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Abstract Let A be a commutative integral domain with identity, .S a multiplicatively closed
subset of A. An ideal I of A is called S-principal if there exist s € S and = € I such that
sI C< x >C I. Also, an S-integral domain A is called S-PID if every ideal I of A is S-
principal. Using this concept, we give many examples, properties and S-versions of several
known results on principal ideal domains. Also, we characterize S-PID in terms of S-prime
ideals. Moreover, we investigate structural properties of modules over S-PID.

1 Introduction

Theory of principal ideal domains played an important role in the developement of structure
theory of finitely generated abelian groups. This theory has a history extending over more than
hundred years. Recall that a commutative integral domain with identity is called a principal ideal
domain, or PID, if its each ideal can be generated by a single element. Prominent examples of
principal ideal domains include the set of integers Z, polynomial ring k[X] over a field k£ and
the ring of Gaussian integers Z[i]. Several attempts have been made to generalize the concept
of principal ideal domain in order to extend its structural properties. In 1988, Hamann et al.
[8] introduced the notion of almost principal ideal domain as a generalization of principal ideal
domain. Let D be an integral domain with field of fraction K. An ideal I of D[z] is called
almost principal if there exist an f(z) € I of positive degree and a nonzero s € D such that
sI C f(z)D[x]. A polynomial ring D[z] is called an almost principal ideal domain if all ideals
of D[z] with proper extensions to K [x] are almost principal. They introduced this notion to study
the following questions due to Ratliff, Houston and Arnold:

(i) When is (az — b) K[x] N D[z] generated by linear polynomials?
(ii) When is f(z)K[z] N D[z] divisorial?

(iii) When is an ideal I, which is its own extension-contraction from D[z] to D[[x]] and back,
equal to c¢/([) in the z-adic topology?

In 2002, Anderson and Dumitrescu [1] abstracted the notion of almost principal ideal domain
for any commutative integral domain and called it an S-principal ideal domain (briefly, S-PID).
They have transferred several results on PID to S-PID. For example, they proved S-version of
Cohen-type theorem i.e., a ring A is an S-PID if and only if every prime ideal of A (disjoint
from S) is S-principal. Recently, S-version of many special rings and modules has received
much attention; see, [1], [4], [5] and [6], for example.

In this paper, we show that S-PID enjoy analogue of many properties of PID. Cohen’s theo-
rem for PID is the classic result which states that an integral domain is a PID if and only if its
prime ideals are principal. We prove this result for S-PID (Theorem 2.13). It is well known that
a submodule of a finitley generated module over a PID is finitely generated ([9, Theorem 6.2.6,
Corollary 6.2.10]). We provide an example to show that it is not true for S-PID (Example 2.15).
In Theorem 2.14 and Proposition 2.16, we generalize [9, Theorem 6.2.6, Corollary 6.2.10] for
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S-PID. It is well known that a finitely generated torsion free module over a PID is free. Finally,
in Theorem 2.17, we prove S-version of [9, Theorem 6.2.14].

Throughout the paper, A will be a commutative ring with identity and S be a multiplicatively
closed subset of A unless otherwise stated.

2 Properties of S-PID and Modules over S-PID

Let A be a commutative ring and S a multiplicatively closed subset of A. We say that A is an
S-integral domain if there exists s € S such that for any a,b € A with ab = 0, we have either
sa = 0 or sb = 0. It is clear from the definition that an integral domain is an S-integral domain
but the converse need not be true in general. For this, consider the following example.

Example 2.1. Let A = Z[z]/ < 4z >. Then, clearly A is not an integral domain. Consider
multiplicatively closed subset S = {2"+ < 42 >: n € NUO} of A. If f,g € A such that
fg = 0. Then 4x|fg, and so x| fg. This implies that either z|f or z|g. Put s = 4+ < 4z >€ S.
Then either sf = 0 or sg = 0. Thus, A is an S-integral domain.

Hamed and Malik [7] introduced the concept of S-prime ideals as a generalization of prime
ideals as follows: Let A be a ring, S C A a multiplicatively closed subset and P an ideal of A
such that PN S = (). Then P is said to be S-prime ideal if there exists an s € S such that for
all a,b € A with ab € P, we have sa € P or sb € P. Also, for each multiplicatively closed
subset S of A, 5* = {r € A: ¥ is a unit of S~' A} is said to be saturation of S. Note that S* is
a multiplicatively closed subset containing S.

In the following result, we include some basic properties of S-integral domains.

Proposition 2.2, Let A be a ring and S a multiplicatively closed subset of A. Then the following
are hold.

(i) Let S* be the saturation of S. Then A is an S-integral domain if and only if A is an S*-
integral domain.

(ii) If A is an S-integral domain, then S~—' A is an integral domain.

(iii) Anideal P is an S-prime ideal if and only if A/ P is an S-integral domain, where S = {5 =
s+P:se S}

Proof. (i) Suppose A is an S-integral domain. Since S C S*, so A is an S*-integral domain.
Conversely, suppose A is an S*-integral domain. Let a,b € A with ab = 0, then there exists
s* € S§* such that either s*a = 0 or s*b = 0. Since s* € S*, ST is a unit in S~!'A. This
implies that there exists * € S~1A such that STﬁ = 1 and so there exists ¢ € .S such that
t(s*u — t;) = 0. Thus, ts*u = tt;. Now, s*a = 0 or s*b = 0 implies that tus*a = 0 or
tus*b = 0. This implies that tt;a = 0 or t¢t;b = 0. Put s = tt¢;, then either sa = 0 or
sb = 0. Therefore, A is an S-integral domain.

(i) Let A be an S-integral domain. Let %, % € S~ A with %% = 0. Then there exists s’ € S
such that s’ab = 0. Since A is S-integral domain, there exists s € S such that ss’a = 0 or
sb = 0. This implies that $ = 0 or § = 0. Consequently, & = 0 or = = 0. Therefore,

S~!A s an integral domain.

(iii) Suppose P is an S-prime ideal of A. Let a+ P,b+ P € A/P be such that (a+ P)(b+ P) =
P, zero of A/P. Then ab € P. Since P is an S-prime ideal of A, there exists s € S
such that sa € P or sb € P. This implies that sa + P = P or sb + P = P; whence
(s+ P)a+P)=Por(s+P)b+P)=P,andsos(a+ P) = Pors(b+ P) = P.
Thus, A/ P is an S-integral domain. Conversely, suppose A/ P is an S-integral domain. Let
a,b € A with ab € P. Then ab+ P = P, and so (a + P)(b+ P) = P. Since A/P is
an S-integral domain, there exists s = s + P € A/P such that either 5(a + P) = P or
5(b+ P) = P. This implies that either sa € P or sb € P. Hence P is an S-prime ideal of
A.

]
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The concept of S-PID was introduced by Anderson and Dumitrescu [1], where the authors
assumed that S-PID is an integral domain. Now, we provide more general definition of S-PID
as follows:

Definition 2.3. Let A be a ring, S a multiplicatively closed subset of A and I an ideal of A. We
say that I is S-principal if there exists s € S, a € I such that sI C< a >. Also, an S-integral
domain A is said to be an S-PID if each ideal I of A is an S-principal ideal.

It is clear from the definition that a PID is always an S-PID but the converse need not be true.
For this consider the following examples.

Example 2.4. Let A = F'[z, 1, ...] be a polynomial ring in infinitely many indeterminats over
afield F. Let S = A\ {0}, then S is a multiplicatively closed subset of A. Let I be any nonzero
ideal of A,then IN S #£ 0. Lets € IN S, then sI C< s >C I. Consequently, I is S-principal.
Thus, A is an S-PID which is clearly not a PID.

Example 2.5. Let A = Z¢ and S = {1,2,4}. Then A is an S-integral domain. Also, every ideal
of A is principal, so S-principal (take s = 1). Thus, A is S-PID. Clearly, A is not a PID since it
is not an integral domain.

The following result provides a connection between S-PID and PID.
Proposition 2.6. If A is an S-PID, then S~' A is a PID.

Proof. Suppose A is an S-PID. Let S~'I be a proper ideal of S~!A. Then I is an ideal of
A. Since A is an S-PID, there exist s € S and a € [ such that sI C< a >. This implies
that S~'(sI) € S7' < a >, and so $S7'I C S~! < a >. Therefore, S7'I C S~' < a >
(since £ is a unit in S~'A). On the other hand, a € I implies that S~! < a >C S~'I. Thus,
S711=5""<a>=< % >. Therefore, S~'A is a PID. ]

In [3], Aqalmoun introduced the concept of S-maximal ideal as a generalization of maximal
ideal.

Definition 2.7. [3, Definition 3.1] Let A be a commutative ring, S C A be a multiplicatively
closed subset and P an ideal of A such that P NS = (). Then P is said to be an S-maximal ideal
of A if there exists an s € S such that whenever P C I for some ideal I of A then either sI C M
orINS #0.

It is well known that in a PID, each non zero prime ideal is maximal. In the following, we
generalize this result for S-PID.

Proposition 2.8. Let A be an S-PID, then every nonzero S-prime ideal of A is an S-maximal
ideal.

Proof. Let P be anonzero S-prime ideal of A. Then there exists s € S such that for any a,b € A
with ab € P, we have sa € P or sb € P. Let P C I for some ideal I and I NS = (. Then
S~!P C S~'I. Since P is an S-prime ideal, by [7, Remark 1(3)], S™!P is a prime ideal of
S~1A. Also, I NS = () implies that S~'I is a proper ideal of S~!' A. By Proposition 2.6, S~' A
is a PID because A is an S-PID. But then S~!P is a maximal ideal of S—! A which is contained
in a proper ideal S~'I. Thus S~'P = S~'I. Now, leta € I, then ¢ € S~'I = S~'P. This
implies that there exists ¢ € S such that ta € P and so sI C P. Therefore, P is S-maximal ideal
of A. O

Proposition 2.9. Let A be a ring. Then following are hold.

(i) Let S; C Sy be two multiplicatively closed subset of A. If A is an S|-PID, then A is an
S»-PID.

(ii) Let S* be the saturation of S. Then A is an S-PID if and only if A is an S*-PID.
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Proof. 1. Straightforward.
2. Suppose A is an S-PID. Since S C S*, so by Proposition 2.9 (1), A is an S*-PID.
Conversely, suppose A is an S*-PID. Let I be an ideal of A, then there exist s* € S anda € [

*

such that s*I C< a >. Since s* € S*, % is a unit in S~1A, and so there exists v € S—1A4 such
that ST% = 1. This implies that there exists ¢ € .S such that ¢(s*u — ¢') = 0 and so ts*u = tt'.
Now, s*I C< a > implies that ts*ul C< a > so that tt'] C< a >. Put s = tt/, then s € S such

that sI C< a >. Therefore, I is an S-principal ideal of A. Hence A is an S-PID. O

In general, homomorphic image of an S-PID need not be an S-PID. For example, let A =
Z,B =Zp and f : A — B be defined by f(x) = =, for all z € A. Then, f is a surjective
map. Let S = {1}, then A is an S-PID but Z,, is not S = {1}-PID because Z,, is not S-integral
domain. However, we have the following:

Proposition 2.10. Let A be an S-PID and f : A — B be a surjective homomorphism. If B is an
S-integral domain, then B is an S-PID.

Proof. Let I be an ideal of B. Then f~!(I) is an ideal of A. Since A is S-PID, there exists s € S
such that sf~!(I) C< a >, for some a € f~!(I). Now, f(sf~'(I)) C f(< a >) implies that
sf(f~'(I)) C f(< a>) and so sI C< b >, where b = f(a) € I. Therefore, I is an S-principal
ideal and so B is an S-PID. ]

Anderson and Dumitrescu [1] introduced S-Noetherian rings as a generalization of Noethe-
rian rings. Let A be a commutative ring with identity and S a multiplicatively closed subset of
A. Then A is called S-Noetherian if for any ideal I of A, there exist an s € S and a finitely
generated ideal J of A such that sT C J C I.

Proposition 2.11. Let A be an S-PID, then A is an S-Noetherian ring.

Proof. Let I be an ideal of A. Then there exist s € S and a € [ such that sI C< a >C I.
Consequently, [ is S-finite, and so A is an S-Noetherian ring. O

Remark 2.12. Converse of the Proposition 2.11 need not be true. For example, let A = Z[z] and
S = {1}, then A is an S-Noetherian ring but not an S-PID.

Now we prove S-version of Cohen-type theorem which states that an integral domain A is a
PID if and only if each prime ideal of A is principal.

Theorem 2.13. Let A be an S-integral domain. Then A is an S-PID if and only if every S-prime
ideal of A is S-principal.

Proof. Suppose A is an S-PID. Then every ideal of A is S-principal, in particular, every S-
prime ideal of A is S-principal. Conversely, suppose every S-prime ideal of A is S-principal.
On contrary, suppose A is not an S-PID. Let X be the set of all non S-principal ideals of A.
Then X # (. Let {I;} be a chainin X and I = U;[;. If I ¢ X, then I is an S-principal ideal of
A. This implies that there exist an s € S and « € [ such that sI C< a >C I. Since o € I, so
a € I;, for some i. This implies that sI; C sI C< a >C I;. Therefore, I; is S-principal, which
is a contradiction because I; € X. Thus, I € X and so every chain in X has an upper bound
in X. Then by Zorn’s lemma, there exists a maximal element P in X with respect to inclusion.
Notice that PN S = . For, if P N.S # (), then there exists s € S such that s € P. Consequently,
sP C< s >C P,i.e., Pis S-principal, which is not possible because P € X. Now, we claim that
P is S-prime. If possible, suppose P is not S-prime. Then there exist a,b € A such that ab € P
but neither sa € P nor sb € P, forall s € S. Consider the ideal J = P+ < a >. Then J contains
P properly and so J ¢ X. This implies that J is S-principal and so there exist s; € Sand c € J
such that s;J C< ¢ >C J. Now since ab € Pandb ¢ P,be (P:a)andb ¢ P,andso (P : a)
contains P properly. Consequently, (P : a) ¢ X. This implies that (P : a) is S-principal, and
so there exist s, € S and d € (P : a) such that s;(P : a) C< d >C (P : a). Now, lete € P,
then sje = wuc, for some v € A. This implies that u < ¢ >C P, and so sjuJ Cu < ¢ >C P.
Consequently, sjua € P. This implies that sju € (P : a) so that s;s,u € s2(P :a) C< d >.
Write s;sou = vd, for some v € A; whence szs%e = s15uc = ved €< ed >. Consequently,
szs%P C< ¢d >. On the other hand, d € (P : a) implies that da € P, and so dJ C P; whence
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cd € P. Thus, we have szs%P C< cd >C P. This implies that P is S-principal, a contradiction
since P € X. Consequently, P is S-prime, and so by hypothesis P is an S-principal ideal of A,
a contradiction because P € X. Hence, A is an S-PID. O

Now we define the concept of S-free module as a generalization of free modules in order to
extend the structure of free modules over S-PID. Let A be a ring, S a multiplicatively closed
subset of A and M an A-module. We say that M is S-free if there exist s € S and a free
submodule F' of M such that sM C F. A basis of F'is called an S-basis of M.

The following result is an S-version of [9, Theorem 6.2.6].

Theorem 2.14. Let A be an S-PID and M be an S-free A-module with S-basis consisting of
n elements. Then every nonzero submodule of M is S-free with S-basis containing atmost n
elements.

Proof. Let B = {x,x,...,2,} be an S-basis of M. Then there exists s; € S such that sy M C
F=<uz,2,...,2, >C M. We use induction on n to prove this result. Suppose n = 1. Then
B ={x}and s;M C< x; >C M. Let N be a submodule of M. Define amap f : A — Ax;
by f(a) = ax, for all a € A. Then f is an isomorphism. Since s; N is a submodule of Az,
f~'(s1N) is anideal of A. Consequently, f~!(s;N) is an S-principal ideal of A. Since A is an S-
PID, there exist s, € S and a € A such that s,f~!(s1N) C< a >C f~!(s;N). This implies that
f(Szf_l(S]N)) < f(a) >C f(f_l(SlN)); whence Ssz_l(S1N) < f(a) >C sitN C N,
and s0 5251 N C< f(a) >C s; N C N. This implies that NV is S-free with S-basis {f(a)}. Thus,
the statement is true for n = 1.

Now, suppose the statement of the theorem is true for all S-free modules with S-basis containing
m elements, where m < n. We need to prove the result for n. Consider the submodule L =<
x1 >= Az and quotient homomorphism = : M — M/L defined by 7(z) = = + L, for all
x € M. We claim that X = 7(B) = {n(z2),...,7(x,)} is an S-basis of M /L. For this, let
az,3,...,a, € Asuchthat apm(zy)+as3m(z3)+- - -+anm(x,) = L, zero of M /L. This implies
that m(ax2 + a3z +- - - +anr,) = L; whence apxa + a3z +- - +apx, + L = L = Az which
implies that a2y + azxzs + -+ - + a2, = oy, for some o) € A. Since B = {z,22,...,%,}
is basis of M, oy = ap = - = a, = 0. Also, since < B >C M, so < n(B) >C M/L. Since,
s$i1M C< 1,22,...,2, >,80 s1(M/L) C< w(x2),7(23),...,7(x,) >C M/L. Consequently,
M/L is an S-free A-module with S-basis containing n — 1 elements. Let N be a nonzero
submodule of M. Then 7(NN) is a submodule of M/L. If 7(N) = {L}, zero submodule of
M/L. Then n(N) = (N + L)/L = {L}, and so N + L = L; whence N C L = Ax;. Then
by the case n = 1, N is S-free with S-basis containing one element. Suppose w(N) # {L},
i.e., m(IV) is a nonzero submodule of M/L. Then, by second isomorphism theorem w(N) =
(N+L)/L= N/(LNN). Since M/L is S-free with S-basis containing n — 1 elements, so by
induction hypothesis N/(L N N) is S-free with S-basis containing atmost n — 1 elements. Let
T={y+LNN,y2+LNN,...,y. + LN N} bean S-basis for N/(L N N). Then there exists
s3 € Ssuchthat s3(N/(LNN))C<y1+LNN,y+LNN,...,y, +LNN >C N/(LNN),
where r < n—1. Let 81, 3, ..., B € Asuchthat 81y + B2z + - -+ Bry = 0. This implies that
Bi(y1+LNN)+Ba(ya+LNN)+- -+ B, (y. +LNN) = LNN, the zero of N/(LNN). Since T’
is linearly independent, so 3; = 0, for all ¢. Thus, 77 = {y1, 2, . . .,y } is a linearly independent
set over A. This implies that K =< y1,¥s,...,y, > is free with 7" as a basis and the map
y; — yi + N N L is an isomorphism from K to N/N N L. Let z € N. Then s3(z + LN N) =
aj(yi+LNN)+a(y2+LNN)+---+a.(y. + LNN), for some a;,ay, ...,a, € A. But then
s3z — (a1y1 +aay2 + - - -+ ary,) € LN N. This implies that s3x = a1y + a2y + - - + aryr + 2,
for some z € L N N. Consequently, s3z € K + (LN N), and so s3sN C K + (LN N). Now,
we show that K N (L N N) = {0}. For this, letw € KN (LNN). Then,w+ NNL=NnNL,
asw € LN N. Then w = 0, since the map w — w + N N L is an isomorphism from K to
N/(N N L). Thus, K N (LN N) = {0}. Hence, s3N C K & (LN N) = N/(LNN)& LN N.
Now, since N/(L N N) is S-free with S-basis containing atmost n — 1 elements and L N N is
S-free with S-basis containing atmost one element. So, N is S-free with S-basis containing
atmost n element, as desired. m|

It is well known that every submodule of a finitely generated module over a PID is finitely
generated. However, this result is not true for S-PID. For this, we have the following:
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Example 2.15. Let A = F[z,22,...,%p,...| be a polynomial ring in infinitely many indeter-
minates over a field F. Consider a multiplicatively closed subset S = A\ {0}. Then by Example
2.4, Ais an S-PID. Consider A as A-module. Then A is a finitely generated module over an
S-PID A, but its A-submodule < x1, x5, ... > is not finitely generated.

However for an S-PID, we have the following result:
Proposition 2.16. Each submodule of a finitely generated module over an S-PID is S-finite.

Proof. Let A be an S-PID and M be a finitely generated A-module. Then M = Az, +
Axy + - + Ax,, for some xj,x;,...,2, € M. Consider the map f : A" — M defined
by f(ai,az,...,an) = a1my + axs + -+ + anxy, for all (a1, ay,...,a,) € A™. Then f is a
surjective A-module homomorphism. Let N be a submodule of M, then f~!(N) is a submodule
of A™. Since A" is a free A-module, so A" is S-free. By Theorem 2.14, f~'(N ) is S-free with
S-basis containing atmost n elements. Therefore, there exist s € S and linearly independent
elements y;, 12, ...,y € A" such that sf "' (N) C< y1,92,...,y- >C f~1(NV), where r < n.
This implies that sN C< f(v1), f(v2), ..., f(yr) >C N. Thus, N is S-finite. o

Finally, we generalize [9, Theorem 6.2.14] for S-PID.

Theorem 2.17. A finitely generated torsion free module over an S-PID is S-free.

Proof. Let M be a finitely generated torsion free module over an S-PID A. Let X = {zy,...,z,}
be a generating set for M and Y be a maximal linearly independent subset of X . Without loss of
generality, we may assume Y = {z, 22, ..., 2}, wherer <nand z; # 0,foralli = 1,2,...,7.

Since M is torsion free, {z;} is linearly independent. This implies that Y # (). If Y = X, then
X is a basis of M and so M is free. Suppose Y # X. Since Y is maximal linearly independent

set, the set {1, x>, ..., x4} is linearly dependent, for 1 < ¢ < n —r. This implies that there
exist ay, az, ..., 0, apy; € Asuchthat oz +aoxy + -+ apxy + o jze; = 0. If iy = 0,
then oy = ap = --- = a,. = 0, which is not possible. So a.+; # 0, forall (1 < i <n —r). Put
QO = Qpp1Qpy2 ... 0. Then a # 0 € A because M is torsion free. Now, consider the submodule
N =< z,22,...,2, >. Then a,y;z,., = —(171 + ax2 + -+ - + @) € N. This implies that

azy+; € N, forall i(1 <i <n-—r).But, already ax; € N, forall i(1 <4 <r). Thus, az; € N,
for all (1 < ¢ < n). Consequently, for all x € M,ax € N. This inducesamap f: M — N
defined by f(x) = ax, for all z € M. Since M is torsion free, so f is injective. By fundamental
theorem of homomorphism, M = f(M). Now, since f(A) is a submodule of N and N is S-free
so by Theorem 2.14, f(M) is S-free with S-basis containing atmost r elements. Therefore, M
is S-free, as desired. O
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