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Abstract This study presented a new generalized regularized gap function (short for GRGF)
for random generalized variational-like inequality (short for RGVLIP) in fuzzy contexts. A new
D-gap function for RGVLIP was also introduced, utilizing the reverse Schwarz inequality and
GRGF, which we also established for real Hilbert space in fuzzy settings. Furthermore, we
developed error bound outcomes for the new D-gap function and GRGF as an application. Our
findings are new and generalize several established findings for variational inequality problems
(abbreviated VIPs) and generalized variational inequality problems (abbreviated GVIPs) in fuzzy
contexts.

1 Introduction

Fuzzy theory, also known as fuzzy logic or fuzzy sets, originated in 1965 by Zadeh [1]. The
concept was developed as a way to deal with uncertainty and imprecision that exist in real-world
problems. Unlike classical set theory, which assigns objects to a set or its complement, fuzzy sets
allow for gradual membership where an element can belong to multiple sets with varying degrees
of membership. Due to its flexibility, it is suitable for modeling and solving complicated systems
that contain ambiguity, vagueness, and partial knowledge. Numerous domains, including control
systems, decision-making procedures, pattern recognition, artificial intelligence, data analysis,
expert systems, and natural language processing, use fuzzy theory.

Similarly, the theory of variational inequality in fuzzy settings has been extensively studied
and has captured the interest of numerous authors in recent years. Chang and Zhu initially
explored this area [2]; addressing the existence of solutions, algorithms, and convergence results
for various generalized versions of the variational inequality problem (referred to as VIP for
brevity).

A gap function is a tool or method used to transform an optimization problem from an iden-
tical VIP, essential in convex optimization theory. Numerous approaches and efforts have been
made to construct suitable gap functions for various VIP types. Examples of these efforts can
be found in references [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 27, 28, 29, 30].
Gap functions have proven highly useful in determining error bounds, indicating the separation
between the solution set and any given point. In problems involving variational inequalities and
solved through iterative algorithms, error bounds play a crucial role in sensitivity and conver-
gence analyses. Hence, investigating error bounds for gap functions associated with different
variational inequalities is of great interest. Examples of such investigations can be found in ref-
erences [5, 6, 7, 8, 9, 10, 12, 14, 15, 19, 22, 27, 28, 29, 30]. In 1992, Fukushima [20] introduced
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the concept of a regularized gap function, which was further generalized differently by Wu et
al. [21]. The application of gap functions and error bounds in fuzzy settings for VIPs was first
introduced by Khan et al. [22]. To our knowledge, limited literature on gap functions in fuzzy
settings is available, as can be seen in references [19, 22, 27].

VIPs involving random fuzzy mappings need the use of a gap function in order to quantify the
violation of the inequality condition while considering the effects of randomization and fuzziness
in the mapping. Its use enables academics and practitioners to develop numerical approaches,
algorithms, and strategies for successfully addressing these sorts of problems, even in instances
when standard deterministic techniques would be insufficient. The reason behind our study is to
contribute to the literature, which may aid others in making new findings in this area and related
fields.

In this paper, our primary goal is to study the theory of the generalized regularized gap
function, the D-gap function, and error bounds for RGVLIP with the assistance of the reverse
Schwarz inequality. We have organized this paper as follows: In Section 2, we gather all the
basic notions, definitions, and preliminary results that will be useful in the subsequent sections.
Section 3 introduces a new generalized regularized gap function (GRGF) for solving random
generalized variational-like inequality problems (RGVLIP) in fuzzy settings. Section 4 presents
the result related to the reverse Schwarz inequality. Section 5 introduces a new D-gap func-
tion for RGVLIP using the reverse Schwarz inequality and the GRGF. Finally, we establish an
application section where we derive error bound results.

2 Preliminaries

We adopt the following notations: H is a real Hilbert space in which ⟨., .⟩ denotes the inner
product and ∥.∥ is induced norm. Let Σ be a σ-algebra of subsets of a set τ such that (τ,Σ) forms
a measurable space. Also consider 2H as the family of non-empty subsets of H, B(H) as the
family of Borel σ-fields in H and CB(H) as the family of all non-empty closed and bounded
subsets of H. Let F denotes the collection of all fuzzy sets over H. A mapping Γ : H −→ F(H)
is known as a fuzzy map on H. Also Γ(a) or Γa is a fuzzy set if the map Γ is a fuzzy map
on H and Γa(b) is the characteristic function or the membership function of b in Γa. Suppose
A ∈ F(H) and α ∈ [0, 1] such that the set (A)α = {a ∈ H : A(a) ≥ α} is known as the α-cut set
of H.

Definition 2.1. (i) A map θa : τ −→ H is called measurable if {s ∈ τ : θa(s) ∈ B}, ∀ B ∈
B(H) and a set-valued map Γ : τ −→ 2H is called measurable if Γ−1 = {s ∈ τ : Γ(s)∩B ̸=
ψ} ∈ Σ, ∀ B ∈ B(H).

(ii) A map ϕ : τ ×H −→ H is called random operator if ϕ(s, θa(s)) = θa(s) is measurable, ∀
θa(s) ∈ H and a random operator ϕ is continuous if ϕ(s, .) : H −→ H is continuous map,
∀ s ∈ τ .

(iii) A map Γ : τ × H −→ 2H is known to be a random set-valued map if Γ(., θa(.)) is a
measurable, ∀ θa(.) ∈ H and a random set-valued map Γ : τ × H −→ BC(H) is called
ϕ-continuous if Γ(s, .) is continuous map in Hausdorff metric, ∀ s ∈ τ .

(iv) A fuzzy map Γ : τ −→ F(H) is known to be measurable if (Γ(.))α : τ −→ 2H is measur-
able set-valued map, ∀ α ∈ (0, 1]

(v) A fuzzy map Γ : τ ×H −→ F(H) is known to be random if a fuzzy map Γ(., θa(.)) : τ −→
F(H) is measurable, ∀ θa(.) ∈ H.

As obvious from the above observation, fuzzy maps, random set-valued maps and set-valued
maps are special cases for random fuzzy maps.

Consider a random fuzzy map Γ∗ : τ ×H −→ F(H) have following property:

(C1): ∃ a map e : H −→ [0, 1] such that (Γ∗
s,θa

)e(θa) ∈ BC(H),∀ (s, θa) ∈ τ × H. By def-
inition of random fuzzy map Γ∗, define random set-valued, Γ : τ × H −→ BC(H), (s, θa) ∈
(Γ∗

s,a)e(a); ∀ (s, θa) ∈ τ ×H. Γ is known to be random set-valued induced by Γ∗.
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Now for given map e : H −→ [0, 1], a random fuzzy map Γ∗ : τ × H −→ F(H) have the
property (C1), and random operator ϕ : τ × H −→ H with Img(H)∩domain(∂ψ)̸=∅, consider
RGVLIP:

To find measurable maps θa, ρ : τ −→ H such that ∀s ∈ τ, θb(s) ∈ H,

Γ
∗
s,θa(ρ(s)) ≥ e(θa(s)), ⟨ρ(s), η(θb(s), θa(s))⟩+ ψ(θb(s))− ψ(θa(s)) ≥ 0,

or

⟨ρ(s), η(θb(s), ϕ(s, θa(s)))⟩+ ψ(θb(s))− ψ(ϕ(s, θa(s)) ≥ 0, (2.1)

where ψ : H −→ R ∪ {+∞} be a proper, convex and lower semi-continuos function with its
effective domain is being closed, η : H2 = H×H −→ H is a map and ∂ψ is sub-differential of
function ψ. The sub-differential of ψ at point a ∈ H that is ∂ψ is given as ∂ψ(a) = {r ∈ H :
ψ(b) ≥ ψ(a) + ⟨r, η(b, a)⟩,∀ b ∈ H} and point r ∈ ∂ψ is known as sub-gradient of ψ at a.

The pair of measurable maps (θa, ρ) known as random solution for RGVLIP(2.1).

Definition 2.2. A random set-valued map Γ : τ ×H −→ H is called

(i) strongly monotone if ∃ a measurable map α : τ −→ (0,+∞) such that ∀s ∈ τ, θai(s) ∈ H,
and ∀ρi(s) ∈ Γ(s, θai

(s)), (i = 1, 2.),

⟨ρ1(s)− ρ2(s), η(θa1(s), θa2(s))⟩ ≥ α(s)∥θa1(s)− θa2(s)∥2.

(ii) strongly ϕ-monotone if ∃ a measurable map λ∗ : τ −→ (0,+∞) such that ∀s ∈ τ, θai
(s) ∈

H, and ∀ρi(s) ∈ Γ(s, θai
(s)), (i = 1, 2.),

⟨ρ1(s)− ρ2(s), η(ϕ(s, θa1(s)), ϕ(s, θa2(s)))⟩ ≥ λ∗(s)∥θa1(s)− θa2(s)∥2.

(iii) Lipschitz continuos if ∃L : τ −→ (0,+∞), a measurable function such that

∥ϕ(s, θa1(s))− ϕ(s, θa2(s))∥ ≤ L(s)∥θa1(s)− θa2(s)∥,

∀θai(s) ∈ H,∀s ∈ τ (i=1,2).

Definition 2.3. A map η : H2 −→ H is called

(i) Lipschitz continuous if ∃µ : τ −→ (0,+∞), a measurable function such that ∀θa(s), θb(s) ∈
H; s ∈ τ ,

∥η(θa(s), θb(s))∥ ≤ µ(s)∥θa(s)− θb(s)∥.

(ii) η-strongly montone if, ∃ζ : τ −→ (0,+∞), a measurable function such that ∀θa(s), θb(s) ∈
H; s ∈ τ ,

⟨θa(s)− θb(s), η(θa(s), θb(s))⟩ ≥ ζ(s)∥θa(s)− θb(s)∥2.

(iii) skew if ∀θa(s), θb(s) ∈ H; s ∈ τ ,

η(θa(s), θb(s)) + η(θb(s), θa(s)) = 0

Lemma 2.4. A function G : H −→ R is said to be a gap function for a RGVLIP(2.1) if,

(i) G(θa) ≥ 0,∀ θa ∈ H;

(ii) G(θb) = 0, if and only if θb ∈ H is the solution of RGVLIP(2.1).
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3 Generalized Regularized Gap Function

Let us define the proximal function in H for fuzzy map Rθa(s)
ν(s) : τ ×H −→dom(ψ) such that for

measurable function ν : τ −→ (0,∞),

R
θa(s)
ν(s) (s, θa(s)) = arg minθb(s)∈H{ψ(θb(s)) +

1
2ν(s)

||θa(s)− θb(s)||2}.

Motivating from Fukushima[20] and Wu et al. [21]; we construct a new generalized regular-
ized gap function (GRGF) as follows:

For all measurable function λ : τ −→ (0,∞) and ∀s ∈ τ , θa(s), θb(s) ∈ H such that

Gν(s)(θa(s)) = maxθb(s)∈H{⟨ρ(s), η(θa(s), θb(s))⟩+ ψ(θa(s))− ψ(θb(s))

− 1
ν(s)

f(θa(s), θb(s))−
λ(s)

2ν(s)
||θa(s)− θb(s)||2},

which can be given as

Gν(s)(θa(s)) = ⟨ρ(s), η(ϕ(s, θa(s)), R
θa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s)))⟩+ ψ(ϕ(s, θa(s)))

− ψ(Rθa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s)))−

1
ν(s)

f(ϕ(s, θa(s)), R
θa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s)))

− λ(s)

2ν(s)
||(ϕ(s, θa(s))−Rθa(s)

ν(s) (ϕ(s, θa(s))− ν(s)ρ(s)))||
2
. (3.1)

Through out the paper, we consider the function f : H2 −→ R have the properties as follows:

(A1) f(., .) ≥ 0 on H2;
(A2) f(., .) is continously differentiable on H2;
(A3) ∀s ∈ τ,∃ a measurable function ξ : τ −→ (0,∞) such that θa(s) ∈ H and ∀θb1(s), θb2(s) ∈
H;

f(θa(s), θb1(s))−f(θa(s), θb2(s)) ≥ ⟨∇2f(θa(s), θb2(s)), η(θb1(s), θb2(s))⟩+ξ(s)||θb1(s)−θb2(s)||2,

(∇2F denoted the derivative of f with respect to 2nd slot);
(A4) f(., .) is zero if and only if both slots are equal;
(A5) ∃ϵ : τ −→ (0,∞) such that ∀s ∈ τ , θa(s) ∈ H and ∀θb1(s), θb2(s) ∈ H

||∇2f(θa(s), θb1(s))−∇2f(θa(s), θb2(s))|| ≤ ϵ(s)||θb1(s)− θb2(s)||;

(A6) Let measurable functions M ′,m′ : τ −→ (0,∞) such that ∀s ∈ τ , ∀θa(s), θb(s), z(s) ∈ H,

⟨M ′(s)η(θa(s), θb(s))−∇2f(z(s), θb(s)),m
′(s)∇2f(z(s), θb(s))− η(θa(s), θb(s))⟩ > 0.

The Property (A5) is known as uniformly Lipschitz continuity.

Lemma 3.1. [22] Let f(., .) satisfies properties (A1-A4); then ∇2f(θa(s), θb(s)) = 0∀s ∈ τ if
and only if θa(s) = θb(s).

Lemma 3.2. Let f(., .) satisfies (A3) and η(., .) be skew in H2 then ∀s ∈ τ , θa(s) ∈ H and
θb1(s), θb2(s) ∈ H; such that

⟨∇2f(θa(s), θb1(s))−∇2f(θa(s), θb2(s)), η(θb1(s), θb2(s))⟩ ≥ 2ξ(s)||θb1(s)− θb2(s)||2.

Proof. Since f(., .) has property (A3); then ∀s ∈ τ , θa(s), θb1(s), θb2(s) ∈ H, we have

f(θa(s), θb1(s))−f(θa(s), θb2(s)) ≥ ⟨∇2f(θa(s), θb2(s)), η(θb1(s), θb2(s))⟩+ξ(s)||θb1(s)−θb2(s)||2,
(3.2)
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interchanging θb1(s) and θb2(s), we get

f(θa(s), θb2(s))−f(θa(s), θb1(s)) ≥ ⟨∇2f(θa(s), θb1(s)), η(θb2(s), θb1(s))⟩+ξ(s)||θb1(s)−θb2(s)||2,
(3.3)

now adding (3.2) and (3.3) and also using skew property of η(., .) then the Lemma follows.

Lemma 3.3. Let a skew η(., .) map be Lipschitz continuous and satisfies properties (A1-A5) with
measurable functions ξ, ϵ : τ ←− (0,∞) such that ∀s ∈ τ , θa(s), θb(s) ∈ H,

f(θa(s), θb(s)) ≤ (ϵ(s)µ(s)− ξ(s))||θa(s)− θb(s)||2.

Proof. Since for all s ∈ τ , θa(s) ∈ H, (A5) given as

||∇2f(θa(s), θb1(s))−∇2f(θa(s), θb2(s))|| ≤ ϵ(s)||θb1(s)− θb2(s)||, (3.4)

∀θb1(s), θb2(s) ∈ H;

now putting θb1(s) = θa(s) and θb2(s) = θb(s) and using Lemma (3.1) in above inequality we
get,

||∇2f(θa(s), θb(s))|| ≤ ϵ(s)||θa(s)− θb(s)||.

Now again ∀s ∈ τ , θa(s) ∈ H and ∀θb1(s), θb2(s) ∈ H, we have (A3) as,

f(θa(s), θb1(s))−f(θa(s), θb2(s)) ≥ ⟨∇2f(θa(s), θb2(s)), η(θb1(s), θb2(s))⟩+ξ(s)||θb1(s)−θb2(s)||2,

once again putting θb1(s) = θa(s) and θb2(s) = θb(s) in above inequality, we have,

f(θa(s), θa(s))−f(θa(s), θb(s)) ≥ ⟨∇2f(θa(s), θb(s)), η(θa(s), θb(s))⟩+ ξ(s)||θa(s)−θb(s)||2,

now by (A4) and skew property of η(., .) then above inequality transformed as

f(θa(s), θb(s)) ≤ ⟨∇2f(θa(s), θb(s)), η(θb(s), θa(s))⟩ − ξ(s)||θa(s)− θb(s)||2

≤ ||∇2f(θa(s), θb(s))||||η(θb(s), θa(s))|| − ξ(s)||θa(s)− θb(s)||2,

using Lipschitz continuity of η(., .) and (3.4) as

f(θa(s), θb(s)) ≤ (µ(s)ϵ(s)− ξ(s))||θa(s)− θb(s)||2.

Lemma 3.4. η(ϕ(s, θa(s)), Rθa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s))) = 0 if and only if θa(s) is a solution

of RGVLIP(2.1) ∀s ∈ τ, θa(s) ∈ H.

Proof. Let us suppose,

η(ϕ(s, θa(s)), R
θa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s))) = 0,

which is equivalent to

ϕ(s, θa(s)) = R
θa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s)),

equivalently,

ϕ(s, θa(s)) = argminθb(s)(ψ(θb(s)) +
1

2ν(s)
||θb(s)− (ϕ(s, θa(s))− ν(s)ρ(s))||2),

by optimal conditions, equivalently

0 ∈ ∂ψ(ϕ(s, θa(s)) +
1

ν(s)
(ϕ(s, θa(s))− (ϕ(s, θa(s))− ν(s)ρ(s)))

Which implies,

−ρ(s) ∈ ∂ψ(ϕ(s, θa(s))),
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by defintion of sub-diffrential

ψ(θb(s)) ≥ ψ(ϕ(s, θa(s)))− ⟨ρ(s), η(θb(s), ϕ(s, θa(s))),

this shows θa(s) is a solution of RGVLIP(2.1). The converse is obvious.

Theorem 3.5. If f(., .) satisfies properties (A1-A4); then we have

Gν(s)(θa(s)) ≥ k1(s)||η(ϕ(s, θa(s)), Rθa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s)))||

2
, (3.5)

provided k1(s) > 0 that is

ζ(s) + ξ(s) > ϵ(s)µ(s) +
λ(s)

2
.

Futhermore Gν(s)(θa(s)) = 0 if and only if θa(s) is the solution of RGVLIP(2.1).

Proof. Since

ϕ(s, θa(s))− ν(s)ρ(s) ∈ (I + ν(s)∂ψ)(I + ν(s)∂ψ)−1(ϕ(s, θa(s))− ν(s)ρ(s)),

which is equivalent to

−ρ(s)+ 1
ν(s)

(ϕ(s, θa(s))−Rθa(s)
ν(s) (ϕ(s, θa(s))−ν(s)ρ(s))) ∈ ∂ψ(R

θa(s)
ν(s) (ϕ(s, θa(s))−ν(s)ρ(s)),

by definition of sub-differential

⟨ρ(s)− 1
ν(s)

(ϕ(s, θa(s))−Rθa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s))), η((θb(s),

R
θa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s)))) + ψ(θb(s))− ψ(Rθa(s)

ν(s) (ϕ(s, θa(s))− ν(s)ρ(s))) ≥ 0

now replacing θb(s) = ϕ(s, θa(s)), we have

⟨ρ(s)− 1
ν(s)

(ϕ(s, θa(s))−Rθa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s))), η((ϕ(s, θa(s)),

R
θa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s))) + ψ(ϕ(s, θa(s)))− ψ(Rθa(s)

ν(s) (ϕ(s, θa(s))− ν(s)ρ(s))) ≥ 0,

we can write above as

Gν(s)(θa(s)) ≥
1

ν(s)
⟨(ϕ(s, θa(s))−Rθa(s)

ν(s) (ϕ(s, θa(s))− ν(s)ρ(s))), η((ϕ(s, θa(s)),

R
θa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s)))−

1
ν(s)

f(ϕ(s, θa(s)), R
θa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s))))−

λ(s)

2ν(s)
||(ϕ(s, θa(s))−Rθa(s)

ν(s) (ϕ(s, θa(s))− ν(s)ρ(s)))||
2
,

now by using the definition of η-strongly monotone and Lemma (3.3)

Gν(s)(θa(s))

≥ 1
ν(s)

(ζ(s)− (ϵ(s)µ(s)− ξ(s))− λ(s)

2
)||(ϕ(s, θa(s))−Rθa(s)

ν(s) (ϕ(s, θa(s))− ν(s)ρ(s)))||
2
,

which can be written by the definition of Lipschitz continuity of η as

Gν(s)(θa(s))

≥ 1
ν(s)µ2(s)

(ζ(s)−(ϵ(s)µ(s)−ξ(s))−λ(s)
2

)||η(ϕ(s, θa(s)), Rθa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s)))||

2
,
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Let k1(s) =
1

ν(s)µ2(s)
(ζ(s)− (ϵ(s)µ(s)− ξ(s))− λ(s)

2
) and provided k1(s) > 0 then the result

follows as

Gν(s)(θa(s)) ≥ k1(s)||η(ϕ(s, θa(s)), Rθa(s)
ν(s) (ϕ(s, θa(s))− ν(s)ρ(s)))||

2
,

provided ζ(s) + ξ(s) > ϵ(s)µ(s) +
λ(s)

2
(or, k1(s) > 0).

The second part of the theorem is obvious by Lemma (3.4).

4 Reverse Schwarz Inequality

We know the basic elementry inequality for real numbers a ≥ 0 and b ≥ 0 such that for ξ > 0 is

ξa2 +
b2

ξ
≥ 2ab (4.1)

Motivating by the work of [23, 24, 25, 26] in the field of reverse Schwarz inequality, we gener-
alized the following result in fuzzy settings:

Theorem 4.1. Let H be a real Hilbert space and m,M : τ −→ (0,∞) be measurable functions
then for every measurable maps θa, θb : τ −→ H such that

⟨M(s)θb(s)− θa(s),m(s)θa(s)− θb(s)⟩ > 0, (4.2)

Then

0 ≤ ||θa(s)||.||θb(s)|| ≤
1
2
.
M(s) +m(s)√
M(s)m(s)

⟨θa(s), θb(s)⟩. (4.3)

Proof. Consider
Z(s) = ⟨M(s)θb(s)− θa(s),m(s)θa(s)− θb(s)⟩,

or
Z(s) =M(s)⟨θa(s), θb(s)⟩+m(s)⟨θa(s), θb(s)⟩ − ||θa(s)||2 −M(s)m(s)||y||2.

Also as assumption (4.2), Z(s) > 0 therefore

M(s)⟨θa(s), θb(s)⟩+m(s)⟨θa(s), θb(s)⟩ ≥ ||θa(s)||2 +M(s)m(s)||y||2.

equivalently

M(s) +m(s)√
M(s)m(s)

⟨θa(s), θb(s)⟩ ≥
√
M(s)m(s)||θa(s)||2 +

1√
M(s)m(s)

||θb(s)||2,

now using inequality (4.1) we have

M(s) +m(s)√
M(s)m(s)

⟨θa(s), θb(s)⟩ ≥ 2||θa(s)||.||θb(s)|| ≥ 0.

This proves the result (4.3).

The above inequality can also be written as

⟨θa(s), θb(s)⟩ ≥ K(s)||θa(s)||.||θb(s)|| ≥ 0, (4.4)

where K(s) =
2
√
M(s)m(s)

M(s) +m(s)
> 0.
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5 D-Gap Function

In this section, we constructed a D-gap function by taking difference of two GRGF (3.1) with
parameters ν1, ν2 : τ −→ (0,∞) such that ∀s ∈ τ, ν1(s) > ν2(s) that is ∀ θa(s) ∈ H

DGν1(s),ν2(s)(θa(s)) = Gν1(s)(θa(s))−Gν2(s)(θa(s)),

or,

DGν1(s),ν2(s)(θa(s)) = ⟨ρ(s), η(R
θa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s)))⟩

+ ψ(R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))− ψ(Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))

− 1
ν1(s)

f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))

+
1

ν2(s)
f(ϕ(s, θa(s)), R

θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− λ(s)

2ν1(s)
||(ϕ(s, θa(s))−Rθa(s)

ν1(s)
(ϕ(s, θa(s))− ν1(s)ρ(s)))||

2

+
λ(s)

2ν2(s)
||(ϕ(s, θa(s))−Rθa(s)

ν2(s)
(ϕ(s, θa(s))− ν2(s)ρ(s)))||

2
. (5.1)

For measurable functions, ν1, ν2 : τ −→ (0,∞), consider the proximal map Rθa(s) satisfied
the following property:
(P1): Consider measurable functions n,N : τ −→ (0,∞) such that ∀s ∈ τ, θa(s), θb(s), ρ(s) ∈
H;

⟨N(s)X (s)− Y(s), n(s)Y(s)−X (s)⟩ > 0,

where
X (s) = R

θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)) +R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))− 2θb(s) and Y(s) =

R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)).

Theorem 5.1. Consider f follows the properties (A1-A4,A6); then

DGν1(s),ν2(s)(θa(s)) ≥ k2||Rθa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s))||2

+ k3||(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))||
2
,

and

DGν1(s),ν2(s)(θa(s)) ≤ k4||ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))||2

+ k5||ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))||

× ||Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))||

+ k6||Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))||2,

where k2(s) =
ξ(s)

ν1(s)
, k3(s) =

λ(s)

2
(

1
ν2(s)

− 1
ν1(s)

), k4(s) =
λ(s)

2ν2(s)
+(

1
ν2(s)

− 1
ν1(s)

)(µ(s)ϵ(s)−

ξ(s)), k5 =
µ(s)

2ν2(s)
and k6(s) =

λ(s)

2ν2(s)
i.e. ki(s) > 0,

∀i = 2, 3, 4, 5.

Proof. Since
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ϕ(s, θa(s))− ν1(s)ρ(s) ∈ (I + ν1(s)∂ψ)(I + ν1(s)∂ψ)−1(ϕ(s, θa(s))− ν1(s)ρ(s)),

equivalently write

−ρ(s)+ 1
ν1(s)

(ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s))) ∈ ∂ψ(Rθa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s)),

by definition of sub-differential, we have

⟨ρ(s)− 1
ν1(s)

(ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))),

η((θb(s), R
θa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s))))⟩+ψ(θb(s))−ψ(Rθa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s))) ≥ 0,

or

⟨ρ(s), η((θb(s), Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))))⟩

+ ψ(θb(s))− ψ(Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))

≥ ⟨ 1
ν1(s)

(ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))),

η((θb(s), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))))⟩,

letX(s) = ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s)) and Y (s) = η((θb(s), R
θa(s)
ν1(s)

(ϕ(s, θa(s))−
ν1(s)ρ(s)))) then for measurable functions m,M : τ −→ (0,∞) such that by theorem (4.1) (re-
verse Schwarz inequality (4.4)) the RHS of the above inequality is non-negative therefore the
above inequality is converted as

⟨ρ(s), η((θb(s), Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))))⟩+ ψ(θb(s))

− ψ(Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))) ≥ 0,

put θb(s) = R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))) in above inequality, we get

⟨ρ(s), η((Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))⟩

+ ψ(R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))− ψ(Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))) ≥ 0,

from (5.1) the above inequality is written in terms of D-gap function as

DGν1(s),ν2(s)(θa(s)) ≥ −
1

ν1(s)
f(ϕ(s, θa(s)), R

θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))

+
1

ν2(s)
f(ϕ(s, θa(s)), R

θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− λ(s)

2ν1(s)
||(ϕ(s, θa(s))−Rθa(s)

ν1(s)
(ϕ(s, θa(s))− ν1(s)ρ(s)))||

2

+
λ(s)

2ν2(s)
||(ϕ(s, θa(s))−Rθa(s)

ν2(s)
(ϕ(s, θa(s))− ν2(s)ρ(s)))||

2
. (5.2)

From the above inequality (5.2), we take last two terms as



GAP FUNCTIONS FOR RGVLIP WITH ERROR BOUNDS 29

1
ν2(s)

||(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))||
2

− 1
ν1(s)

||(ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))||
2

=
1

ν2(s)
||(ϕ(s, θa(s))−Rθa(s)

ν2(s)
(ϕ(s, θa(s))− ν2(s)ρ(s)))||

2

− 1
ν2(s)

||(ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))||
2

+
1

ν2(s)
||(ϕ(s, θa(s))−Rθa(s)

ν1(s)
(ϕ(s, θa(s))− ν1(s)ρ(s)))||

2

− 1
ν1(s)

||(ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))||
2

= (
1

ν2(s)
||(ϕ(s, θa(s))−Rθa(s)

ν2(s)
(ϕ(s, θa(s))− ν2(s)ρ(s)))||

2

− ||(ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))||
2
)

+ (
1

ν2(s)
− 1
ν1(s)

)||(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))||
2
. (5.3)

We take the first term from the above inequality and will show that this is non-negative hence
taking first term from (5.3) as

||(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))||
2

− ||(ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))||
2

= ⟨ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s)), ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s))⟩

−⟨ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s)), ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s))⟩

= ⟨ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s)), ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s))⟩

− ⟨ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)), ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))⟩

+ ⟨ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)), ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))⟩

−⟨ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s)), ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s))⟩

= ⟨Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)),

ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))⟩

+ ⟨ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)),

R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))⟩
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= ⟨Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)),

2ϕ(s, θa(s))− (R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))⟩,

using the property (P1) of the proximal map Rθa(s) and theorem (4.1) (reverse Schwarz inequal-
ity (4.4)) then RHS of the above equation is non-negative hence

||(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))||
2

− ||(ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))||
2
≥ 0.

Therefore (5.3) converted as

1
ν2(s)

||(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))||
2

− 1
ν1(s)

||(ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))||
2

≥ (
1

ν2(s)
− 1
ν1(s)

)||(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))||
2
. (5.4)

Now take the first two terms from (5.2)

1
ν2(s)

f(ϕ(s, θa(s)), R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− 1
ν1(s)

f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))

=
1

ν2(s)
f(ϕ(s, θa(s)), R

θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− 1
ν1(s)

f(ϕ(s, θa(s)), R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

+
1

ν1(s)
f(ϕ(s, θa(s)), R

θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− 1
ν1(s)

f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))

= (
1

ν2(s)
− 1
ν1(s)

)f(ϕ(s, θa(s)), R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν(s)ρ(s)))

+
1

ν1(s)
(f(ϕ(s, θa(s)), R

θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))))

− f(ϕ(s, θa(s)), Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))),

≥ 1
ν1(s)

(f(ϕ(s, θa(s)), R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))))

− f(ϕ(s, θa(s)), Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))),

by(A3)
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1
ν2(s)

f(ϕ(s, θa(s)), R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− 1
ν1(s)

f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))

≥ 1
ν1(s)

⟨∇2(f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s)))), η(R
θa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s)),

R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))⟩+
ξ(s)

ν1(s)
||Rθa(s)

ν1(s)
(ϕ(s, θa(s))− ν1(s)ρ(s))

−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))||2,

by (A6) and theorem 4.1 (reverse Schwaz inequality (4.4)) then the first term of the above in-
equality is non-negative therefore

1
ν2(s)

f(ϕ(s, θa(s)), R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− 1
ν1(s)

f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))

≥ ξ(s)

ν1(s)
||Rθa(s)

ν1(s)
(ϕ(s, θa(s))− ν1(s)ρ(s))−Rθa(s)

ν2(s)
(ϕ(s, θa(s))− ν2(s)ρ(s))||2, (5.5)

using (5.4) and (5.5) then (5.2) can be written as

DGν1(s),ν2(s)(θa(s))

≥ ξ(s)

ν(s)
||Rθa(s)

ν1(s)
(ϕ(s, θa(s))− ν1(s)ρ(s))−Rθa(s)

ν2(s)
(ϕ(s, θa(s))− ν2(s)ρ(s))||2

+ (
1

ν2(s)
− 1
ν1(s)

)||(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))||
2
,

or

DGν1(s),ν2(s)(θa(s))

≥ k2||Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))||2

+ k3||(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))||
2
.

Now similarly for ν2(s)

−ρ(s)+ 1
ν2(s)

(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s))) ∈ ∂ψ(Rθa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s)),

again by definition of sub-differential

⟨ρ(s)− 1
ν2(s)

(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))),

η((θb(s), R
θa(s)
ν1(s)

(ϕ(s, θa(s))−ν2(s)ρ(s))))⟩+ψ(θb(s))−ψ(Rθa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s))) ≥ 0,

or

⟨ρ(s), η(Rθa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s))), θb(s))⟩−ψ(θb(s))+ψ(Rθa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s)))

≤ 1
ν2(s)

⟨(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s))), η(R
θa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s)), θb(s))⟩,
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now putting θb(s) = R
θa(s)
ν1(s)

(ϕ(s, θa(s)) − ν1(s)ρ(s)) and using Cauchy-Schwarz inequality on
RHS, we have,

⟨ρ(s), η(Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))⟩

− ψ(Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))) + ψ(R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

≤ 1
ν2(s)

||(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))||

× ||η(Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))||,

now above inequality can be written in the form of a D-gap function (5.1) and use Lipschitz
continuity of η on RHS, we have

DGν1(s),ν2(s)(θa(s)) ≤
µ(s)

ν2(s)
||(ϕ(s, θa(s))−Rθa(s)

ν2(s)
(ϕ(s, θa(s))− ν2(s)ρ(s)))||

× ||Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))||

+
1

ν2(s)
f(ϕ(s, θa(s)), R

θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− 1
ν1(s)

f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))

+
λ(s)

2ν2(s)
||(ϕ(s, θa(s))−Rθa(s)

ν2(s)
(ϕ(s, θa(s))− ν2(s)ρ(s)))||

2

− λ(s)

2ν1(s)
||(ϕ(s, θa(s))−Rθa(s)

ν1(s)
(ϕ(s, θa(s))− ν1(s)ρ(s)))||

2
. (5.6)

As we proceed above, similarly we will solve the above inequality. So taking 2nd and 3rd terms
first then

1
ν2(s)

f(ϕ(s, θa(s)), R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− 1
ν1(s)

f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))

=
1

ν2(s)
f(ϕ(s, θa(s)), R

θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− 1
ν1(s)

f(ϕ(s, θa(s)), R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

+
1

ν1(s)
f(ϕ(s, θa(s)), R

θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− 1
ν1(s)

f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))
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= (
1

ν2(s)
− 1
ν1(s)

)f(ϕ(s, θa(s)), R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν(s)ρ(s)))

− 1
ν1(s)

(f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))

− f(ϕ(s, θa(s)), Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))),

by (A3) and Lemma (3.3)

1
ν2(s)

f(ϕ(s, θa(s)), R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− 1
ν1(s)

f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))

= (
1

ν2(s)
− 1
ν1(s)

)(µ(s)ϵ(s)− ξ(s))||ϕ(s, θa(s)), Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν(s)ρ(s))||2

− 1
ν1(s)

⟨∇2(f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))−ν1(s)ρ(s)))), η(R
θa(s)
ν2(s)

(ϕ(s, θa(s))−ν2(s)ρ(s)),

now using (A6) along with theorem (4.1) (reverse Schwarz inequality (4.4)), we have

1
ν2(s)

f(ϕ(s, θa(s)), R
θa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))

− 1
ν1(s)

f(ϕ(s, θa(s)), R
θa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))

≤ (
1

ν2(s)
− 1
ν1(s)

)(µ(s)ϵ(s)− ξ(s))||ϕ(s, θa(s)), Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν(s)ρ(s))||2. (5.7)

Again taking the last two terms of (5.6)

1
ν2(s)

||(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))||
2

− 1
ν1(s)

||(ϕ(s, θa(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s)))||
2

≤ 1
ν2(s)

||(ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s)))||
2

+
1

ν2(s)
||Rθa(s)

ν2(s)
(ϕ(s, θa(s))− ν2(s)ρ(s))−Rθa(s)

ν1(s)
(ϕ(s, θa(s))− ν1(s)ρ(s))||2, (5.8)

now using (5.7) and (5.8) in inequality (5.6), we have

DGν1(s),ν2(s)(θa(s)) ≤ k4||ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))||2

+ k5||ϕ(s, θa(s))−Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))||

× ||Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))||

+ k6||Rθa(s)
ν2(s)

(ϕ(s, θa(s))− ν2(s)ρ(s))−Rθa(s)
ν1(s)

(ϕ(s, θa(s))− ν1(s)ρ(s))||2,

where k2(s) =
ξ(s)

ν1(s)
, k3(s) =

λ(s)

2
(

1
ν2(s)

− 1
ν1(s)

), k4(s) =
λ(s)

2ν2(s)
+(

1
ν2(s)

− 1
ν1(s)

)(µ(s)ϵ(s)−

ξ(s)), k5 =
µ(s)

2ν2(s)
and k6(s) =

λ(s)

2ν2(s)
i.e. ki(s) > 0

∀i = 2, 3, 4, 5.
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6 Application: Error Bounds

In this section, error bounds for the problem RGVLIP (2.1) have been evaluated.
In the following theorem, the error bound for RGVLIP (2.1) in the term of GRGF (3.1) is estab-
lished.

Theorem 6.1. Let η(., .) be Lipschitz continuous and θa0(s) ∈ H be solution of the RGVLIP (2.1)
∀s ∈ τ . Also consider f satisfies (A1-A5). ∀s ∈ τ consider Γ be strongly monotonic random
set-valued map with α : τ −→ (0,∞) measurable function. Then ∀θa(s) ∈ H,

||θa(s)− θa(s)|| ≤
√√√√√ 1

α(s) +
1

ν(s)
(ϵ(s)µ(s)− ξ(s)λ(s)

2
)

Gν(s)(θa(s)). (6.1)

Proof. Since θa0(s) solves RGVLIP(2.1) then,

⟨ρ0(s), η(θa(s), θa0(s))⟩+ ψ(θa(s))− ψ(θa0(s)) ≥ 0. (6.2)

Now above inequality can be written in the form of GRGF Gν(s)(θa(s)) as

Gν(s)(θa(s)) ≥ ⟨ρ(s), η(θa(s), θa0(s))⟩+ ψ(θa(s))− ψ(θa0(s))

− 1
ν(s)

f(θa(s), θa0(s))−
λ(s)

2ν(s)
||θa(s)− θa0(s)||

2
,

now using (4.7), the above can be written as

Gν(s)(θa(s)) ≥ ⟨ρ(s)−ρ0(s), η(θa(s), θa0(s))⟩−
1

ν(s)
f(θa(s), θa0(s))−

λ(s)

2ν(s)
||θa(s)− θa0(s)||

2
,

now by definition of strongly monotonicity of Γ and using Lemma (3.3), we have

Gν(s)(θa(s)) ≥ (α(s) +
1

ν(s)
(ϵ(s)µ(s)− ξ(s)λ(s)

2
))||θa(s)− θa0(s)||2,

this can be written as

||θa(s)− θa0(s)|| ≤
√√√√√ 1

α(s) +
1

ν(s)
(ϵ(s)µ(s)− ξ(s)λ(s)

2
)

Gν(s)(θa(s)).

In the following theorem, the error bound for RGVLIP (2.1) in the term of D-gap function (5.1)
is established.

Theorem 6.2. Let θa0(s) ∈ H be solution of the RGVLIP(2.1) ∀s ∈ τ . Also consider f satisfies
(A1-A6). ∀s ∈ τ , ϕ : τ × H −→ H be Lipschitz continuous and Γ be strongly ϕ-monotonic
random set-valued map with L, λ∗ : τ −→ (0,∞) measurable functions respectively. Then
∀θa(s) ∈ H

||θa(s)−θa0(s)|| ≤
√√√√√ 1

λ∗(s) + L2(s)(
1

ν2(s)
− 1
ν1(s)

)(
λ(s)

2
+ ξ(s))

DGν1(s),ν2(s)(θa(s)). (6.3)

Proof. Since θa0(s) solves RGVLIP(2.1) then,

⟨ρ0(s), η(ϕ(s, θa(s)), ϕ(s, θa0(s)))⟩+ ψ(ϕ(s, θa(s)))− ψ(ϕ(s, θa0(s))) ≥ 0. (6.4)

Also using property (A4),

f(ϕ(s, θa(s)), ϕ(s, θa0(s))) = f(ϕ(s, θa(s)), ϕ(s, θa0(s)))− f(ϕ(s, θa(s)), ϕ(s, θa(s))),
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now using property (A3) and Lemma (3.1),

f(ϕ(s, θa(s)), p0(s, θa(s))) = ξ(s)||(ϕ(s, θa(s))− ϕ(s, θa0(s)))||2. (6.5)

Now D-gap function (5.1) can be written as,

DGν1(s),ν2(s)(θa(s)) ≥ ⟨ρ(s), η(ϕ(s, θa(s)), ϕ(s, θa0(s)))⟩+ψ(ϕ(s, θa(s)))−ψ(ϕ(s, θa0(s)))+

(
1

ν2(s)
− 1
ν1(s)

)f(ϕ(s, θa(s)), ϕ(s, θa0(s)))+
λ(s)

2
(

1
ν2(s)

− 1
ν1(s)

)||(ϕ(s, θa(s))− ϕ(s, θa0(s)))||
2
,

equivalently

DGν1(s),ν2(s)(θa(s)) ≥ ⟨ρ(s)−ρ0(s), η(ϕ(s, θa(s)), ϕ(s, θa0(s)))⟩+⟨ρ0(s), η(ϕ(s, θa(s)), ϕ(s, θa0(s)))⟩

+ψ(ϕ(s, θa(s)))−ψ(ϕ(s, θa0(s)))+(
1

ν2(s)
− 1
ν1(s)

)f(ϕ(s, θa(s)), ϕ(s, θa0(s)))+
λ(s)

2
(

1
ν2(s)

− 1
ν1(s)

)

× ||(ϕ(s, θa(s))− ϕ(s, θa0(s)))||
2
,

by (6.4) and (6.5) we have,

DGν1(s),ν2(s)(θa(s))

≥ ⟨ρ(s)−ρ0(s), η(ϕ(s, θa(s)), ϕ(s, θa0(s)))⟩+ξ(s)(
1

ν2(s)
− 1
ν1(s)

)||ϕ(s, θa(s))− ϕ(s, θa0(s))||
2

+
λ(s)

2
(

1
ν2(s)

− 1
ν1(s)

)||(ϕ(s, θa(s))− ϕ(s, θa0(s)))||
2
,

or

DGν1(s),ν2(s)(θa(s)) ≥ ⟨ρ(s)− ρ0(s), η(ϕ(s, θa(s)), ϕ(s, θa0(s)))⟩

+ (ξ(s) +
λ(s)

2
)(

1
ν2(s)

− 1
ν1(s)

)||(ϕ(s, θa(s))− ϕ(s, θa0(s)))||
2
,

now by definitions of Lipschitz continuity of ϕ and ϕ-strongly monotonicity, we have

DGν1(s),ν2(s)(θa(s)) ≥ (λ∗(s) + (ξ(s) +
λ(s)

2
)(

1
ν2(s)

− 1
ν1(s)

)L2(s))||θa(s)− θa0(s)||2,

therefore we have the required result.

7 Conclusion and Remarks

This paper has dedicated our efforts to studying the theory of gap functions and error bounds
within a fuzzy environment. Inspired by the work of [23, 24, 25, 26]; we establish a reverse
Schwarz inequality for real Hilbert spaces and apply it within a fuzzy context. Furthermore,
we introduce a novel version of the generalized regularized gap function for RGVLIP (2.1),
drawing motivation from the contributions of Fukushima [20] and Wu et al. [21]. Subsequently,
we construct the D-gap function for RGVLIP (2.1) utilizing the GRGF (3.1). Additionally, we
derive error bounds with the aid of the constructed gap functions (3.1) and (5.1). Our results are
both innovative and encompass many of the previously known outcomes.
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