On *S***-Principal Ideal Domain**

Ajim Uddin Ansari and Surya Prakash*

Communicated by Manoj Kumar Patel

Dedicated to Prof. B. M. Pandeya on his 78th birthday

MSC 2020 Classifications: Primary 13A15, 13A02; Secondary 13F10, 13E15.

Keywords and phrases: S-PID, S-prime ideal, S-Noetherian ring, S-free module..

The authors grateful thank the anonymous reviewer for his/her valuable suggestions and comments to improve the paper.

Abstract Let A be a commutative integral domain with identity, S a multiplicatively closed subset of A. An ideal I of A is called S-principal if there exist $s \in S$ and $x \in I$ such that $sI \subseteq \langle x \rangle \subseteq I$. Also, an S-integral domain A is called S-PID if every ideal I of A is S-principal. Using this concept, we give many examples, properties and S-versions of several known results on principal ideal domains. Also, we characterize S-PID in terms of S-prime ideals. Moreover, we investigate structural properties of modules over S-PID.

1 Introduction

Theory of principal ideal domains played an important role in the developement of structure theory of finitely generated abelian groups. This theory has a history extending over more than hundred years. Recall that a commutative integral domain with identity is called a principal ideal domain, or PID, if its each ideal can be generated by a single element. Prominent examples of principal ideal domains include the set of integers \mathbb{Z} , polynomial ring k[X] over a field k and the ring of Gaussian integers $\mathbb{Z}[i]$. Several attempts have been made to generalize the concept of principal ideal domain in order to extend its structural properties. In 1988, Hamann et al. [8] introduced the notion of almost principal ideal domain as a generalization of principal ideal domain. Let D be an integral domain with field of fraction K. An ideal I of D[x] is called almost principal if there exist an $f(x) \in I$ of positive degree and a nonzero $s \in D$ such that $sI \subseteq f(x)D[x]$. A polynomial ring D[x] is called an almost principal ideal domain if all ideals of D[x] with proper extensions to K[x] are almost principal. They introduced this notion to study the following questions due to Ratliff, Houston and Arnold:

- (i) When is $(ax b)K[x] \cap D[x]$ generated by linear polynomials?
- (ii) When is $f(x)K[x] \cap D[x]$ divisorial?
- (iii) When is an ideal I, which is its own extension-contraction from D[x] to D[[x]] and back, equal to cl(I) in the x-adic topology?

In 2002, Anderson and Dumitrescu [1] abstracted the notion of almost principal ideal domain for any commutative integral domain and called it an S-principal ideal domain (briefly, S-PID). They have transferred several results on PID to S-PID. For example, they proved S-version of Cohen-type theorem i.e., a ring A is an S-PID if and only if every prime ideal of A (disjoint from S) is S-principal. Recently, S-version of many special rings and modules has received much attention; see, [1], [4], [5] and [6], for example.

In this paper, we show that S-PID enjoy analogue of many properties of PID. Cohen's theorem for PID is the classic result which states that an integral domain is a PID if and only if its prime ideals are principal. We prove this result for S-PID (Theorem 2.13). It is well known that a submodule of a finitley generated module over a PID is finitely generated ([9, Theorem 6.2.6, Corollary 6.2.10]). We provide an example to show that it is not true for S-PID (Example 2.15). In Theorem 2.14 and Proposition 2.16, we generalize [9, Theorem 6.2.6, Corollary 6.2.10] for

137

S-PID. It is well known that a finitely generated torsion free module over a PID is free. Finally, in Theorem 2.17, we prove S-version of [9, Theorem 6.2.14].

Throughout the paper, A will be a commutative ring with identity and S be a multiplicatively closed subset of A unless otherwise stated.

2 Properties of S-PID and Modules over S-PID

Let A be a commutative ring and S a multiplicatively closed subset of A. We say that A is an S-integral domain if there exists $s \in S$ such that for any $a, b \in A$ with ab = 0, we have either sa = 0 or sb = 0. It is clear from the definition that an integral domain is an S-integral domain but the converse need not be true in general. For this, consider the following example.

Example 2.1. Let $A = \mathbb{Z}[x]/\langle 4x \rangle$. Then, clearly A is not an integral domain. Consider multiplicatively closed subset $S = \{2^n + \langle 4x \rangle : n \in \mathbb{N} \cup 0\}$ of A. If $\overline{f}, \overline{g} \in A$ such that $\overline{f}\overline{g} = 0$. Then 4x|fg, and so x|fg. This implies that either x|f or x|g. Put $s = 4 + \langle 4x \rangle \in S$. Then either $s\overline{f} = 0$ or $s\overline{g} = 0$. Thus, A is an S-integral domain.

Hamed and Malik [7] introduced the concept of S-prime ideals as a generalization of prime ideals as follows: Let A be a ring, $S \subseteq A$ a multiplicatively closed subset and P an ideal of A such that $P \cap S = \emptyset$. Then P is said to be S-prime ideal if there exists an $s \in S$ such that for all $a, b \in A$ with $ab \in P$, we have $sa \in P$ or $sb \in P$. Also, for each multiplicatively closed subset S of A, $S^* = \{r \in A : \frac{r}{1} \text{ is a unit of } S^{-1}A\}$ is said to be saturation of S. Note that S^* is a multiplicatively closed subset containing S.

In the following result, we include some basic properties of S-integral domains.

Proposition 2.2. Let A be a ring and S a multiplicatively closed subset of A. Then the following are hold.

- (i) Let S^{*} be the saturation of S. Then A is an S-integral domain if and only if A is an S^{*}-integral domain.
- (ii) If A is an S-integral domain, then $S^{-1}A$ is an integral domain.
- (iii) An ideal P is an S-prime ideal if and only if A/P is an \overline{S} -integral domain, where $\overline{S} = \{\overline{s} = s + P : s \in S\}$.
- *Proof.* (i) Suppose A is an S-integral domain. Since $S \subseteq S^*$, so A is an S^* -integral domain. Conversely, suppose A is an S^* -integral domain. Let $a, b \in A$ with ab = 0, then there exists $s^* \in S^*$ such that either $s^*a = 0$ or $s^*b = 0$. Since $s^* \in S^*$, $\frac{s^*}{1}$ is a unit in $S^{-1}A$. This implies that there exists $\frac{u}{t_1} \in S^{-1}A$ such that $\frac{s^*}{1}\frac{u}{t_1} = 1$ and so there exists $t \in S$ such that $t(s^*u - t_1) = 0$. Thus, $ts^*u = tt_1$. Now, $s^*a = 0$ or $s^*b = 0$ implies that $tus^*a = 0$ or $tus^*b = 0$. This implies that $tt_1a = 0$ or $tt_1b = 0$. Put $s = tt_1$, then either sa = 0 or sb = 0. Therefore, A is an S-integral domain.
- (ii) Let A be an S-integral domain. Let $\frac{a}{t_1}, \frac{b}{t_2} \in S^{-1}A$ with $\frac{a}{t_1}, \frac{b}{t_2} = 0$. Then there exists $s' \in S$ such that s'ab = 0. Since A is S-integral domain, there exists $s \in S$ such that ss'a = 0 or sb = 0. This implies that $\frac{a}{1} = 0$ or $\frac{b}{1} = 0$. Consequently, $\frac{a}{t_1} = 0$ or $\frac{b}{t_2} = 0$. Therefore, $S^{-1}A$ is an integral domain.
- (iii) Suppose P is an S-prime ideal of A. Let a+P, b+P ∈ A/P be such that (a+P)(b+P) = P, zero of A/P. Then ab ∈ P. Since P is an S-prime ideal of A, there exists s ∈ S such that sa ∈ P or sb ∈ P. This implies that sa + P = P or sb + P = P; whence (s + P)(a + P) = P or (s + P)(b + P) = P, and so s(a + P) = P or s(b + P) = P. Thus, A/P is an S-integral domain. Conversely, suppose A/P is an S-integral domain. Let a, b ∈ A with ab ∈ P. Then ab + P = P, and so (a + P)(b + P) = P. Since A/P is an S-integral domain, there exists s = s + P ∈ A/P such that either s(a + P) = P or s(b + P) = P. This implies that either sa ∈ P or sb ∈ P. Hence P is an S-prime ideal of A.

The concept of S-PID was introduced by Anderson and Dumitrescu [1], where the authors assumed that S-PID is an integral domain. Now, we provide more general definition of S-PID as follows:

Definition 2.3. Let A be a ring, S a multiplicatively closed subset of A and I an ideal of A. We say that I is S-principal if there exists $s \in S$, $a \in I$ such that $sI \subseteq \langle a \rangle$. Also, an S-integral domain A is said to be an S-PID if each ideal I of A is an S-principal ideal.

It is clear from the definition that a PID is always an S-PID but the converse need not be true. For this consider the following examples.

Example 2.4. Let $A = F[x_1, x_2, ...]$ be a polynomial ring in infinitely many indeterminats over a field F. Let $S = A \setminus \{0\}$, then S is a multiplicatively closed subset of A. Let I be any nonzero ideal of A, then $I \cap S \neq \emptyset$. Let $s \in I \cap S$, then $sI \subseteq \langle s \rangle \subseteq I$. Consequently, I is S-principal. Thus, A is an S-PID which is clearly not a PID.

Example 2.5. Let $A = \mathbb{Z}_6$ and $S = \{\overline{1}, \overline{2}, \overline{4}\}$. Then A is an S-integral domain. Also, every ideal of A is principal, so S-principal (take $s = \overline{1}$). Thus, A is S-PID. Clearly, A is not a PID since it is not an integral domain.

The following result provides a connection between S-PID and PID.

Proposition 2.6. If A is an S-PID, then $S^{-1}A$ is a PID.

Proof. Suppose A is an S-PID. Let $S^{-1}I$ be a proper ideal of $S^{-1}A$. Then I is an ideal of A. Since A is an S-PID, there exist $s \in S$ and $a \in I$ such that $sI \subseteq \langle a \rangle$. This implies that $S^{-1}(sI) \subseteq S^{-1} \langle a \rangle$, and so $\frac{s}{1}S^{-1}I \subseteq S^{-1} \langle a \rangle$. Therefore, $S^{-1}I \subseteq S^{-1} \langle a \rangle$ (since $\frac{s}{1}$ is a unit in $S^{-1}A$). On the other hand, $a \in I$ implies that $S^{-1} \langle a \rangle \subseteq S^{-1}I$. Thus, $S^{-1}I = S^{-1} \langle a \rangle = \langle \frac{a}{1} \rangle$. Therefore, $S^{-1}A$ is a PID.

In [3], Aqalmoun introduced the concept of S-maximal ideal as a generalization of maximal ideal.

Definition 2.7. [3, Definition 3.1] Let A be a commutative ring, $S \subseteq A$ be a multiplicatively closed subset and P an ideal of A such that $P \cap S = \emptyset$. Then P is said to be an S-maximal ideal of A if there exists an $s \in S$ such that whenever $P \subseteq I$ for some ideal I of A then either $sI \subseteq M$ or $I \cap S \neq \emptyset$.

It is well known that in a PID, each non zero prime ideal is maximal. In the following, we generalize this result for S-PID.

Proposition 2.8. Let A be an S-PID, then every nonzero S-prime ideal of A is an S-maximal ideal.

Proof. Let P be a nonzero S-prime ideal of A. Then there exists $s \in S$ such that for any $a, b \in A$ with $ab \in P$, we have $sa \in P$ or $sb \in P$. Let $P \subseteq I$ for some ideal I and $I \cap S = \emptyset$. Then $S^{-1}P \subseteq S^{-1}I$. Since P is an S-prime ideal, by [7, Remark 1(3)], $S^{-1}P$ is a prime ideal of $S^{-1}A$. Also, $I \cap S = \emptyset$ implies that $S^{-1}I$ is a proper ideal of $S^{-1}A$. By Proposition 2.6, $S^{-1}A$ is a PID because A is an S-PID. But then $S^{-1}P$ is a maximal ideal of $S^{-1}A$ which is contained in a proper ideal $S^{-1}I$. Thus $S^{-1}P = S^{-1}I$. Now, let $a \in I$, then $\frac{a}{1} \in S^{-1}I = S^{-1}P$. This implies that there exists $t \in S$ such that $ta \in P$ and so $sI \subseteq P$. Therefore, P is S-maximal ideal of A.

Proposition 2.9. Let A be a ring. Then following are hold.

- (i) Let $S_1 \subseteq S_2$ be two multiplicatively closed subset of A. If A is an S_1 -PID, then A is an S_2 -PID.
- (ii) Let S^* be the saturation of S. Then A is an S-PID if and only if A is an S^* -PID.

Proof. 1. Straightforward.

2. Suppose A is an S-PID. Since $S \subseteq S^*$, so by Proposition 2.9 (1), A is an S^* -PID. Conversely, suppose A is an S^* -PID. Let I be an ideal of A, then there exist $s^* \in S$ and $a \in I$ such that $s^*I \subseteq \langle a \rangle$. Since $s^* \in S^*$, $\frac{s^*}{1}$ is a unit in $S^{-1}A$, and so there exists $\frac{u}{t'} \in S^{-1}A$ such that $\frac{s^*}{1}\frac{u}{t'} = 1$. This implies that there exists $t \in S$ such that $t(s^*u - t') = 0$ and so $ts^*u = tt'$. Now, $s^*I \subseteq \langle a \rangle$ implies that $ts^*uI \subseteq \langle a \rangle$ so that $tt'I \subseteq \langle a \rangle$. Put s = tt', then $s \in S$ such that $sI \subseteq \langle a \rangle$. Therefore, I is an S-principal ideal of A. Hence A is an S-PID.

In general, homomorphic image of an S-PID need not be an S-PID. For example, let $A = \mathbb{Z}, B = \mathbb{Z}_m$ and $f : A \to B$ be defined by $f(x) = \overline{x}$, for all $x \in A$. Then, f is a surjective map. Let $S = \{1\}$, then A is an S-PID but \mathbb{Z}_m is not $\overline{S} = \{\overline{1}\}$ -PID because \mathbb{Z}_m is not \overline{S} -integral domain. However, we have the following:

Proposition 2.10. Let A be an S-PID and $f : A \to B$ be a surjective homomorphism. If B is an S-integral domain, then B is an S-PID.

Proof. Let I be an ideal of B. Then $f^{-1}(I)$ is an ideal of A. Since A is S-PID, there exists $s \in S$ such that $sf^{-1}(I) \subseteq \langle a \rangle$, for some $a \in f^{-1}(I)$. Now, $f(sf^{-1}(I)) \subseteq f(\langle a \rangle)$ implies that $sf(f^{-1}(I)) \subseteq f(\langle a \rangle)$ and so $sI \subseteq \langle b \rangle$, where $b = f(a) \in I$. Therefore, I is an S-principal ideal and so B is an S-PID.

Anderson and Dumitrescu [1] introduced S-Noetherian rings as a generalization of Noetherian rings. Let A be a commutative ring with identity and S a multiplicatively closed subset of A. Then A is called S-Noetherian if for any ideal I of A, there exist an $s \in S$ and a finitely generated ideal J of A such that $sI \subseteq J \subseteq I$.

Proposition 2.11. Let A be an S-PID, then A is an S-Noetherian ring.

Proof. Let I be an ideal of A. Then there exist $s \in S$ and $a \in I$ such that $sI \subseteq \langle a \rangle \subseteq I$. Consequently, I is S-finite, and so A is an S-Noetherian ring.

Remark 2.12. Converse of the Proposition 2.11 need not be true. For example, let $A = \mathbb{Z}[x]$ and $S = \{1\}$, then A is an S-Noetherian ring but not an S-PID.

Now we prove S-version of Cohen-type theorem which states that an integral domain A is a PID if and only if each prime ideal of A is principal.

Theorem 2.13. Let A be an S-integral domain. Then A is an S-PID if and only if every S-prime ideal of A is S-principal.

Proof. Suppose A is an S-PID. Then every ideal of A is S-principal, in particular, every Sprime ideal of A is S-principal. Conversely, suppose every S-prime ideal of A is S-principal. On contrary, suppose A is not an S-PID. Let X be the set of all non S-principal ideals of A. Then $X \neq \emptyset$. Let $\{I_i\}$ be a chain in X and $I = \bigcup_i I_i$. If $I \notin X$, then I is an S-principal ideal of A. This implies that there exist an $s \in S$ and $\alpha \in I$ such that $sI \subseteq \langle \alpha \rangle \subseteq I$. Since $\alpha \in I$, so $\alpha \in I_i$, for some *i*. This implies that $sI_i \subseteq sI \subseteq \langle \alpha \rangle \subseteq I_i$. Therefore, I_i is S-principal, which is a contradiction because $I_i \in X$. Thus, $I \in X$ and so every chain in X has an upper bound in X. Then by Zorn's lemma, there exists a maximal element P in X with respect to inclusion. Notice that $P \cap S = \emptyset$. For, if $P \cap S \neq \emptyset$, then there exists $s \in S$ such that $s \in P$. Consequently, $sP \subseteq \langle s \rangle \subseteq P$, i.e., P is S-principal, which is not possible because $P \in X$. Now, we claim that P is S-prime. If possible, suppose P is not S-prime. Then there exist $a, b \in A$ such that $ab \in P$ but neither $sa \in P$ nor $sb \in P$, for all $s \in S$. Consider the ideal $J = P + \langle a \rangle$. Then J contains P properly and so $J \notin X$. This implies that J is S-principal and so there exist $s_1 \in S$ and $c \in J$ such that $s_1 J \subseteq \langle c \rangle \subseteq J$. Now since $ab \in P$ and $b \notin P$, $b \in (P:a)$ and $b \notin P$, and so (P:a)contains P properly. Consequently, $(P:a) \notin X$. This implies that (P:a) is S-principal, and so there exist $s_2 \in S$ and $d \in (P:a)$ such that $s_2(P:a) \subseteq \langle d \rangle \subseteq (P:a)$. Now, let $e \in P$, then $s_1e = uc$, for some $u \in A$. This implies that $u < c \ge P$, and so $s_1uJ \subseteq u < c \ge P$. Consequently, $s_1ua \in P$. This implies that $s_1u \in (P:a)$ so that $s_1s_2u \in s_2(P:a) \subseteq \langle d \rangle$. Write $s_1s_2u = vd$, for some $v \in A$; whence $s_2s_1^2e = s_1s_2uc = vcd \in \langle cd \rangle$. Consequently, $s_2s_1^2P \subseteq \langle cd \rangle$. On the other hand, $d \in (P:a)$ implies that $da \in P$, and so $dJ \subseteq P$; whence $cd \in P$. Thus, we have $s_2s_1^2P \subseteq \langle cd \rangle \subseteq P$. This implies that P is S-principal, a contradiction since $P \in X$. Consequently, P is S-prime, and so by hypothesis P is an S-principal ideal of A, a contradiction because $P \in X$. Hence, A is an S-PID.

Now we define the concept of S-free module as a generalization of free modules in order to extend the structure of free modules over S-PID. Let A be a ring, S a multiplicatively closed subset of A and M an A-module. We say that M is S-free if there exist $s \in S$ and a free submodule F of M such that $sM \subseteq F$. A basis of F is called an S-basis of M.

The following result is an S-version of [9, Theorem 6.2.6].

Theorem 2.14. Let A be an S-PID and M be an S-free A-module with S-basis consisting of n elements. Then every nonzero submodule of M is S-free with S-basis containing atmost n elements.

Proof. Let $B = \{x_1, x_2, \ldots, x_n\}$ be an S-basis of M. Then there exists $s_1 \in S$ such that $s_1M \subseteq F = \langle x_1, x_2, \ldots, x_n \rangle \subseteq M$. We use induction on n to prove this result. Suppose n = 1. Then $B = \{x_1\}$ and $s_1M \subseteq \langle x_1 \rangle \subseteq M$. Let N be a submodule of M. Define a map $f : A \to Ax_1$ by $f(a) = ax_1$, for all $a \in A$. Then f is an isomorphism. Since s_1N is a submodule of Ax_1 , $f^{-1}(s_1N)$ is an ideal of A. Consequently, $f^{-1}(s_1N)$ is an S-principal ideal of A. Since A is an S-PID, there exist $s_2 \in S$ and $a \in A$ such that $s_2f^{-1}(s_1N) \subseteq \langle a \rangle \subseteq f^{-1}(s_1N)$. This implies that $f(s_2f^{-1}(s_1N)) \subseteq \langle f(a) \rangle \subseteq f(f^{-1}(s_1N))$; whence $s_2ff^{-1}(s_1N) \subseteq \langle f(a) \rangle \subseteq s_1N \subseteq N$, and so $s_2s_1N \subseteq \langle f(a) \rangle \subseteq s_1N \subseteq N$. This implies that N is S-free with S-basis $\{f(a)\}$. Thus, the statement is true for n = 1.

Now, suppose the statement of the theorem is true for all S-free modules with S-basis containing m elements, where m < n. We need to prove the result for n. Consider the submodule L = < $x_1 >= Ax_1$ and quotient homomorphism $\pi : M \to M/L$ defined by $\pi(x) = x + L$, for all $x \in M$. We claim that $X = \pi(B) = \{\pi(x_2), \ldots, \pi(x_n)\}$ is an S-basis of M/L. For this, let $\alpha_2, \alpha_3, \ldots, \alpha_n \in A$ such that $\alpha_2 \pi(x_2) + \alpha_3 \pi(x_3) + \cdots + \alpha_n \pi(x_n) = L$, zero of M/L. This implies that $\pi(\alpha_2 x_2 + \alpha_3 x_3 + \dots + \alpha_n x_n) = L$; whence $\alpha_2 x_2 + \alpha_3 x_3 + \dots + \alpha_n x_n + L = L = Ax_1$ which implies that $\alpha_2 x_2 + \alpha_3 x_3 + \cdots + \alpha_n x_n = \alpha_1 x_1$, for some $\alpha_1 \in A$. Since $B = \{x_1, x_2, \dots, x_n\}$ is basis of M, $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$. Also, since $\langle B \rangle \subseteq M$, so $\langle \pi(B) \rangle \subseteq M/L$. Since, $s_1M \subseteq \langle x_1, x_2, \ldots, x_n \rangle$, so $s_1(M/L) \subseteq \langle \pi(x_2), \pi(x_3), \ldots, \pi(x_n) \rangle \subseteq M/L$. Consequently, M/L is an S-free A-module with S-basis containing n-1 elements. Let N be a nonzero submodule of M. Then $\pi(N)$ is a submodule of M/L. If $\pi(N) = \{L\}$, zero submodule of M/L. Then $\pi(N) = (N+L)/L = \{L\}$, and so N+L = L; whence $N \subseteq L = Ax_1$. Then by the case n = 1, N is S-free with S-basis containing one element. Suppose $\pi(N) \neq \{L\}$, i.e., $\pi(N)$ is a nonzero submodule of M/L. Then, by second isomorphism theorem $\pi(N) =$ $(N+L)/L \cong N/(L \cap N)$. Since M/L is S-free with S-basis containing n-1 elements, so by induction hypothesis $N/(L \cap N)$ is S-free with S-basis containing atmost n-1 elements. Let $T = \{y_1 + L \cap N, y_2 + L \cap N, \dots, y_r + L \cap N\}$ be an S-basis for $N/(L \cap N)$. Then there exists $s_3 \in S$ such that $s_3(N/(L \cap N)) \subseteq \langle y_1 + L \cap N, y_2 + L \cap N, \dots, y_r + L \cap N \rangle \subseteq N/(L \cap N)$, where $r \leq n-1$. Let $\beta_1, \beta_2, \ldots, \beta_r \in A$ such that $\beta_1 y_1 + \beta_2 y_2 + \cdots + \beta_r y_r = 0$. This implies that $\beta_1(y_1+L\cap N)+\beta_2(y_2+L\cap N)+\cdots+\beta_r(y_r+L\cap N)=L\cap N$, the zero of $N/(L\cap N)$. Since T is linearly independent, so $\beta_i = 0$, for all *i*. Thus, $T' = \{y_1, y_2, \dots, y_r\}$ is a linearly independent set over A. This implies that $K = \langle y_1, y_2, \dots, y_r \rangle$ is free with T' as a basis and the map $y_i \to y_i + N \cap L$ is an isomorphism from K to $N/N \cap L$. Let $x \in N$. Then $s_3(x + L \cap N) =$ $a_1(y_1 + L \cap N) + a_2(y_2 + L \cap N) + \cdots + a_r(y_r + L \cap N)$, for some $a_1, a_2, \ldots, a_r \in A$. But then $s_3x - (a_1y_1 + a_2y_2 + \dots + a_ry_r) \in L \cap N$. This implies that $s_3x = a_1y_1 + a_2y_2 + \dots + a_ry_r + z$, for some $z \in L \cap N$. Consequently, $s_3x \in K + (L \cap N)$, and so $s_3N \subseteq K + (L \cap N)$. Now, we show that $K \cap (L \cap N) = \{0\}$. For this, let $w \in K \cap (L \cap N)$. Then, $w + N \cap L = N \cap L$, as $w \in L \cap N$. Then w = 0, since the map $w \to w + N \cap L$ is an isomorphism from K to $N/(N \cap L)$. Thus, $K \cap (L \cap N) = \{0\}$. Hence, $s_3N \subseteq K \oplus (L \cap N) \cong N/(L \cap N) \oplus L \cap N$. Now, since $N/(L \cap N)$ is S-free with S-basis containing at most n-1 elements and $L \cap N$ is S-free with S-basis containing atmost one element. So, N is S-free with S-basis containing atmost n element, as desired.

It is well known that every submodule of a finitely generated module over a PID is finitely generated. However, this result is not true for *S*-PID. For this, we have the following:

Example 2.15. Let $A = F[x_1, x_2, ..., x_n, ...]$ be a polynomial ring in infinitely many indeterminates over a field F. Consider a multiplicatively closed subset $S = A \setminus \{0\}$. Then by Example 2.4, A is an S-PID. Consider A as A-module. Then A is a finitely generated module over an S-PID A, but its A-submodule $\langle x_1, x_2, ... \rangle$ is not finitely generated.

However for an S-PID, we have the following result:

Proposition 2.16. Each submodule of a finitely generated module over an S-PID is S-finite.

Proof. Let A be an S-PID and M be a finitely generated A-module. Then $M = Ax_1 + Ax_2 + \cdots + Ax_n$, for some $x_1, x_2, \ldots, x_n \in M$. Consider the map $f : A^n \to M$ defined by $f(a_1, a_2, \ldots, a_n) = a_1x_1 + a_2x_2 + \cdots + a_nx_n$, for all $(a_1, a_2, \ldots, a_n) \in A^n$. Then f is a surjective A-module homomorphism. Let N be a submodule of M, then $f^{-1}(N)$ is a submodule of A^n . Since A^n is a free A-module, so A^n is S-free. By Theorem 2.14, $f^{-1}(N)$ is S-free with S-basis containing atmost n elements. Therefore, there exist $s \in S$ and linearly independent elements $y_1, y_2, \ldots, y_r \in A^n$ such that $sf^{-1}(N) \subseteq \langle y_1, y_2, \ldots, y_r \rangle \subseteq f^{-1}(N)$, where $r \leq n$. This implies that $sN \subseteq \langle f(y_1), f(y_2), \ldots, f(y_r) \rangle \subseteq N$. Thus, N is S-finite.

Finally, we generalize [9, Theorem 6.2.14] for S-PID.

Theorem 2.17. A finitely generated torsion free module over an S-PID is S-free.

Proof. Let M be a finitely generated torsion free module over an S-PID A. Let $X = \{x_1, \ldots, x_n\}$ be a generating set for M and Y be a maximal linearly independent subset of X. Without loss of generality, we may assume $Y = \{x_1, x_2, \ldots, x_r\}$, where $r \le n$ and $x_i \ne 0$, for all $i = 1, 2, \ldots, r$. Since M is torsion free, $\{x_i\}$ is linearly independent. This implies that $Y \neq \emptyset$. If Y = X, then X is a basis of M and so M is free. Suppose $Y \neq X$. Since Y is maximal linearly independent set, the set $\{x_1, x_2, \ldots, x_r, x_{r+i}\}$ is linearly dependent, for $1 \le i \le n-r$. This implies that there exist $\alpha_1, \alpha_2, \ldots, \alpha_r, \alpha_{r+i} \in A$ such that $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_r x_r + \alpha_{r+i} x_{r+i} = 0$. If $\alpha_{r+i} = 0$, then $\alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$, which is not possible. So $\alpha_{r+i} \neq 0$, for all $i(1 \le i \le n-r)$. Put $\alpha = \alpha_{r+1}\alpha_{r+2}\dots\alpha_n$. Then $\alpha \neq 0 \in A$ because M is torsion free. Now, consider the submodule $N = \langle x_1, x_2, \ldots, x_r \rangle$. Then $\alpha_{r+i}x_{r_i} = -(\alpha_1x_1 + \alpha_2x_2 + \cdots + \alpha_rx_r) \in N$. This implies that $\alpha x_{r+i} \in N$, for all $i(1 \le i \le n-r)$. But, already $\alpha x_i \in N$, for all $i(1 \le i \le r)$. Thus, $\alpha x_i \in N$, for all $i(1 \le i \le n)$. Consequently, for all $x \in M, \alpha x \in N$. This induces a map $f: M \to N$ defined by $f(x) = \alpha x$, for all $x \in M$. Since M is torsion free, so f is injective. By fundamental theorem of homomorphism, $M \cong f(M)$. Now, since f(M) is a submodule of N and N is S-free so by Theorem 2.14, f(M) is S-free with S-basis containing atmost r elements. Therefore, M is S-free, as desired. \square

References

- [1] D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30(9), 4407–4416 (2002).
- [2] A. U. Ansari and B. K. Sharma, G-graded S-Artinian modules and graded S-secondary representations, Palest. J. Math. 11(3), 175–193 (2022).
- [3] M. Aqalmoun, S-prime ideals in principal domains, J. Indones. Math. Soc. 29(1), 93-98 (2023).
- [4] J. Baeck, G. Lee and J. W. Lim, S-Noetherian rings and their extensions, *Taiwanese J. Math.* 20, 1231–1250 (2016).
- [5] A. Hamed and H. Sana, Modules satisfying the S-Noetherian property and S-ACCR, Comm. Algebra 44, 1941–1951 (2016).
- [6] A. Hamed, S-Noetherian spectrum condition, Comm. Algebra 46, 3314–3321 (2018).
- [7] A. Hamed and A. Malek, S-prime ideals of a commutative ring, *Beitr. Algebra Geom.* **61(3)**, 533–542 (2020).
- [8] E. Hamann, E. Houston and J. L. Johnson, Properties of upper zero in R[x], Pac. J. Math. 135, 63–79 (1988).
- [9] Ramji Lal, Algebra 2, *Linear algebra, Galois theory, Representation theory, Group extensions and Schur multiplier*, Springer, Singapore, 2017.

Author information

Ajim Uddin Ansari and Surya Prakash*, Department of Mathematics, CMP Degree College, University of Allahabad, Prayagraj-211002, India.

E-mail: ajimmatau@gmail.com, suryaprakash.maths@gmail.com