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Abstract In this paper, we investigate arithmetic progressions in integer-valued quadratic
polynomials. We prove two results for integer-valued quadratic polynomials. First, we prove
that there is no three-term arithmetic progression with a perfect square as a common difference
for a class of integer-valued quadratic polynomials. We then find a class of numbers depending
on integer-valued quadratic polynomials, which cannot work as a common difference for three-
term arithmetic progression. Further, we deduce some results for arithmetic progressions in the
sequence of polygonal and centered polygonal numbers.

1 Introduction

The study of arithmetic progression in the sequence of figurate numbers, specially polygonal
numbers, is an interesting problem and has attracted mathematicians for a long time. Histori-
cally, Euler [7] proved that there is no four-term arithmetic progression of square numbers. In
1965, Sierpiński [11] proved that there exist infinitely many three-term arithmetic progressions
of triangular numbers with a triangular number as a common difference.

In recent years, Brown, Dunn, and Harrington [1] extended the result of Euler for any s-gonal
numbers, where s > 2 is an integer. Moreover, they proved that there exist infinitely many three-
term arithmetic progressions of s-gonal numbers for any fixed value of s. In 2013, Ide and Jones
[5] proved that there exist no arithmetic progression of triangular numbers with square number
as a common difference, but there are infinitely many arithmetic progressions of square numbers
with a triangular number as a common difference. In 2017, Jones and Phillips [6] proved that
given any family of polygonal numbers, there exist no three-term arithmetic progression with
square number as a common difference (see Theorem 1 of [6]). They also proved several results
related to arithmetic progressions in polygonal numbers with common difference a polygonal
number. In [9], Pongsriiam and Subwattanachai extended the results of Brown et al. in [1] to the
case of quadratic polynomials.

In the view of the work done in [9] for arithmetic progressions in integer values of quadratic
polynomials and the result proved in Theorem 1 of [6], a natural question arises:

Problem 1. Given any integer-valued quadratic polynomial, does there exist a three-term arith-
metic progression with square as a common difference in the values of quadratic polynomial?

In this paper, we study this problem and investigate arithmetic progressions in the values
of quadratic polynomials with some special class of numbers as a common difference. Conse-
quently, we derive some results for polygonal numbers. Further, we deduce some results related
to arithmetic progressions in another class of plane figurate numbers called centered polygonal
numbers.
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2 Preliminaries

We start this section with the definition of Pell’s and Generalized Pell’s equation followed by a
result on their solutions.

Definition 2.1. Let d > 1 be a square-free positive integer and N be a non-zero integer. Then
the generalized Pell’s equation is the Diophantine equation of the form

x2 − dy2 = N. (2.1)

For an arbitrary N , the solutions of equation (2.1) are closely related with the solutions of

x2 − dy2 = 1. (2.2)

The relation between the solutions of equation (2.1) and equation (2.2) are indicated in the fol-
lowing result.

Proposition 2.2. [8] Let N be a non-zero integer and d > 1 be a square-free positive integer.

1 . There are infinitely many solutions (xn, yn) of the equation (2.2), and they are given by

(xn + yn
√
d) = (x1 + y1

√
d)n, n ∈ N,

where (x1, y1) is the fundamental solution of equation (2.2).

2 . Let (x1, y1) be the fundamental solution of equation (2.2) and let (α, β) be a solution of
equation (2.1).Then for each n ≥ 1, the ordered pair (γn, δn) is a solution of equation (2.1),
where

γn + δn
√
d = (x1 + y1

√
d)n(α+ β

√
d).

We state two results on arithmetic progressions in integer-valued quadratic polynomial proved
in [9].

Proposition 2.3. [9, Theorem 2] Let a, b, c be three real numbers such that f(n) = an2 + bn+ c
for all positive integer n. Suppose f(n) is a non-negative integer for every positive integer n.
Then 2a, 2b and c are integers, and the sequence (f(n))n≥1 contains no four-term arithmetic
progression.

Proposition 2.4. [9, Theorem 3] Suppose that f(n) is a polynomial satisfying the same assump-
tions as in Proposition 2.3. Then the sequence (f(n))n≥1 contains infinitely many three-term
arithmetic progression. Further, for each positive integer n > −b/(2a), we obtain three-term
arithmetic progression with f(n) as first term and positive common difference.

We also need the following propositions to prove our main results:

Proposition 2.5. [2] Consider the Pythagorean equation

x2 + y2 = z2.

Then all solutions of the above equation satisfying conditions

gcd(x, y, z) = 1, 2|y, x > 0, y > 0, z > 0

are given by
x = m2 − n2, y = 2mn, z = m2 + n2,

where m,n are positive integers such that m > n > 0, gcd(m,n) = 1 and 2 ∤ (m− n).

Proposition 2.6. [2] The Diophantine equation

x4 + y4 = z2

has no integral solution such that x > 0, y > 0, z > 0.
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3 On arithmetic progressions in values of quadratic polynomials

In this section, we prove two results for integer-valued quadratic polynomials. We also discuss
its consequences for the case of polygonal numbers. In the first theorem, we prove that there is
no three-term arithmetic progression with a perfect square as a common difference for a class
of integer-valued quadratic polynomials. In the second theorem, we find a class of numbers
depending on integer-valued quadratic polynomials, which can not work as a common difference
for three-term arithmetic progression.

Theorem 3.1. Let a, b, c ∈ R such that f(n) = an2 + bn + c for all n ∈ N. Suppose f(n) is a
non-negative integer for every n ∈ N such that 2a, 2b and c are integers. Let 2a = λ2, where λ
is some positive integer and t be any positive integer. Then there exist no three-term arithmetic
progression in the quadratic sequence (f(n))n≥1 with common difference t2.

Proof. We will prove this result by method of contradiction. Let a, b, c ∈ R such that f(n) =
an2 + bn + c for all n ∈ N. Suppose f(n) is a non-negative integer for every n ∈ N. Then
by Proposition 2.3, 2a, 2b and c are integers. Multiplying 4a in numerator and denominator of
polynomial f(n) and rearranging, we get

f(n) =
N2 − (b2 − 4ac)

4a
, where N = 2an+ b. (3.1)

Let f(x), f(y) and f(z) be a three-term arithmetic progression in (f(n))n≥1 with common dif-
ference t2, where x < y < z and t are positive integers. Using equation (3.1), we can write

f(x) =
X2 − (b2 − 4ac)

4a
,

f(y) =
Y 2 − (b2 − 4ac)

4a
,

f(z) =
Z2 − (b2 − 4ac)

4a
,

where X = 2ax+ b, Y = 2ay + b and Z = 2az + b.
Let 2a = λ2, where λ is some positive integer and consider t2 = f(y)− f(x), on simplifying

we have
X2 = Y 2 − 2λ2t2. (3.2)

Similarly, for t2 = f(z)− f(y), we have

Z2 = Y 2 + 2λ2t2. (3.3)

Multiplying equation (3.2) and (3.3), we get

(XZ)2 = Y 4 − (2λ2t2)2,

i.e.,
(XZ)2 + (2λ2t2)2 = (Y 2)2. (3.4)

Without loss of generality, we take

gcd(X, t) = gcd(Y, t) = gcd(Z, t) = 1, (3.5)

for, if gcd(X, t) = d > 1, then gcd(Y, t) = gcd(Z, t) = d and we can produce a smaller arith-
metic progression with common difference ( t

d)
2 satisfying the assumed gcd property in equation

(3.5). Therefore, we have gcd(XZ, 2λ2t2, Y 2) = 1. Hence, (XZ, 2λ2t2, Y 2) is a solution of
the Pythagorean equation satisfying conditions of Proposition 2.5. Using Proposition 2.5, there
exist positive integers m,n such that m > n > 0 , gcd(m,n) = 1 and 2 ∤ (m − n) satisfying
XZ = m2 − n2, 2(λt)2 = 2mn, Y 2 = m2 + n2.

Now 2(λt)2 = 2mn and gcd(m,n) = 1 implies that m = α2 and n = β2, for some positive
integers α, β. Thus, we can write Y 2 = α4+β4. This implies that (α, β, Y ) is non trivial solution
of the Diophantine equation x4 + y4 = z2, which contradicts the result of Proposition 2.6. This
completes the proof of Theorem 3.1.
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Remark 3.2. In the view of Problem 1 posed in Section 1, we obtain a class of polynomials
for which there exist no three-term arithmetic progression with a square number as a common
difference in Theorem 3.1. However, in general, it is not true that given any integer-valued
quadratic polynomial, there exist no three-term arithmetic progression with square as a common
difference (see Example 4.3 in Section 4).

Next, we obtain some results for polygonal numbers as a consequence of Theorem 3.1.

Proposition 3.3. Let s > 2 be a positive integer such that (s − 2) is a perfect square, and for
any positive integer t, there exist no three-term arithmetic progression of s-gonal numbers with
common difference t2.

Proof. For each integer s > 2, nth s-gonal number is given by

Ps(n) =
(s− 2)n(n− 1)

2
+ n =

(s− 2)n2

2
− (s− 4)n

2
.

The proof follows immediately from Theorem 3.1 by substituting a =
(s− 2)

2
, b = −(s− 4)

2
,

and c = 0.

The result of Ide and Jones [5, Theorem 3.1] for triangular numbers can be seen as a corollary
of Proposition 3.3 by substituting s = 3.

Corollary 3.4. There exist no three-term arithmetic progression in the sequence of triangular
numbers with a square number as a common difference.

Corollary 3.5. There exist no three-term arithmetic progression in the sequence of hexagonal
numbers with a square number as a common difference.

Proof. The proof follows directly by substituting s = 6 in Proposition 3.3.

The following theorem gives a class of numbers depending on the integer-valued quadratic
polynomial which can not work as a common difference for any three-term arithmetic progres-
sion.

Theorem 3.6. Suppose that f(n) = an2+bn+c is a polynomial satisfying the same assumptions
as in Theorem 3.1. Let t be a positive integer such that gcd(2a, t) = 1. Then there exist no three-
term arithmetic progression in sequence (f(n))n≥1 with common difference 2at2.

Proof. Let f(x), f(y) and f(z) be a three-term arithmetic progression in sequence (f(n))n≥1
with common difference 2at2, where x < y < z and t are positive integers such that gcd(2a, t) =
1 . As discussed earlier, f(n) can be written as

f(n) =
N2 − (b2 − 4ac)

4a
, where N = 2an+ b. (3.6)

Using equation (3.6), we can write

f(x) =
X2 − (b2 − 4ac)

4a
,

f(y) =
Y 2 − (b2 − 4ac)

4a
,

f(z) =
Z2 − (b2 − 4ac)

4a
,

where X = 2ax+ b, Y = 2ay + b and Z = 2az + b.
Since 2at2 is common difference, therefore

2at2 = f(y)− f(x) = f(z)− f(y).
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On further simplification, we have

X2 = Y 2 − 8a2t2 (3.7)

and
Z2 = Y 2 + 8a2t2. (3.8)

Multiplying equation (3.7) and (3.8), we get

(XZ)2 = Y 4 − (8a2t2)2,

i.e.,
(XZ)2 + (8a2t2)2 = (Y 2)2. (3.9)

Without loss of generality, we take

gcd(X, t) = gcd(Y, t) = gcd(Z, t) = 1, (3.10)

for, if gcd(X, t) = d > 1, then gcd(Y, t) = gcd(Z, t) = d. Since gcd(2a, t) = 1, we can
produce a smaller arithmetic progression with common difference 2a( t

d)
2 satisfying the as-

sumed gcd property in equation (3.10). Therefore, we have gcd(XZ, 8a2t2, Y 2) = 1. Hence,
(XZ, 8a2t2, Y 2) is a solution of the Pythagorean equation satisfying conditions of Proposition
2.5. Therefore, there exist positive integers m,n such that m > n > 0 , gcd(m,n) = 1 and
2 ∤ (m− n) satisfying XZ = m2 − n2, 8(at)2 = 2mn, Y 2 = m2 + n2.

Since, 8(at)2 = 2mn and gcd(m,n) = 1 implies that m = α2 and n = β2, for some positive
integers α, β. Thus, we can write Y 2 = α4+β4. This implies that (α, β, Y ) is non trivial solution
of the Diophantine equation x4 + y4 = z2, which contradicts the result of Proposition 2.6. This
completes the proof of Theorem 3.6.

Proposition 3.7. Let s > 2 be any positive integer and t be any positive integer such that
gcd((s − 2), t) = 1, then there exist no three-term arithmetic progression of s-gonal numbers
with common difference (s− 2)t2.

Proof. Proof is obvious using definition of polygonal numbers and substituting a =
(s− 2)

2
,

b = −(s− 4)
2

, and c = 0 in Theorem 3.6.

Corollary 3.8. Let t be an odd positive integer, then there exist no three-term arithmetic progres-
sion of square numbers with common 2t2.

Proof. The proof follows directly from Proposition 3.7 by substituting s = 4.

4 Arithmetic progressions in centered polygonal numbers

In this section, we investigate arithmetic progressions in the sequence of centered polygonal
numbers. The centered polygonal numbers form a class of plane figurate numbers, in which
layers of polygons are drawn centered about a point [3, pages 48-49]. Algebraically, we can
define a centered polygonal number as follows:

Let s > 2 be a fixed positive integer and n be an arbitrary positive integer. Then nth centered
s-gonal number is obtained as the sum of first n terms of the sequence 1, s, 2s, 3s, . . ., and is
given by

CPs(n) =
sn(n− 1)

2
+ 1 =

sn2

2
− sn

2
+ 1.

We first introduce some results for centered polygonal numbers, which are particular case of
results derived in [9]. With the help of these results, we construct three-term arithmetic pro-
gressions in the sequence of centered polygonal numbers and conclude that the properties of
centered polygonal numbers are different from polygonal numbers. Further, we also establish
some results as a consequence of Theorem 3.1 and Theorem 3.6.
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Proposition 4.1. Let s be a fixed positive integer with s > 2. Then there cannot be four centered
s-gonal numbers in an arithmetic progression with integer d ̸= 0 as a common difference.

Proof. For a fixed integer s > 2, nth centered s-gonal number CPs(n) is a quadratic polynomial
of form f(n) = an2 + bn + c, where a =

s

2
, b = − s

2
, c = 1 in R. Clearly for each n ∈ N,

CPs(n) is a sequence of non-negative integer such that 2a = s, 2b = −s, c = 1 are integers.
Therefore, CPs(n) satisfies all assumptions of Proposition 2.3. Hence, by Proposition 2.3, there
cannot be four centered s-gonal numbers in an arithmetic progression with integer d ̸= 0 as a
common difference.

Proposition 4.2. Let s be a fixed positive integer with s > 2 and x be an arbitrary positive
integer. Then there exist infinitely many integer d > 0 such that there is a three-term arithmetic
progression with a common difference d in the centered s-gonal numbers beginning with CPs(x).

Proof. As discussed in proof of Proposition 4.1, CPs(n) satisfies all assumptions of Proposition
2.3. Therefore, by Proposition 2.4, for a fixed integer s > 2, the sequence (CPs(n))n≥1 contains
infinitely many three-term arithmetic progression. Since b = − s

2
and a =

s

2
, we have n >

− b

2a
= −(

−s

2s
) =

1
2

, which holds for each positive integer n. Therefore, again using Proposition
2.4, for any positive integer x, there exist infinitely many integers d > 0 such that there is a
three-term arithmetic progression with common difference d in the centered s-gonal numbers
beginning with CPs(x). This completes the proof.

As illustrations of Proposition 4.2, we discuss the case for s = 3 and s = 4 as examples
and find three-term arithmetic progressions starting with arbitrary term of sequence of centered
s-gonal number in either case using similar method as discussed in [9].

Example 4.3 (Centered triangular number). We discuss the case for s = 3. Let

CP3(x) =
3x2 − 3x+ 2

2
be an arbitrary centered triangular number. The integers A and B satisfying equation

A2 − 2B2 = −1, A ≡ 1(mod 2) and B ≡ 1(mod 2) (4.1)

with A > B > 1 gives the value of

y =
XB + s

2s
= xB +

1 −B

2
,

and
z =

XA+ s

2s
= xA+

1 −A

2
in positive integers such that x < y < z and CP3(x), CP3(y), CP3(z) are in arithmetic progres-
sion. By second part of Proposition 2.2, the solution (A,B) of equation (4.1) satisfies

A+B
√

2 = (3 + 2
√

2)n(1 +
√

2), n ≥ 1 is an integer.

Also for n ≥ 1, A > B > 1. Therefore, for each n, we can construct a three-term arithmetic
progression starting with CP3(x). As an example, we consider the case n = 1. Then A+B

√
2 =

(3 + 2
√

2)(1 +
√

2) = 7 + 5
√

2. Therefore, we get A = 7 and B = 5. On substituting these
values, we get

y = xB +
1 −B

2
= 5x− 2,

and
z = xA+

1 −A

2
= 7x− 3.

Therefore, CP3(x), CP3(5x− 2), CP3(7x− 3) are in arithmetic progression.
For x = 1, we get CP3(1) = 1, CP3(3) = 10, CP3(4) = 19 are in arithmetic progression with
common difference d = 9. For x = 2, we get CP3(2) = 4, CP3(8) = 85, CP3(11) = 166 are
in arithmetic progression with common difference d = 81. We can similarly obtain arithmetic
progressions for each value of n and x.
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Example 4.4 (Centered square number). Consider the case for s = 4. Let x be an arbitrary
positive integer such that

CP4(x) = 2x2 − 2x+ 1

is a centered square number. As discussed in Example 4.3, we obtain A = 7 and B = 5 as
solution of equation (4.1) for n = 1. On substituting these values, we get

y = xB +
1 −B

2
= 5x− 2,

and

z = xA+
1 −A

2
= 7x− 3.

Therefore, CP4(x), CP4(5x− 2), CP4(7x− 3) are in arithmetic progression.
For x = 1, we get CP4(1) = 1, CP4(3) = 13, CP4(4) = 25 are in arithmetic progression with
common difference d = 12. For x = 2, we get CP4(2) = 5, CP4(8) = 113, CP4(11) = 221 are
in arithmetic progression with common difference d = 108. Similarly, we can proceed for other
values of n and x.

Remark 4.5. In [5], Ide and Jones proved that there exist no three-term arithmetic progression of
triangular numbers with a square number as a common difference. However, Example 4.3 shows
that there exist three-term arithmetic progressions of centered polygonal numbers with a square
number as a common difference. Example 4.3 also provides a class of integer-valued quadratic
polynomials for which three-term arithmetic progression with square common difference can be
constructed.

In the view of above remark natural question arises:

Problem 2. Are there finitely many or infinitely many arithmetic progressions of centered trian-
gular numbers with a square number as a common difference?

The following theorem gives description of arithmetic progression having common difference
a square for the special class of centered polygonal numbers.

Theorem 4.6. For any perfect square positive integer s > 2 and for any positive integer t, no
three-term arithmetic progression of centered s-gonal numbers with common difference t2 exist.

Proof. The proof follows directly from the definition of centered polygonal numbers. Substitut-
ing a =

s

2
, b = − s

2
, c = 1 , the result follows from Theorem 3.1.

We establish the following results as corollaries of Theorem 4.6:

Corollary 4.7. For any perfect square positive integer s > 2 and any positive integer t, there
exist no three-term arithmetic progressions of centered s-gonal numbers with centered octagonal
number CP8(t) as common difference.

Proof. Using the definition of centered s-gonal number, we have CP8(t) = (2t − 1)2, where
t > 0. Therefore, the result follows from Theorem 4.6.

Corollary 4.8. For any perfect square positive integer s > 2 and any positive integer t, there
exist no three-term arithmetic progressions of centered s-gonal numbers with a square number
P4(t) = t2 as common difference.

Proof. The tth s-gonal number [4] is given by

Ps(t) =
(s− 2)t(t− 1)

2
+ t,

where s > 2 and t are positive integers. Therefore, we have P4(t) = t2. Hence, by Theorem 4.6
we conclude the result.
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Remark 4.9. In Theorem 4.6, the condition “perfect square”is not superfluous. For example, if
we take s = 3, we obtain arithmetic progressions of centered triangular number with square as a
common difference (see Example 4.3).

The following theorem provides a class of numbers that can not work as a common difference
for three-term arithmetic progression in the given sequence of centered polygonal numbers.

Theorem 4.10. Let s > 2 be a fixed positive integer and t > 0 be any integer such that
gcd(s, t) = 1. Then there exist no three-term arithmetic progression in centered s-gonal numbers
with common difference st2.

Proof. For a fixed integer s > 2, nth centered s-gonal number CPs(n) is a quadratic polynomial
of form f(n) = an2 + bn+ c, where a =

s

2
, b = − s

2
, c = 1 in R. The result follows directly

from Theorem 3.6.

Remark 4.11. In Theorem 4.10, we proved that for any fixed positive integer s > 2 if we take
d = st2,where t is any integer such that gcd(s, t) = 1 then there exist no three-term arithmetic
progression of centered s-gonal numbers. However, the above result is not true if we consider
d ̸= st2 for any positive integer t. For example, consider s = 4 and d = 12 = 4.3. Clearly
d ̸= 4t2 for any integer t, but we have CP4(1) = 1, CP4(3) = 13, CP4(4) = 25 in arithmetic
progression with common difference d = 12 (see Example 4.4).

5 Concluding Remarks

We conclude this paper with few comments on Problem 1. In Theorem 3.1, we provided a
subclass of integer valued quadratic polynomials for which there exist no three-term arithmetic
progression with square common difference. In Example 4.3, we constructed three-term arith-
metic progression for a class of integer valued quadratic polynomial. Therefore, the result of
Theorem 1 of [6] cannot be extended to the case of integer valued quadratic polynomials. How-
ever, Theorem 3.6 provides a class of numbers which cannot be taken as common difference for
three-term arithmetic progressions in integer valued quadratic polynomials.
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