Ring endomorphisms satisfying the \mathcal{Z} -reversible property

Nirbhay Kumar and Avanish Kumar Chaturvedi

Communicated by Manoj Kumar Patel

Dedicated to Prof. B. M. Pandeya on his 78th birthday

MSC 2020 Classification: Primary 16W20, 16U99; Secondary 16D80.

Keywords and phrases: singular elements, reversible rings, Z-reversible rings, α -skew reversible rings.

Acknowledgement: Authors would like to thank referees for his/her useful comments to improve this paper.

Abstract We introduce a notion of α -skew Z-reversible rings describing Z-reversibility of rings in terms of their endomorphisms. In support, we give some examples and counter examples. We go through some of its characteristics and provide a number of characterizations with the help of their extension rings. Also, we discuss some sufficient condition over which the notion of α -skew Z-reversible rings and Z-reversible rings are same.

1 Introduction

All rings in the present study are associative rings having identity and all the modules are unitary. In a ring R, C(R) represents the set of all of its central elements. We denote the ring consisting of all *n*-square matrices over a ring R by $M_n(R)$; and E_{ij} represents the matrix having 1 at $(i, j)^{th}$ place and elsewhere 0.

Recall [10], if E is a right ideal of a ring R with the property that $E \cap E' \neq 0$ for each nonzero right ideal E' of R, then right ideal E is called as *essential* and symbolized by $E \leq_e R_R$. An element $x \in R$ is termed as *right singular* in a ring R if $ann_r(x) = \{a \in R | xa = 0\} \leq_e R_R$. We denote by $\mathcal{Z}_r(R)$ to the set of all such elements of R which forms an ideal of R, i.e., $\mathcal{Z}_r(R) = \{x \in R | ann_r(x) \leq_e R_R\}$. The notion of left singular ideal $\mathcal{Z}(_RR)$ can be given in the similar way.

Recall [7], if xy = 0 predicts yx = 0 for any $x, y \in R$, then R is called a *reversible* ring. As an extension of reversible rings, Kose et al. [8] gave the idea of central reversible rings. When xy = 0 predicts $yx \in C(R)$ for each $x, y \in R$, the ring R is called as *central reversible*. Recently, the idea of central reversible rings has been extended to the concept of Z-reversible rings by us [5]. We called a ring R right (resp., left) Z-reversible if xy = 0 implies $yx \in Z_r(R) \forall x, y \in R$ (resp., $yx \in Z_l(R) \forall x, y \in R$). We called a ring Z-reversible when it is left as well as right Z-reversible.

In 2009, Baser et al. [3] called an endomorphism $\alpha \in End(R)$ right (resp., left) skew reversible if xy = 0 gives $y\alpha(x) = 0$ for all x and y in R (resp., $\alpha(y)x = 0$ for all x and y in R). Whenever α is a left (right) skew reversible endomorphism of ring R, then R is called left (right) α -skew reversible; and when R is both right and left α -skew reversible, it is called as α -skew reversible. Recently, Bhattacharjee et al. [4] presented a new concept of α -skew central reversible rings that generalized the class of α -skew reversible rings. They called endomorphism $\alpha \in End(R)$ as right (left) skew central reversible if xy = 0 gives $y\alpha(x) \in C(R)$, for all x and y in ring R (resp., $\alpha(y)x \in C(R)$, for all x and y in ring R). The ring R is referred to as being (left) α -skew central reversible. When R is both right as well as left α -skew central reversible, then the ring R is referred to as being α -skew central reversible.

Recently, we introduced the idea of α -skew Z-symmetric rings and studied in [6]. Here, we introduce the idea of skew Z_r -reversible rings analogous to α -skew Z-symmetric rings. Some results and their proofs are analogous to that of α -skew Z-symmetric rings.

Definition 1.1. Let α be an endomorphism of a ring *R*.

- (i) α is called right (resp., left) skew \mathbb{Z}_r -reversible whenever for any $a, b \in \mathbb{R}, ab = 0$ implies that $b\alpha(a) \in \mathcal{Z}_r(R)$ (resp., $\alpha(b)a \in \mathcal{Z}_r(R)$).
- (ii) R is said to be right (resp., left) α -skew Z_r -reversible if α is right (resp., left) skew Z_r reversible.
- (iii) R is said to be α -skew Z_r -reversible if it is left as well as right α -skew Z_r -reversible.

Remark 1.2. Left-right symmetry is not applicable to the idea of α -skew Z_r -reversible rings. For instance, let $R = \begin{bmatrix} \mathbb{Z} & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{bmatrix}$. Then, $\mathcal{Z}_r(R) = 0$. Take into consideration the endomorphism α of R presented by $\alpha \left(\begin{bmatrix} x & \bar{y} \\ 0 & \bar{z} \end{bmatrix} \right) = \begin{bmatrix} x & \bar{0} \\ 0 & \bar{0} \end{bmatrix}$. Let $A_1 = \begin{bmatrix} a_1 & \bar{b}_1 \\ 0 & \bar{c}_1 \end{bmatrix} \in R$ and $A_2 = \begin{bmatrix} a_2 & \bar{b}_2 \\ 0 & \bar{c}_2 \end{bmatrix} \in R$ such that $A_1A_2 = \begin{bmatrix} a_1a_2 & a_1\bar{b}_2 + \bar{b}_1\bar{c}_2 \\ 0 & \bar{c}_1\bar{c}_2 \end{bmatrix} = 0$. Then, $A_2\alpha(A_1) = \begin{bmatrix} a_2 & \bar{b}_2 \\ 0 & \bar{c}_2 \end{bmatrix} \begin{bmatrix} a_1 & \bar{0} \\ 0 & \bar{0} \end{bmatrix} = \begin{bmatrix} a_2a_1 & \bar{0} \\ 0 & \bar{0} \end{bmatrix} = \begin{bmatrix} a_2a_1 & \bar{0} \\ 0 & \bar{0} \end{bmatrix}$ $0 \in \mathcal{Z}_r(R)$. As a result, R is right α -skew \mathcal{Z}_r -reversible. As for $A_1 = \begin{bmatrix} 0 & \overline{1} \\ 0 & \overline{0} \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & \overline{0} \\ 0 & \overline{0} \end{bmatrix} \in$ *R*, $A_1A_2 = 0$ while $\alpha(A_2)A_1 = A_2A_1 = \begin{bmatrix} 0 & \overline{1} \\ 0 & \overline{0} \end{bmatrix} \notin \mathcal{Z}_r(R)$, *R* is not left α -skew \mathcal{Z}_r -reversible.

2 Properties and Characterizations

Recall from [1], $\alpha \in End(R)$ is called *compatible* whenever for all $x, y \in R, xy = 0$ if and only if $x\alpha(y) = 0$.

Lemma 2.1. If $\alpha \in End(R)$ is compatible, then $\alpha(x) \in \mathcal{Z}_r(R)$ implies that $x \in \mathcal{Z}_r(R)$.

Proof. Suppose $r \in R$ such that $\alpha(r) \in \mathbb{Z}_r(R)$. Then, $\exists I \leq_q R_R$ such that $\alpha(r)I = 0$. Hence, we have, $\alpha(a)x = 0, \forall x \in I$. Since α is compatible, $\alpha(rx) = \alpha(r)\alpha(x) = 0, \forall x \in I$ and so rx = 0, for all $x \in I$ by [1, Lemma 2.1(ii)]. Therefore, rI = 0 which implies that $r \in \mathcal{Z}_r(R)$.

From Remark 1.2, it is clear that there is no left-right symmetry in the idea of α -skew Z_r reversible rings. However, we offer a sufficient condition for this concept to be left-right symmetric in the next result.

Proposition 2.2. The following statements are equivalent for a ring R with a compatible endomorphism α :

- (i) R is right Z-reversible;
- (ii) R is right α -skew Z_r -reversible;
- (iii) R is left α -skew \mathcal{Z}_r -reversible.

Proof. (1) \Longrightarrow (2). Let xy = 0 for two elements $x, y \in R$. Since α is compatible, by [1, Lemma 2.1(ii)], $\alpha(x)y = 0$. Now as R is right Z-reversible, it gives $y\alpha(x) \in \mathbb{Z}_r(R)$. This proves (2).

(2) \implies (1). Let xy = 0 for two elements $x, y \in R$. Since α is compatible, by [1, Lemma 2.1(ii)], $\alpha(x)y = 0$. Now since R is right α -skew \mathcal{Z} -reversible, $\alpha(yx) = \alpha(y)\alpha(x) \in \mathcal{Z}_r(R)$. Therefore, $yx \in \mathcal{Z}_r(R)$ by Lemma 2.1. This proves (1).

(1) \iff (3). Similar to above cases.

Proposition 2.3. A ring R is right α -skew Z_r -reversible if for any endomorphism α of R such that $x\alpha(x) = 0 \implies x \in \mathcal{Z}_r(R), \forall x \in R.$

Proof. Let uv = 0 for two elements $u, v \in R$. Then, we have $v\alpha(u)\alpha(v\alpha(u)) = v\alpha(uv)\alpha^2(u) = v\alpha(uv)\alpha^2(u)$ 0. Hence $v\alpha(u) \in \mathbb{Z}_r(R)$ by the hypothesis. This proves that R is right α -skew \mathbb{Z}_r -reversible. \Box

)

157

Proposition 2.4. The ring
$$S = \left\{ \begin{bmatrix} r & t \\ 0 & r \end{bmatrix} | r, t \in R \right\}$$
 is α -skew Z_r -reversible for any right Z -reversible ring R , here endomorphism α of S is defined by $\alpha \left(\begin{bmatrix} r & t \\ 0 & r \end{bmatrix} \right) = \begin{bmatrix} r & -t \\ 0 & r \end{bmatrix}$.
Proof. By [2, Lemma 2.25], we have $Z_r(S) = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} | a \in Z_r(R), b \in R \right\}$. Let $A_1 = \begin{bmatrix} a_1 & b_1 \\ 0 & a_1 \end{bmatrix}$, $A_2 = \begin{bmatrix} a_2 & b_2 \\ 0 & a_2 \end{bmatrix} \in S$ such that $A_1A_2 = \begin{bmatrix} a_1a_2 & a_1b_2 + b_1a_2 \\ 0 & a_1a_2 \end{bmatrix} = 0$. Then $a_1a_2 = 0$
which gives $a_2a_1 \in Z_r(R)$ as R is right Z -reversible. Therefore, $A_2\alpha(A_1) = \begin{bmatrix} a_2a_1 & b_2a_1 - a_2b_1 \\ 0 & a_2a_1 \end{bmatrix} \in Z_r(S)$ and $\alpha(A_2)A_1 = \begin{bmatrix} a_2a_1 & a_2b_1 - b_2a_1 \\ 0 & a_2a_1 \end{bmatrix} \in Z_r(S)$. Thus, S is a α -skew Z_r -reversible

ring.

Remark 2.5. 1. A right α -skew Z_r -reversible ring does not necessarily have to be right α skew central reversible. In support, let R represent the ring as in [4, Example 1.4] and $S = \left\{ \begin{vmatrix} r & t \\ 0 & r \end{vmatrix} | r, t \in R \right\}.$ Then, by [4, Example 1.4], *R* is central reversible and *S* is not right

 α -skew central reversible with respect to endomorphism α of S, defined by $\alpha \left(\begin{bmatrix} r & t \\ 0 & r \end{bmatrix} \right) =$

 $\begin{vmatrix} r & -t \\ 0 & r \end{vmatrix}$. Since R is central reversible, so by [5, Lemma 1] it follows that R is right Zreversible. Hence, by Proposition 2.4, S is right α -skew Z_r -reversible.

- 2. A right α -skew central reversible ring does not necessarily have to be right α -skew \mathcal{Z}_r reversible. In support, every commutative nonsingular ring is α -skew central reversible but may or may not be right α -skew \mathcal{Z}_r -reversible. In support, let $S = \mathbb{R} \times \mathbb{R}$ and consider the ring endomorphism α of S presented by $\alpha(r,t) = (t,r)$. Then, S is right α -skew central reversible as S is commutative but it is not right α -skew \mathcal{Z}_r -reversible as (1,0)(0,1) = (0,0)but $(0,1)\alpha(1,0) = (0,1)(0,1) = (0,1) \notin \mathbb{Z}_r(S) = \{(0,0)\}.$
- 3. Whenever a ring is right α -skew reversible, it is right α -skew Z_r -reversible. But it isn't guaranteed to be so in the other direction. For example, ring S in (1) is right α -skew \mathcal{Z}_r reversible but not α -skew reversible otherwise it will become α -skew central reversible, a contradiction.

Proposition 2.6. A ring R is right α -skew Z_r -reversible for a compatible endomorphism $\alpha \in$ End(R) if R is right α -skew central reversible.

Proof. Let rt = 0 for two elements $r, t \in R$. Then, $t\alpha(r) \in C(R)$. Since α is a compatible endomorphism and rt = 0, we have $\alpha(r)t = 0$ and so $(t\alpha(r))^2 = 0$. Hence, $t\alpha(r) \in \mathbb{Z}_r(R)$ by [10, Lemma 7.11].

Proposition 2.7. Let $\sigma : R \to S$ be a ring isomorphism and $\alpha \in End(R)$. Then, R is right α skew Z_r -reversible if and only if S is right $\bar{\alpha}$ -skew Z_r -reversible, where $\bar{\alpha} = \sigma \alpha \sigma^{-1} \in End(S)$.

Proof. Suppose that R is right α -skew \mathcal{Z}_r -reversible. Let xy = 0 for two elements $x, y \in R$. Then $\sigma(u) = x, \sigma(v) = y$ for some $u, v \in R$ as σ is surjective. Now since $\sigma(uv) = \sigma(u)\sigma(v) = \sigma(u)\sigma(v)$ xy = 0, we have uv = 0 as σ is injective. It follows that $v\alpha(u) \in \mathcal{Z}_r(R)$. Therefore, $y\bar{\alpha}(x) =$ $\sigma(v)\sigma\alpha\sigma^{-1}(\sigma(u)) = \sigma(v)\sigma(\alpha(u)) = \sigma(v\alpha(u)) \in \sigma(\mathcal{Z}_r(R)) \subseteq \mathcal{Z}_r(S)$. Thus, S is right $\bar{\alpha}$ -skew \mathcal{Z}_r -reversible.

In the opposite direction, suppose that S is right $\bar{\alpha}$ -skew \mathcal{Z}_r -reversible. Let uv = 0 for two elements $u, v \in R$. Then $\sigma(u)\sigma(v) = \sigma(uv) = 0$. Hence, $\sigma(v\alpha(u)) = \sigma(v)\sigma(\alpha(u)) = \sigma(v)\sigma(\alpha(u))$ $\sigma(v)\sigma\alpha\sigma^{-1}(\sigma(u)) = \sigma(v)\bar{\alpha}(\sigma(u)) \in \mathcal{Z}_r(S)$. Since σ is an isomorphism, $v\alpha(u) \in \mathcal{Z}_r(R)$. This proves that R is right α -skew \mathcal{Z}_r -reversible. **Theorem 2.8.** *The following are equivalent for* $\alpha \in End(R)$ *:*

- (i) R is right α -skew \mathcal{Z}_r -reversible;
- (ii) $S = \{(a,b) \in R \times R | a b \in \mathcal{Z}_r(R)\}$ with usual addition and multiplication is a right $\bar{\alpha}$ -skew \mathcal{Z}_r -reversible ring, where $\bar{\alpha} \in End(S)$ is given by $\bar{\alpha}(r,t) = (\alpha(r), \alpha(t))$.

Proof. (1) \Longrightarrow (2). Let $(a_1, b_1), (a_2, b_2) \in S$ such that $(a_1, b_1)(a_2, b_2) = (0, 0)$. Then, $a_1a_2 = 0 = b_1b_2$. Since R is right α -skew \mathcal{Z}_r -reversible, $a_2\alpha(a_1), b_2\alpha(b_1) \in \mathcal{Z}_r(R)$. Therefore, $(a_2, b_2)\bar{\alpha}(a_1, b_1) = (a_2\alpha(a_1), b_2\alpha(b_1)) \in \mathcal{Z}_r(R) \times \mathcal{Z}_r(R) \subseteq \mathcal{Z}_r(S)$. Thus, S is right $\bar{\alpha}$ -skew \mathcal{Z}_r -reversible.

(2) \Longrightarrow (1). For two elements $a, b \in R$, let ab = 0. Then for $(a, a), (b, b) \in S$, we have (a, a)(b, b) = (0, 0). So, $(b, b)\bar{\alpha}(a, a) = (b\alpha(a), b\alpha(a)) \in \mathcal{Z}_r(S)$ as S is right $\bar{\alpha}$ -skew \mathcal{Z}_r -reversible. Hence, $ann_r(b\alpha(a), b\alpha(a)) \leq_e S$. We want to show that $ann_r(b\alpha(a)) \leq_e R$ so that $b\alpha(a) \in \mathcal{Z}_r(R)$. Let $0 \neq x \in R$. Then, $(0, 0) \neq (x, x) \in S$. Since $ann_r(b\alpha(a), b\alpha(a)) \leq_e S$, there exists $(0, 0) = (u, v) \in S$ such that $(0, 0) \neq (x, x)(u, v) = (xu, xv) \in ann_r(b\alpha(a), b\alpha(a))$. This implies that $xu, xv \in ann_r(b\alpha(a))$ and at least one of xu, xv must be nonzero. Thus, $ann_r(b\alpha(a)) \leq_e R$ and so $ann_r(b\alpha(a)) \in \mathcal{Z}_r(R)$.

Proposition 2.9. Let $\alpha_i \in End(R_i)$ for each $i \in I$. Then $R = \prod_{i \in I} R_i$ is right α -skew \mathcal{Z}_r reversible if and only if each R_i is right α_i -skew \mathcal{Z}_r -reversible, where $\alpha = (\alpha_i)_{i \in I}$.

Proof. This implied by the fact that $\mathcal{Z}_r(R) = \prod_{i \in I} \mathcal{Z}_r(R_i)$.

Recall [11], a ring R is called an Armendariz ring if for any $f(x) = \sum_{i=0}^{m} a_i x^i, g(x) = \sum_{j=0}^{n} b_j x^j \in R[x], f(x)g(x) = 0$ implies that $a_i b_j = 0$ for all i, j.

Proposition 2.10. With an endomorphism of α , let R be an Armendariz ring. Then R is right α -skew \mathcal{Z}_r -reversible if and only if R[x] is right $\bar{\alpha}$ -skew \mathcal{Z}_r -reversible, where $\bar{\alpha}$ is the endomorphism of R[x] given by $\bar{\alpha}(\sum t_i x^i) = \sum \alpha(t_i) x^i$.

Proof. Sufficiency part:- Let $A = \sum_{i=0}^{m} r_i x^i$, $B = \sum_{j=0}^{n} t_j x^j \in R[x]$ such that AB = 0. Then we have $r_i t_j = 0$ for any pair (i, j) as because R is an Armendariz ring. So $t_j \alpha(r_i) \in \mathcal{Z}_r(R)$ for any pair (i, j) as R is right α -skew \mathcal{Z}_r -reversible. This implies that $B\bar{\alpha}(A) = (\sum_{j=0}^{n} t_j x^j)(\sum_{i=0}^{m} \alpha(r_i) x^i) \in \mathcal{Z}_r(R)[x] = Z_r(S)$ (see [9, Exercise 7.35]). This proves sufficiency part.

Necessity part: Let uv = 0 for two elements $u, v \in R$. Then, $v\bar{\alpha}(u) = v\alpha(u) \in Z_r(S_S) = \mathcal{Z}_r(R)[x]$. This implies that $v\alpha(u) \in Z_r(R)$. This proves necessity part.

Recall [5], if $S^{-1}R$ is the localization ring of a ring R over a multiplicatively closed subset S of R consisting of the central regular elements of R, then $\mathcal{Z}_r(S^{-1}R) = S^{-1}\mathcal{Z}_r(R)$.

Proposition 2.11. If $S^{-1}R$ is the localization ring of a ring R over a multiplicatively closed subset S of R consisting of the central regular elements of R and $\alpha \in End(R)$ be such that $\alpha(S) \subseteq S$, then

(i) $\bar{\alpha}: S^{-1}R \to S^{-1}R$ given by $\bar{\alpha}(rs^{-1}) = \alpha(r)(\alpha(s))^{-1}$ is a ring homomorphism.

(ii) R is right α -skew Z_r -reversible if and only if $S^{-1}R$ is right $\bar{\alpha}$ -skew Z_r -reversible.

Proof. (1). Clear.

(2). Sufficiency part:- Let $r_1s_1^{-1}, r_2s_2^{-1} \in S^{-1}R$ such that $(r_1s_1^{-1})(r_2s_2^{-1}) = 0$. Then, we have $r_1r_2 = 0$ and so $r_2\alpha(r_1) \in \mathcal{Z}_r(R)$. Hence, $(r_2s_2^{-1})\bar{\alpha}(r_1s_1^{-1}) = (r_2s_2^{-1})(\alpha(r_1)\alpha(s_1)^{-1}) = (r_2\alpha(r_1))(s_2\alpha(s_1))^{-1} \in S^{-1}\mathcal{Z}_r(R) = \mathcal{Z}_r(S^{-1}R)$. This proves sufficiency part.

Necessity part: Let $r_1, r_2 \in R$ such that $r_1r_2 = 0$. Then for any $s \in S$, $(r_1s^{-1})(r_2s^{-1}) = 0$ and so $(r_2s^{-1})\bar{\alpha}(r_1s^{-1}) = (r_2s^{-1})(\alpha(r_1)\alpha(s)^{-1}) = (r_2\alpha(r_1))(s\alpha(s))^{-1} \in \mathcal{Z}_r(S^{-1}R) = S^{-1}\mathcal{Z}_r(R)$. This implies that $(r_2\alpha(r_1) \in \mathcal{Z}_r(R)$. This proves necessity part.

Recall from [4], the map $\bar{\alpha} : R[x, x^{-1}] \to R[x, x^{-1}]$ given by $\bar{\alpha}(\sum_{i=k}^{n} a_i x^i) = \sum_{i=k}^{n} \alpha(a_i) x^i$ is a ring homomorphism of $R[x, x^{-1}]$ and its restriction $\bar{\alpha}|_{R[x]}$ lies in End(R[x]) for any $\alpha \in End(R)$.

Corollary 2.12. For any endomorphism α , sending identity on itself, of a ring R, R[x] is right $\bar{\alpha}$ -skew \mathcal{Z}_r -reversible if and only if $R[x, x^{-1}]$ is right $\bar{\alpha}$ -skew \mathcal{Z}_r -reversible.

Proof. Since $R[x, x^{-1}] = S^{-1}(R[x])$ is the localization ring of R over the multiplicatively closed subset $S = \{1, x, x^2, x^3 \cdots\}$ of R consisting of the central regular elements of R and $\bar{\alpha}(S) \subseteq S$, result follows from Proposition 2.11.

Remark 2.13. Let R be a ring that has an endomorphism α that has the property $\alpha(1) = 1$. Then for any $n \ge 2$, $M_n(R)$ and $T_n(R)$ are not right $\bar{\alpha}$ -skew \mathcal{Z}_r -reversible, where $\bar{\alpha}$ is given by $\bar{\alpha}(a_{ij}) = (\alpha(a_{ij}))$.

References

- A. Alhevaz and A. Moussavi, Annihilator conditions in matrix and skew polynomial rings, J. Algebra Appl., 11; 1250079:01-26, 2012.
- [2] A. Amini, B. Amini, A. Nejadzadeh and H. Sharif, Singular clean rings, J. Korean Math. Soc., 55; 1143-1156, 2018.
- [3] M. Baser, C. Y. Hong and T. K. Kwak, On extended reversible rings, Algebra Colloq., 16; 37–48, 2009.
- [4] A. Bhattacharjee and U. S. Chakraborty, Ring endomorphisms satisfying the central reversible property, Proc. Indian Acad. Sci. (Math. Sci.), 130; 12:01-22, 2020.
- [5] A. K. Chaturvedi and N. Kumar, On Z-reversible rings, Proc. Nat. Acad. Sci. India Sect. A, 92; 555-562, 2023.
- [6] A. K. Chaturvedi and N. Kumar, Rings endomorphisms satisfying Z-symmetric property, Jordan J. Math. Stat. (to appear).
- [7] P. M. Cohn, Reversible rings, Bull. London Math. Soc., 31; 641-648, 1999.
- [8] H. Kose, B. Ungor, S. Halicioglu and A. Harmanci, A generalization of reversible rings, Iranian J. Sci. Tech., 38; 43-48, 2014.
- [9] T. Y. Lam, Exercises in Classical Ring Theory, 2nd edi., Problem Books in Mathematics, Springer, New York, 2003.
- [10] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, Springer, Berlin, 1999.
- [11] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73; 14-17, 1997.

Author information

Nirbhay Kumar, Department of Mathematics, Feroze Gandhi College, Raebareli-229001, India. E-mail: nirbhayk2897@gmail.com

Avanish Kumar Chaturvedi, Department of Mathematics, University of Allahabad, Prayagraj-211002, India. E-mail: akchaturvedi.math@gmail.com, achaturvedi@allduniv.ac.in