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Abstract Let A be a commutative integral domain with identity, S a multiplicatively closed
subset of A. An ideal I of A is called S-principal if there exist s ∈ S and x ∈ I such that
sI ⊆< x >⊆ I . Also, an S-integral domain A is called S-PID if every ideal I of A is S-
principal. Using this concept, we give many examples, properties and S-versions of several
known results on principal ideal domains. Also, we characterize S-PID in terms of S-prime
ideals. Moreover, we investigate structural properties of modules over S-PID.

1 Introduction

Theory of principal ideal domains played an important role in the developement of structure
theory of finitely generated abelian groups. This theory has a history extending over more than
hundred years. Recall that a commutative integral domain with identity is called a principal ideal
domain, or PID, if its each ideal can be generated by a single element. Prominent examples of
principal ideal domains include the set of integers Z, polynomial ring k[X] over a field k and
the ring of Gaussian integers Z[i]. Several attempts have been made to generalize the concept
of principal ideal domain in order to extend its structural properties. In 1988, Hamann et al.
[8] introduced the notion of almost principal ideal domain as a generalization of principal ideal
domain. Let D be an integral domain with field of fraction K. An ideal I of D[x] is called
almost principal if there exist an f(x) ∈ I of positive degree and a nonzero s ∈ D such that
sI ⊆ f(x)D[x]. A polynomial ring D[x] is called an almost principal ideal domain if all ideals
of D[x] with proper extensions to K[x] are almost principal. They introduced this notion to study
the following questions due to Ratliff, Houston and Arnold:

(i) When is (ax− b)K[x] ∩D[x] generated by linear polynomials?

(ii) When is f(x)K[x] ∩D[x] divisorial?

(iii) When is an ideal I , which is its own extension-contraction from D[x] to D[[x]] and back,
equal to cl(I) in the x-adic topology?

In 2002, Anderson and Dumitrescu [1] abstracted the notion of almost principal ideal domain
for any commutative integral domain and called it an S-principal ideal domain (briefly, S-PID).
They have transferred several results on PID to S-PID. For example, they proved S-version of
Cohen-type theorem i.e., a ring A is an S-PID if and only if every prime ideal of A (disjoint
from S) is S-principal. Recently, S-version of many special rings and modules has received
much attention; see, [1], [4], [5] and [6], for example.

In this paper, we show that S-PID enjoy analogue of many properties of PID. Cohen’s theo-
rem for PID is the classic result which states that an integral domain is a PID if and only if its
prime ideals are principal. We prove this result for S-PID (Theorem 2.13). It is well known that
a submodule of a finitley generated module over a PID is finitely generated ([9, Theorem 6.2.6,
Corollary 6.2.10]). We provide an example to show that it is not true for S-PID (Example 2.15).
In Theorem 2.14 and Proposition 2.16, we generalize [9, Theorem 6.2.6, Corollary 6.2.10] for



On S-Principal Ideal Domain 137

S-PID. It is well known that a finitely generated torsion free module over a PID is free. Finally,
in Theorem 2.17, we prove S-version of [9, Theorem 6.2.14].

Throughout the paper, A will be a commutative ring with identity and S be a multiplicatively
closed subset of A unless otherwise stated.

2 Properties of S-PID and Modules over S-PID

Let A be a commutative ring and S a multiplicatively closed subset of A. We say that A is an
S-integral domain if there exists s ∈ S such that for any a, b ∈ A with ab = 0, we have either
sa = 0 or sb = 0. It is clear from the definition that an integral domain is an S-integral domain
but the converse need not be true in general. For this, consider the following example.

Example 2.1. Let A = Z[x]/ < 4x >. Then, clearly A is not an integral domain. Consider
multiplicatively closed subset S = {2n+ < 4x >: n ∈ N ∪ 0} of A. If f, g ∈ A such that
fg = 0. Then 4x|fg, and so x|fg. This implies that either x|f or x|g. Put s = 4+ < 4x >∈ S.
Then either sf = 0 or sg = 0. Thus, A is an S-integral domain.

Hamed and Malik [7] introduced the concept of S-prime ideals as a generalization of prime
ideals as follows: Let A be a ring, S ⊆ A a multiplicatively closed subset and P an ideal of A
such that P ∩ S = ∅. Then P is said to be S-prime ideal if there exists an s ∈ S such that for
all a, b ∈ A with ab ∈ P , we have sa ∈ P or sb ∈ P . Also, for each multiplicatively closed
subset S of A, S∗ = {r ∈ A : r

1 is a unit of S−1A} is said to be saturation of S. Note that S∗ is
a multiplicatively closed subset containing S.

In the following result, we include some basic properties of S-integral domains.

Proposition 2.2. Let A be a ring and S a multiplicatively closed subset of A. Then the following
are hold.

(i) Let S∗ be the saturation of S. Then A is an S-integral domain if and only if A is an S∗-
integral domain.

(ii) If A is an S-integral domain, then S−1A is an integral domain.

(iii) An ideal P is an S-prime ideal if and only if A/P is an S-integral domain, where S = {s =
s+ P : s ∈ S}.

Proof. (i) Suppose A is an S-integral domain. Since S ⊆ S∗, so A is an S∗-integral domain.
Conversely, suppose A is an S∗-integral domain. Let a, b ∈ A with ab = 0, then there exists
s∗ ∈ S∗ such that either s∗a = 0 or s∗b = 0. Since s∗ ∈ S∗, s∗

1 is a unit in S−1A. This
implies that there exists u

t1
∈ S−1A such that s∗

1
u
t1

= 1 and so there exists t ∈ S such that
t(s∗u − t1) = 0. Thus, ts∗u = tt1. Now, s∗a = 0 or s∗b = 0 implies that tus∗a = 0 or
tus∗b = 0. This implies that tt1a = 0 or tt1b = 0. Put s = tt1, then either sa = 0 or
sb = 0. Therefore, A is an S-integral domain.

(ii) Let A be an S-integral domain. Let a
t1
, b
t2

∈ S−1A with a
t1

b
t2
= 0. Then there exists s′ ∈ S

such that s′ab = 0. Since A is S-integral domain, there exists s ∈ S such that ss′a = 0 or
sb = 0. This implies that a

1 = 0 or b
1 = 0. Consequently, a

t1
= 0 or b

t2
= 0. Therefore,

S−1A is an integral domain.

(iii) Suppose P is an S-prime ideal of A. Let a+P, b+P ∈ A/P be such that (a+P )(b+P ) =
P , zero of A/P . Then ab ∈ P . Since P is an S-prime ideal of A, there exists s ∈ S
such that sa ∈ P or sb ∈ P . This implies that sa + P = P or sb + P = P ; whence
(s + P )(a + P ) = P or (s + P )(b + P ) = P , and so s(a + P ) = P or s(b + P ) = P .
Thus, A/P is an S-integral domain. Conversely, suppose A/P is an S-integral domain. Let
a, b ∈ A with ab ∈ P . Then ab + P = P , and so (a + P )(b + P ) = P . Since A/P is
an S-integral domain, there exists s = s + P ∈ A/P such that either s(a + P ) = P or
s(b+ P ) = P . This implies that either sa ∈ P or sb ∈ P . Hence P is an S-prime ideal of
A.
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The concept of S-PID was introduced by Anderson and Dumitrescu [1], where the authors
assumed that S-PID is an integral domain. Now, we provide more general definition of S-PID
as follows:

Definition 2.3. Let A be a ring, S a multiplicatively closed subset of A and I an ideal of A. We
say that I is S-principal if there exists s ∈ S, a ∈ I such that sI ⊆< a >. Also, an S-integral
domain A is said to be an S-PID if each ideal I of A is an S-principal ideal.

It is clear from the definition that a PID is always an S-PID but the converse need not be true.
For this consider the following examples.

Example 2.4. Let A = F [x1, x2, . . .] be a polynomial ring in infinitely many indeterminats over
a field F . Let S = A \ {0}, then S is a multiplicatively closed subset of A. Let I be any nonzero
ideal of A, then I ∩ S ̸= ∅. Let s ∈ I ∩ S, then sI ⊆< s >⊆ I . Consequently, I is S-principal.
Thus, A is an S-PID which is clearly not a PID.

Example 2.5. Let A = Z6 and S = {1, 2, 4}. Then A is an S-integral domain. Also, every ideal
of A is principal, so S-principal (take s = 1). Thus, A is S-PID. Clearly, A is not a PID since it
is not an integral domain.

The following result provides a connection between S-PID and PID.

Proposition 2.6. If A is an S-PID, then S−1A is a PID.

Proof. Suppose A is an S-PID. Let S−1I be a proper ideal of S−1A. Then I is an ideal of
A. Since A is an S-PID, there exist s ∈ S and a ∈ I such that sI ⊆< a >. This implies
that S−1(sI) ⊆ S−1 < a >, and so s

1S
−1I ⊆ S−1 < a >. Therefore, S−1I ⊆ S−1 < a >

(since s
1 is a unit in S−1A). On the other hand, a ∈ I implies that S−1 < a >⊆ S−1I . Thus,

S−1I = S−1 < a >=< a
1 >. Therefore, S−1A is a PID.

In [3], Aqalmoun introduced the concept of S-maximal ideal as a generalization of maximal
ideal.

Definition 2.7. [3, Definition 3.1] Let A be a commutative ring, S ⊆ A be a multiplicatively
closed subset and P an ideal of A such that P ∩ S = ∅. Then P is said to be an S-maximal ideal
of A if there exists an s ∈ S such that whenever P ⊆ I for some ideal I of A then either sI ⊆ M
or I ∩ S ̸= ∅.

It is well known that in a PID, each non zero prime ideal is maximal. In the following, we
generalize this result for S-PID.

Proposition 2.8. Let A be an S-PID, then every nonzero S-prime ideal of A is an S-maximal
ideal.

Proof. Let P be a nonzero S-prime ideal of A. Then there exists s ∈ S such that for any a, b ∈ A
with ab ∈ P , we have sa ∈ P or sb ∈ P . Let P ⊆ I for some ideal I and I ∩ S = ∅. Then
S−1P ⊆ S−1I . Since P is an S-prime ideal, by [7, Remark 1(3)], S−1P is a prime ideal of
S−1A. Also, I ∩ S = ∅ implies that S−1I is a proper ideal of S−1A. By Proposition 2.6, S−1A
is a PID because A is an S-PID. But then S−1P is a maximal ideal of S−1A which is contained
in a proper ideal S−1I . Thus S−1P = S−1I . Now, let a ∈ I , then a

1 ∈ S−1I = S−1P . This
implies that there exists t ∈ S such that ta ∈ P and so sI ⊆ P . Therefore, P is S-maximal ideal
of A.

Proposition 2.9. Let A be a ring. Then following are hold.

(i) Let S1 ⊆ S2 be two multiplicatively closed subset of A. If A is an S1-PID, then A is an
S2-PID.

(ii) Let S∗ be the saturation of S. Then A is an S-PID if and only if A is an S∗-PID.
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Proof. 1. Straightforward.
2. Suppose A is an S-PID. Since S ⊆ S∗, so by Proposition 2.9 (1), A is an S∗-PID.

Conversely, suppose A is an S∗-PID. Let I be an ideal of A, then there exist s∗ ∈ S and a ∈ I
such that s∗I ⊆< a >. Since s∗ ∈ S∗, s∗

1 is a unit in S−1A, and so there exists u
t′ ∈ S−1A such

that s∗

1
u
t′ = 1. This implies that there exists t ∈ S such that t(s∗u − t′) = 0 and so ts∗u = tt′.

Now, s∗I ⊆< a > implies that ts∗uI ⊆< a > so that tt′I ⊆< a >. Put s = tt′, then s ∈ S such
that sI ⊆< a >. Therefore, I is an S-principal ideal of A. Hence A is an S-PID.

In general, homomorphic image of an S-PID need not be an S-PID. For example, let A =
Z, B = Zm and f : A → B be defined by f(x) = x, for all x ∈ A. Then, f is a surjective
map. Let S = {1}, then A is an S-PID but Zm is not S = {1}-PID because Zm is not S-integral
domain. However, we have the following:

Proposition 2.10. Let A be an S-PID and f : A → B be a surjective homomorphism. If B is an
S-integral domain, then B is an S-PID.

Proof. Let I be an ideal of B. Then f−1(I) is an ideal of A. Since A is S-PID, there exists s ∈ S
such that sf−1(I) ⊆< a >, for some a ∈ f−1(I). Now, f(sf−1(I)) ⊆ f(< a >) implies that
sf(f−1(I)) ⊆ f(< a >) and so sI ⊆< b >, where b = f(a) ∈ I . Therefore, I is an S-principal
ideal and so B is an S-PID.

Anderson and Dumitrescu [1] introduced S-Noetherian rings as a generalization of Noethe-
rian rings. Let A be a commutative ring with identity and S a multiplicatively closed subset of
A. Then A is called S-Noetherian if for any ideal I of A, there exist an s ∈ S and a finitely
generated ideal J of A such that sI ⊆ J ⊆ I .

Proposition 2.11. Let A be an S-PID, then A is an S-Noetherian ring.

Proof. Let I be an ideal of A. Then there exist s ∈ S and a ∈ I such that sI ⊆< a >⊆ I .
Consequently, I is S-finite, and so A is an S-Noetherian ring.

Remark 2.12. Converse of the Proposition 2.11 need not be true. For example, let A = Z[x] and
S = {1}, then A is an S-Noetherian ring but not an S-PID.

Now we prove S-version of Cohen-type theorem which states that an integral domain A is a
PID if and only if each prime ideal of A is principal.

Theorem 2.13. Let A be an S-integral domain. Then A is an S-PID if and only if every S-prime
ideal of A is S-principal.

Proof. Suppose A is an S-PID. Then every ideal of A is S-principal, in particular, every S-
prime ideal of A is S-principal. Conversely, suppose every S-prime ideal of A is S-principal.
On contrary, suppose A is not an S-PID. Let X be the set of all non S-principal ideals of A.
Then X ̸= ∅. Let {Ii} be a chain in X and I = ∪iIi. If I /∈ X , then I is an S-principal ideal of
A. This implies that there exist an s ∈ S and α ∈ I such that sI ⊆< α >⊆ I . Since α ∈ I , so
α ∈ Ii, for some i. This implies that sIi ⊆ sI ⊆< α >⊆ Ii. Therefore, Ii is S-principal, which
is a contradiction because Ii ∈ X . Thus, I ∈ X and so every chain in X has an upper bound
in X . Then by Zorn’s lemma, there exists a maximal element P in X with respect to inclusion.
Notice that P ∩S = ∅. For, if P ∩S ̸= ∅, then there exists s ∈ S such that s ∈ P . Consequently,
sP ⊆< s >⊆ P , i.e., P is S-principal, which is not possible because P ∈ X . Now, we claim that
P is S-prime. If possible, suppose P is not S-prime. Then there exist a, b ∈ A such that ab ∈ P
but neither sa ∈ P nor sb ∈ P , for all s ∈ S. Consider the ideal J = P+ < a >. Then J contains
P properly and so J /∈ X . This implies that J is S-principal and so there exist s1 ∈ S and c ∈ J
such that s1J ⊆< c >⊆ J . Now since ab ∈ P and b /∈ P , b ∈ (P : a) and b /∈ P , and so (P : a)
contains P properly. Consequently, (P : a) /∈ X . This implies that (P : a) is S-principal, and
so there exist s2 ∈ S and d ∈ (P : a) such that s2(P : a) ⊆< d >⊆ (P : a). Now, let e ∈ P ,
then s1e = uc, for some u ∈ A. This implies that u < c >⊆ P , and so s1uJ ⊆ u < c >⊆ P .
Consequently, s1ua ∈ P . This implies that s1u ∈ (P : a) so that s1s2u ∈ s2(P : a) ⊆< d >.
Write s1s2u = vd, for some v ∈ A; whence s2s

2
1e = s1s2uc = vcd ∈< cd >. Consequently,

s2s
2
1P ⊆< cd >. On the other hand, d ∈ (P : a) implies that da ∈ P , and so dJ ⊆ P ; whence
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cd ∈ P . Thus, we have s2s
2
1P ⊆< cd >⊆ P . This implies that P is S-principal, a contradiction

since P ∈ X . Consequently, P is S-prime, and so by hypothesis P is an S-principal ideal of A,
a contradiction because P ∈ X . Hence, A is an S-PID.

Now we define the concept of S-free module as a generalization of free modules in order to
extend the structure of free modules over S-PID. Let A be a ring, S a multiplicatively closed
subset of A and M an A-module. We say that M is S-free if there exist s ∈ S and a free
submodule F of M such that sM ⊆ F . A basis of F is called an S-basis of M .

The following result is an S-version of [9, Theorem 6.2.6].

Theorem 2.14. Let A be an S-PID and M be an S-free A-module with S-basis consisting of
n elements. Then every nonzero submodule of M is S-free with S-basis containing atmost n
elements.

Proof. Let B = {x1, x2, . . . , xn} be an S-basis of M . Then there exists s1 ∈ S such that s1M ⊆
F =< x1, x2, . . . , xn >⊆ M . We use induction on n to prove this result. Suppose n = 1. Then
B = {x1} and s1M ⊆< x1 >⊆ M . Let N be a submodule of M . Define a map f : A → Ax1
by f(a) = ax1, for all a ∈ A. Then f is an isomorphism. Since s1N is a submodule of Ax1,
f−1(s1N) is an ideal of A. Consequently, f−1(s1N) is an S-principal ideal of A. Since A is an S-
PID, there exist s2 ∈ S and a ∈ A such that s2f

−1(s1N) ⊆< a >⊆ f−1(s1N). This implies that
f(s2f

−1(s1N)) ⊆< f(a) >⊆ f(f−1(s1N)); whence s2ff
−1(s1N) ⊆< f(a) >⊆ s1N ⊆ N ,

and so s2s1N ⊆< f(a) >⊆ s1N ⊆ N . This implies that N is S-free with S-basis {f(a)}. Thus,
the statement is true for n = 1.
Now, suppose the statement of the theorem is true for all S-free modules with S-basis containing
m elements, where m < n. We need to prove the result for n. Consider the submodule L =<
x1 >= Ax1 and quotient homomorphism π : M → M/L defined by π(x) = x + L, for all
x ∈ M . We claim that X = π(B) = {π(x2), . . . , π(xn)} is an S-basis of M/L. For this, let
α2, α3, . . . , αn ∈ A such that α2π(x2)+α3π(x3)+· · ·+αnπ(xn) = L, zero of M/L. This implies
that π(α2x2+α3x3+ · · ·+αnxn) = L; whence α2x2+α3x3+ · · ·+αnxn+L = L = Ax1 which
implies that α2x2 + α3x3 + · · ·+ αnxn = α1x1, for some α1 ∈ A. Since B = {x1, x2, . . . , xn}
is basis of M , α1 = α2 = · · · = αn = 0. Also, since < B >⊆ M , so < π(B) >⊆ M/L. Since,
s1M ⊆< x1, x2, . . . , xn >, so s1(M/L) ⊆< π(x2), π(x3), . . . , π(xn) >⊆ M/L. Consequently,
M/L is an S-free A-module with S-basis containing n − 1 elements. Let N be a nonzero
submodule of M . Then π(N) is a submodule of M/L. If π(N) = {L}, zero submodule of
M/L. Then π(N) = (N + L)/L = {L}, and so N + L = L; whence N ⊆ L = Ax1. Then
by the case n = 1, N is S-free with S-basis containing one element. Suppose π(N) ̸= {L},
i.e., π(N) is a nonzero submodule of M/L. Then, by second isomorphism theorem π(N) =
(N + L)/L ∼= N/(L ∩N). Since M/L is S-free with S-basis containing n− 1 elements, so by
induction hypothesis N/(L ∩ N) is S-free with S-basis containing atmost n − 1 elements. Let
T = {y1 +L∩N, y2 +L∩N, . . . , yr +L∩N} be an S-basis for N/(L∩N). Then there exists
s3 ∈ S such that s3(N/(L ∩N)) ⊆< y1 + L ∩N, y2 + L ∩N, . . . , yr + L ∩N >⊆ N/(L ∩N),
where r ≤ n−1. Let β1, β2, . . . , βr ∈ A such that β1y1+β2y2+ · · ·+βryr = 0. This implies that
β1(y1+L∩N)+β2(y2+L∩N)+ · · ·+βr(yr+L∩N) = L∩N , the zero of N/(L∩N). Since T
is linearly independent, so βi = 0, for all i. Thus, T ′ = {y1, y2, . . . , yr} is a linearly independent
set over A. This implies that K =< y1, y2, . . . , yr > is free with T ′ as a basis and the map
yi → yi +N ∩ L is an isomorphism from K to N/N ∩ L. Let x ∈ N . Then s3(x+ L ∩N) =
a1(y1 +L∩N)+ a2(y2 +L∩N)+ · · ·+ ar(yr +L∩N), for some a1, a2, . . . , ar ∈ A. But then
s3x− (a1y1 +a2y2 + · · ·+aryr) ∈ L∩N . This implies that s3x = a1y1 +a2y2 + · · ·+aryr + z,
for some z ∈ L ∩ N . Consequently, s3x ∈ K + (L ∩ N), and so s3N ⊆ K + (L ∩ N). Now,
we show that K ∩ (L ∩N) = {0}. For this, let w ∈ K ∩ (L ∩N). Then, w +N ∩ L = N ∩ L,
as w ∈ L ∩ N . Then w = 0, since the map w → w + N ∩ L is an isomorphism from K to
N/(N ∩ L). Thus, K ∩ (L ∩N) = {0}. Hence, s3N ⊆ K ⊕ (L ∩N) ∼= N/(L ∩N)⊕ L ∩N .
Now, since N/(L ∩ N) is S-free with S-basis containing atmost n − 1 elements and L ∩ N is
S-free with S-basis containing atmost one element. So, N is S-free with S-basis containing
atmost n element, as desired.

It is well known that every submodule of a finitely generated module over a PID is finitely
generated. However, this result is not true for S-PID. For this, we have the following:
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Example 2.15. Let A = F [x1, x2, . . . , xn, . . .] be a polynomial ring in infinitely many indeter-
minates over a field F . Consider a multiplicatively closed subset S = A\{0}. Then by Example
2.4, A is an S-PID. Consider A as A-module. Then A is a finitely generated module over an
S-PID A, but its A-submodule < x1, x2, . . . > is not finitely generated.

However for an S-PID, we have the following result:

Proposition 2.16. Each submodule of a finitely generated module over an S-PID is S-finite.

Proof. Let A be an S-PID and M be a finitely generated A-module. Then M = Ax1 +
Ax2 + · · · + Axn, for some x1, x2, . . . , xn ∈ M . Consider the map f : An → M defined
by f(a1, a2, . . . , an) = a1x1 + a2x2 + · · · + anxn, for all (a1, a2, . . . , an) ∈ An. Then f is a
surjective A-module homomorphism. Let N be a submodule of M , then f−1(N) is a submodule
of An. Since An is a free A-module, so An is S-free. By Theorem 2.14, f−1(N) is S-free with
S-basis containing atmost n elements. Therefore, there exist s ∈ S and linearly independent
elements y1, y2, . . . , yr ∈ An such that sf−1(N) ⊆< y1, y2, . . . , yr >⊆ f−1(N), where r ≤ n.
This implies that sN ⊆< f(y1), f(y2), . . . , f(yr) >⊆ N . Thus, N is S-finite.

Finally, we generalize [9, Theorem 6.2.14] for S-PID.

Theorem 2.17. A finitely generated torsion free module over an S-PID is S-free.

Proof. Let M be a finitely generated torsion free module over an S-PID A. Let X = {x1, . . . , xn}
be a generating set for M and Y be a maximal linearly independent subset of X . Without loss of
generality, we may assume Y = {x1, x2, . . . , xr}, where r ≤ n and xi ̸= 0, for all i = 1, 2, . . . , r.
Since M is torsion free, {xi} is linearly independent. This implies that Y ̸= ∅. If Y = X , then
X is a basis of M and so M is free. Suppose Y ̸= X . Since Y is maximal linearly independent
set, the set {x1, x2, . . . , xr, xr+i} is linearly dependent, for 1 ≤ i ≤ n− r. This implies that there
exist α1, α2, . . . , αr, αr+i ∈ A such that α1x1 +α2x2 + · · ·+αrxr +αr+ixr+i = 0. If αr+i = 0,
then α1 = α2 = · · · = αr = 0, which is not possible. So αr+i ̸= 0, for all i(1 ≤ i ≤ n− r). Put
α = αr+1αr+2 . . . αn. Then α ̸= 0 ∈ A because M is torsion free. Now, consider the submodule
N =< x1, x2, . . . , xr >. Then αr+ixri = −(α1x1 + α2x2 + · · ·+ αrxr) ∈ N . This implies that
αxr+i ∈ N , for all i(1 ≤ i ≤ n− r). But, already αxi ∈ N , for all i(1 ≤ i ≤ r). Thus, αxi ∈ N ,
for all i(1 ≤ i ≤ n). Consequently, for all x ∈ M,αx ∈ N . This induces a map f : M → N
defined by f(x) = αx, for all x ∈ M . Since M is torsion free, so f is injective. By fundamental
theorem of homomorphism, M ∼= f(M). Now, since f(M) is a submodule of N and N is S-free
so by Theorem 2.14, f(M) is S-free with S-basis containing atmost r elements. Therefore, M
is S-free, as desired.
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