modules, which serves as the dual counterpart to copure C2 modules and represents
a broader extension of D2 modules. An R-module N is considered copure D2 if there exists
a copure submodule P of N such that M/P ∼= K ≤

⊕
N for some submodule K of N , then

P ≤
⊕

N .
Suppose N and K are copure D2 R-modules. We say that N is relatively copure D2 to K if

there exists an R-homomorphism f ∈ HomR(N ,K) such that Img(f) is a summand of K and
Ker(f) is a copure submodule of N , then Ker(f) is also a summand of N .

To establish a foundation, section 2 provides several definitions and compiles a number of
properties concerning copure D2 modules and copure short exact sequences.

In section 3, we first define copure D2 module and also give some examples of copure D2
module and give counterexamples such that the module is copure D2 but not D2. In remark
3.3 we give the equivalent condition of the copure D2 module with respect to the copure exact
sequence. In Proposition 3.4, we find an equivalent definition of copure D2 module with respect
to its endomorphism ring, which is defined as, an R-module N is copure D2 if and only if, for
every f ∈ EndR(N ), if Img(f) is a summand of N and Ker(f) is copure in N , then Ker(f)
is also a summand of N . Next, we use the Morita equivalence property, if an R-module N is a
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copure D2, then some module which is Morita equivalent to N , will also be copure D2.
In section 4, we discuss the direct sum and summand of copure D2 modules. In Proposition

4.1, we prove that the summand of the copure D2 module is copure D2. Then we infer that the
sum of two copure D2 modules need not be a copure D2, a counterexample is also provided,
so we find the condition under which the direct sum of copure D2 modules is copure D2. In
Proposition 4.4, we show that if N =

⊕
i∈NNi, where each Ni is relatively copure D2 modules

with others if and only if N is a copure D2 module. Also, we evaluate under which condition a
semi-simple ring is equivalent to a ring over which all modules are relatively copure D2 to each
other.

In section 5, we characterize some rings with respect to copure D2 modules. In Proposition
5.2, we establish the proof that a copure D2 module N is both a copure Rickart as well as
dual Rickart module if and only if N ⊕N possesses the S.S.P. (strong summand property) and
copure intersection properties. Also, we show that R is copure semi-simple if and only if each 2-
generated R module is copure D2 (see Proposition 5.4). In Proposition 5.8, we derive that each
copure injective module over a copure hereditary ring is a copure D2 module. In proposition
5.10, we compare copure D2 modules to pure D2 modules as they are offered as one more
generalization of D2 modules.

Throughout the paper, basic definitions, symbols, and notations are used to refer to [1] and
[12].

2 Preliminaries

This section covers fundamental definitions and characteristics of copure submodules, copure
short exact sequences.

Definition 2.1. An R-module N is considered generated co-finitely if its injective envelope
E(N ) can be expressed as E(N ) = E(S1) ⊕ E(S2) ⊕ . . . ⊕ E(Sn), where Si for i = 1, 2, . . . , n
represents a simple R-module ( [7], [10]).

Definition 2.2. A cofree module is a R-module N which is expressed as the direct product,
denoted as Πα∈IE(Sα), where I is an index set and Sα represents a simple R-module, then N
is isomorphic to that direct product. ([5])

Definition 2.3. An R-module is considered co-finitely related if there exists an exact sequence
0 → N → K → L → 0 of R-modules, where K generated co-finitely, cofree and L generated
co-finitely ( [5]).

Definition 2.4. A short exact sequence of R modules

0 → N → K → L → 0.

is called a copure short exact sequence if every co-finitely related R-module is injective with
respect to this sequence. So a submodule S of a R-module N is said to be copure in N if the
canonical short exact sequence

0 → S → N → N/S → 0.

is copure.

In the following section, we begin by introducing copure D2 modules and providing several
examples to illustrate this concept. Additionally, we delve to examine the various properties
associated with the copure D2 module.

3 Copure D2 Modules

Definition 3.1. An R-module N is considered a copure D2 module (or copure-direct-projective
module), if for any copure submodule B of N such that N/B ∼= A and A ≤

⊕
N , it follows that

B is a summand of N .
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In general, each summand of an R-module N can be considered as a copure submodule.
Consequently, it follows that a D2 module is also a copure D2 module. Next, we provide some
examples of copure D2 modules.

Example 3.2. We discuss the following examples of copure D2 modules:-

(1) Copure D2 module is a strict generalization of the D2 module. Given a right R-module N ,
each summand of N is also a copure submodule of N . Consequently, each D2 module is a
copure D2 module, but the converse is not necessarily true. As an example, consider the Z
module Z⊕Zn, where n ∈ N. This module is copure D2 but not a D2 module since both Z
and Zn have no copure submodules over Z.

(2) We can similarily construct another example Q
⊕

Q/Z over the ring Z, this module is a
copure D2 but not a D2.

(3) If N is a copure simple module, then it is also a copure D2 module. A module N is classified
as copure simple when its only copure submodules are the trivial submodules.

Remark 3.3. An R-module N is considered as copure D2 if the copure exact sequence 0 →
Ker(f) → N → N/Ker(f) → 0 splits for each f ∈ EndR(N ) such that Img(f) ≤

⊕
N .

Proposition 3.4. The following conditions are equivalent for an R-module N :

(1) N is a copure D2 module.

(2) If Img(f) is a summand of N with Ker(f) is a copure submodule of N for each f ∈
EndR(N ), then Ker(f) is also a summand of N .

(3) Suppose K be a summand of N and let f : N → K be an epimorphism such that Ker(f)
is copure in N . In this case, there exists g ∈ EndR(N ) such that the following diagram
commutes:

N

π

��

g

~~
N

f
// K

equivalently, f ◦ g = π, where π is a projection map.

Proof. (1) ⇒ (2) Using the fact, N/Ker(f) ∼= Img(f) (By Fundamental theorem of Module
Homomorphism) and Ker(f) is copure submodule of N , hence Ker(f) ≤

⊕
N .

(2) ⇒ (1) Consider N/B ∼= K ≤
⊕

N with B copure submodule of N and let N/B ∼= eN
for some idempotent e ∈ EndR(N ). Let π be a projection map from N to K and f be an
epimorphism from N to K. We set some s as s = e◦f−1◦π, then Ker(s) = B and Img(s) = eN ,
Since Ker(s) is summand in N implies B is summand of N .

(1) ⇒ (3) It is obvious.
(3) ⇒ (1) Let B be any copure submodule of N such that N/B ∼= K ≤

⊕
N . Consider

h : N → N/B, since Ker(h) ∼= B and copure in N . By hypothesis, we will have some
g ∈ EndR(N ) such that h ◦ g = π. Hence g is the required splitting of h, and Ker(h) is a
summand of N .

Next, we discuss the Morita equivalence with respect to copure D2 modules. Two rings say
R and S are Morita equivalent if their category of modules say R-module N and S-module N
are equivalent.

Proposition 3.5. Consider two Morita equivalent rings, denoted as R and S. Let ϕ : Mod-R →
Mod-S be their Morita equivalence. In this context, if a module N is copure D2, then its image
under ϕ, denoted as ϕ(N ), is also copure D2, and vice versa.

Proof. Let K ≤ N be a copure submodule then ϕ(K) is copure submodule of ϕ(N ). Since
copurity is a Morita equivalent property. Hence, the proof is clear.
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Proposition 3.6. Assume that N is a copure D2 R-module. If we can express N as the direct
sum N = N1 ⊕ N2, where f : N1 → N2 is an R-homomorphism satisfying the conditions that
the Img(f) is a summand of N2 and the Ker(f) is a copure submodule of N1, then Ker(f) is
also a summand of N1.

Proof. Consider the module homomorphism f : N1 → N2. Let π : N → N1 be the canonical
projection. We have f ◦π : N → N2. Moreover, Img(f ◦π) = Img(f). Therefore, N/Ker(f ◦
π) ∼= Img(f◦π) = Img(f). Since Img(f) ≤

⊕
N2 and it is a summand of the module N , by the

definition of a copure D2 module, we have that Ker(f ◦π) = N2⊕Ker(f) is copure in N2⊕N1.
Since Ker(f) is copure in N1, it follows that Ker(f ◦ π) is copure in N . Therefore, we have
Ker(f ◦π) ≤

⊕
N . Since Ker(f) is a submodule of N1, we can conclude that Ker(f) ≤

⊕
N1.

Corollary 3.7. Consider a copure D2 R-module N . If we can write N as the direct sum N =
N1 ⊕N2 with an R-epimorphism f : N1 → N2 such that Ker(f) is copure in N1, then Ker(f)
is a summand of N1.

Proof. Follows from Proposition 3.6.

Definition 3.8. A module N is considered as a copure dual Rickart module if for each f ∈
EndR(N ), Img(f) is a copure submodule of the module N .

Proposition 3.9. Suppose that the R-module N = N1 ⊕N2 is a copure D2 module, where N1 is
copure simple and copure dual Rickart. Then, either HomR(N1,N2) = 0 or for each nonzero
homomorphism f : N1 → N2, if Ker(f) is a copure submodule of N , then f is a monomorphism.

Proof. We consider HomR(N1,N2) ̸= 0 as other case is trivial. If a non-zero R-homomorphism
f : N1 → N2 and N1 is copure simple, this implies Ker(f) ̸= 0 is not copure submodule,
implies Ker(f) ̸= 0 is not summand of N1. Hence, Ker(f) is trivial and f ∈ HomR(N1,N2)
is a monomorphism.

Proposition 3.10. Let N be an R-module such that for each f ∈ EndR(N ), the image Img(f)
is a summand of N and N/Ker(f) is a copure injective submodule of N . Then, N is a copure
D2 module if and only if N is a D2 module.

Proof. Since N/Ker(f) is copure injective, we can conclude that the exact sequence is copure
and 0 → N/Ker(f) → N splits. Moreover, since N/Ker(f) ∼= Img(f), which is a summand
of N . Therefore, we got our assertion.

4 Summands and Direct Sums of Copure D2 modules

In this section, our focus revolves around exploring the properties of summands and direct sums
of copure D2 modules. The subsequent proposition verifies that a summand of a copure D2
module is itself a copure D2 module. Additionally, we delve into the outcomes concerning the
direct sum of copure D2 modules.

Proposition 4.1. If N is a copure D2 module with K ≤⊕ N , then K is also a copure D2 module.

Proof. Let K be a direct summand of N and A be a copure submodule of K such that K/A ∼=
B ≤

⊕
K for some submodule B of K, we are required to prove A ≤

⊕
K. Since N is copure-

direct-projective, so there exists some T , a direct summand of N such that N/A ∼= T ≤
⊕

N .
Since A is copure in K this implies A is copure in N , therefore A will be a direct summand of
N and A is a copure submodule of K. Hence A ≤

⊕
K .

Now, it is worth noting that the direct sum of two copure D2 modules may not necessarily be
a copure D2 module. Consider Z-modules N1 =

∏∞
n=1 Z2 and N2 =

∏∞
n=1 Z2/

⊕∞
n=1 Z2 which

are both copure D2 but N1
⊕

N2 is not a copure D2 module because f ∈ HomR(N1,N2) and
Ker(f) is copure submodule of N1 but not a summand of N1.
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Definition 4.2. Let N and K be copure D2 R-modules, where N is called relatively copure D2
with respect to K, if there exists an R-homomorphism f ∈ HomR, (N ,K) whose Img(f) is a
summand of K and if its Ker(f) is a copure submodule N , then its Ker(f) is a summand of N .

Next, in our discussion, we will examine the direct sum of a copure D2 module in relation
to the copure intersection property. A module is said to possess the copure intersection property
when the intersection of two copure submodules remains copure. Suppose N be an R-module
such that it satisfies the copure intersection property. For any decomposition of module N into
the direct sums of module N = K⊕T , and for each f ∈ HomR(T ,K), it follows that its Ker(f)
is a copure submodule of T .

Proposition 4.3. Suppose N = K
⊕

T is a copure D2 module with the copure intersection
property and T is a dual Rickart module, then K is relatively copure D2 with respect to T .

Proof. Clear.

In particular, each direct sum of copure D2 modules is copure D2 if modules are relatively
copure D2 to each other.

Proposition 4.4. Suppose N =
⊕

i∈NNi, where each Ni is relatively copure D2 module with
others if and only if N is a copure D2 module.

Proof. If N is copure D2 module then
⊕

i∈NNi is copure D2, follows from proposition 3.6
and definition 4.2. For the converse part, let for some copure submodule P of N such that
N/P ∼= K ≤

⊕
N , then N will be a summand of some Nk. Moreover, P is a copure submodule

of some Nt, since Nt is relatively copure D2 to Nk. Hence P is a summand of module N . As
k, t ∈ N are arbitrary, N is a copure D2 module.

Proposition 4.5. Suppose we have a ring R in which each R-module, N is a fully copure module.
Then the following statements are equivalent:

(1) R is a semi-simple ring.

(2) All R-modules are relatively copure D2 to any R-module.

Proof. (1) ⇒ (2) Clear.
(2) ⇒ (1) We have to show that I is a summand of R. Now, suppose I is an ideal of a ring

R. From (2), if each R-module is relatively copure D2 to any R-module, then the R-module
R is relatively copure D2 to R/I as an R-module. Then by definition for R-homomorphism
f : R → R/I and Ker(f) = I is copure in R, Ker(f) is a summand of R. Since I is an
arbitrary ideal of R. Therefore, R is a semi-simple ring.

5 Characterization of copure D2 modules over rings

This section deals with the new characterizations of copure D2 modules over some rings. At
first, we will consider its endomorphism ring, and develop equivalent conditions for copure D2
modules and endoregular modules. Since each endoregular module is copure D2, the converse
of this statement may not hold. For example, assume Zpn as Z module where p is any prime
number and n ∈ N, which is copure D2 module but not an endoregular module.

Definition 5.1. A module N is referred to as a copure Rickart module if, for each f ∈ EndR(N ),
the kernel Ker(f) is a copure submodule of module N and summand of N .

Proposition 5.2. For copure D2 R-module N , the following statements are equivalent :

(1) Module N is copure Rickart and dual Rickart ;

(2) N
⊕

N has SSP and copure intersection property;

(3) N is the Endoregular module.
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Proof. (1) ⇒ (3) To prove N is endoregular module then Ker(f) and Img(f) are summands
for all f ∈ EndR(N ). Img(f) is a summand of N since N is dual Rickart, also N is a copure
Rickart module, hence Ker(f) is copure for all f ∈ EndR(N ). So we get Ker(f) is a summand
of N . Hence N is the Endoregular module.

(2) ⇒ (3) Img(g) ≤
⊕

N since N
⊕

N has SSP for each g ∈ EndR(N ) and due to copure
intersection property, Ker(f) is copure for each f ∈ EndR(N ). This implies Ker(f) is a
summand of N , as N is a copure D2 module.

(3) ⇒ (1) and (3) ⇒ (2) It is clear from the definition of Endoregular module.

In the following proposition, we find when a copure Rickart module is a copure D2.

Proposition 5.3. Every copure Rickart module is copure D2 module over copure semi-simple
ring.

Proof. Suppose N is a copure Rickart module over a copure semi-simple ring R. For a P ≤ N
satisfy N/P ∼= N ≤

⊕
N , P is copure submodule of N . As R is a copure semi-simple ring, P

is a summand of N this implies N is a copure D2 module.

Next, we will discuss copure D2 modules with respect to copure semisimple rings. If each
copure submodule of an R-module N is a summand of N then a ring R is said to be copure
semisimple.

Proposition 5.4. The following statements are equivalent :-

(1) R is a copure semisimple ring;

(2) Every generated finitely R-module is a copure D2;

(3) Every 2-generated module is a copure D2.

Proof. (1) ⇒ (2) ⇒ (3).
(3) ⇒ (1) We are required to prove that each copure ideal, say I of R is a summand of R.

Consider R
⊕

R/I which is copure D2. So from Proposition 3.4, there exists f : R → R/I
then Ker(f) ∼= I, which is copure in R, hence I is summand of R. Therefore R is a copure
semisimple ring.

Next, we characterize the two modules when one module is copure D2 with respect to another
module and characterize this condition with copure semisimple modules.

Definition 5.5. Let N and N ′ be R-modules, then N is N ′ copure D2, if for a module homo-
morphism g : N → N ′/P where P is a copure submodule of N ′ and N ′/P is isomorphic to a
summand of N , ∃ a h ∈ HomR(N ,N ′) such that π ◦ h = g, where π is natural epimorphism
from N ′ to N ′/P .

N

g

��

h

||
N ′ π // N ′/P

This implies the above diagram commutes.

Proposition 5.6. For each copure submodule P of N , if N/P isomorphic to a summand of R-
module N and N/P is N -copure D2, then R-module N is copure semisimple.

Proof:- Since N/P is N copure D2 implies identity mapping from N/P to N/P has a lifting
g : N/P → N . Hence short exact sequence 0 → P → N → N/P splits, implies P ≤

⊕
N .

Proposition 5.7. Let N = N ′ ⊕N ′′ be a copure D2 and N ′ is a copure simple module. Then
N ′ is N ′′-copure D2 module.

Proof. Follows from the above definition.
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Recall If every factor module of a copure injective module is copure injective, a ring is
considered as copure hereditary.

Proposition 5.8. Let a module N be a copure injective module over a copure hereditary ring R.
Then R-module N is a copure D2 module.

Proof. Since R-module N is copure injective over the copure hereditary ring, so each quotient
module of copure injective is copure injective. For copure submodule P of N then N/P is
copure injective hence P ≤

⊕
N . Therefore R-module N is copure D2.

Lemma 5.9. Let T be a projective module and T
⊕

K be a copure D2 module where K is an
R-module. If there exists an epimorphism f : T → K such that Ker(f) is copure, then K is a
projective module.

Proof. Since f is an epimorphism with Ker(f) as copure in T . From Corollary 3.7 Ker(f) will
be a summand of T . Hence epimorphism f splits and K is projective.

In the next proposition, we characterize von-Neumann regular rings in terms of copure D2
modules.

In [3], The introduction of pure D2 modules as a generalization of D2 modules. If any
pure submodule B of N satisfies N/B ∼= A and A ≤

⊕
N , then B is a summand of N , is

considered as pure D2 module. In this section, copure D2 modules are introduced as another
generalization of D2 modules and since these two ideas are comparable, we analyze pure and
copure D2 modules.

Proposition 5.10. An R-module N is pure D2 if and only if it is copure D2 over a Dedekind
domain R.

Proof. The concepts of copurity and purity coincide over the dedekind domain (Remark 22, [4]).
So, copure D2 is same as pure D2 over dedekind domain.

Recall a ring R is considered to be classical if it is commutative and each generated co-finitely
R-module is linearly compact.( [11])

Proposition 5.11. For a classical ring R, the following statements are equivalent:

(1) R is a copure semi-simple ring.

(2) R is a PDS ring.

(3) Each R-module is copure D2.

(4) Each R-module is pure D2.

Proof. (1) ⇔ (2) Directly follows from [[6], Proposition 19(ii)].
(2) ⇔ (4)R is a PDS ring if and only if each pure submodule is a summand of an R module

if and only if each R-module is pure D2.
(1) ⇔ (3)R is a copure semi-simple ring if and only if each copure submodule is a summand

if and only if each R-module is copure D2.

References
[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, Vol.

13(2), Springer-Verlage, New York, 1992.

[2] X. Fu, H. Zhu and N. Ding, On copure projective modules and copure projective dimensions, Comm.
Algebra, 40(1), 343-359, 2012.

[3] S. Gupta and A. J. Gupta, Pure-direct-projective modules, Palestine Journal of Mathematics, 2023.

[4] V. A. Hiremath, Copure submodules, Acta Math. Hungar., 44(1-2), 3-12, 1984.

[5] V. A. Hiremath, Generated co-finitely and co-finitely related modules, Acta Math. Hungar., 39(1-3), 1-9,
1982.

[6] V. A. Hiremath, Copure-injective modules, Indian J. Pure Appl. Math., 20(3), 250-259, 1989.



COPURE D2 MODULES 135

[7] J.P. Jans, On co-Noetherian rings, J. London Math. Soc., 2(1), 588-590, 1969.

[8] S. K. Maurya and S. E. Toksoy, Copure direct injective modules, J. Algebra Appl., 21(9), 2250187, 2022.

[9] W. K. Nicholson, Semiregular modules and rings, Canad. J. Math., 28(5), 1105-1120, 1976.

[10] P. Vamos, The dual of the notion of generated finitely, J. London Math. Soc., 1(1), 643-646, 1968.

[11] P. Vámos, Classical rings, J. Algebra, 34(1), 114-129, 1975.

[12] R. Wisbauer, Foundations of Module and Ring Theory: A handbook for study and research, Gordon and
Breach Science Publishers, 1991.

Author information

Kaushal Gupta1, Sonal Gupta2 and Ashok Ji Gupta3, 1,2,3 Department of Mathematical Sciences, IIT(BHU),
Varanasi–221005;, India.
E-mail: kaushal.gupta.rs.mat18@itbhu.ac.in, sonalgupta.rs.mat17@itbhu.ac.in,

agupta.apm@itbhu.ac.in


	1 Introduction
	2 Preliminaries
	3 Copure D2 Modules
	4 Summands and Direct Sums of Copure D2 modules
	5 Characterization of copure D2 modules over rings

