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Abstract Nicholson introduced clean rings, where each element of ring is the sum of an
idempotent and unit element. Motivated by this structure we introduce here two classes of rings,
qclean and almost qclean ring. In this article we focus to study the fundamental properties of
both qclean and almost qclean rings, also proved that if a ring R is (almost) qclean, then power
series ring R[[x]] is (almost) qclean. Apart from this we established for a commutative torsion-
less cancellative monoid T, a commutative graded ring R =

⊕
β∈T Tβ is almost qclean, if T0 is

almost qclean and each Tβ is torsion-free T0 module.

1 Introduction

An element q of ring is called qpotent if q4 = q. From the definition of qpotent element it is clear
that every idempotent element is qpotent but the converse need not be true. A non-zero element
a ∈ R is called regular if ab = 0 implies b = 0 and ba = 0 implies b = 0. These are some special
elements of the rings, other than these special elements there are many special elements in the
ring like nilpotent elements, idempotent elements, unit elements, periodic elements, Jacobson
radicals etc. Many mathematicians used the properties of these special elements for studying
the various types of rings such as Boolean rings, clean rings, almost clean rings, nil-clean rings,
J-clean rings, r-clean rings etc. However, first such ring is studied by Nicholson [9] in his study
of lifting idempotents and exchange rings, where he introduces new class of ring known as
clean ring. A ring R is clean ring, if each element of ring can be expressed as sum of unit and
idempotent element. Nicholson also investigated the relationship between Boolean and clean
rings. Motivated by this work Ahn and Anderson [1] introduces two classes of rings known as
weakly clean rings and almost clean rings. In weakly clean ring, each element of ring can be
written as either sum or difference of a unit and an idempotent. While in almost clean ring, each
element of ring can be expressed as sum of regular element and an idempotent. On similar line
the notion of nil clean rings is introduced by A. J. Diesel [6], defined as if each element of ring
can be written as sum of an idempotent and nilpotent element. Most of the authors classify the
rings on the basis of properties of special elements of rings and studied their valuable properties.
Many authors have discussed such type of classifications in [[2], [3], [4], [7], [10]] and discussed
several important results of clean ring, r-clean ring, weakly clean ring, matrix ring over clean
ring and rings in which every element expressed as a sum of tripotents respectively.

In this paper we continue the study of such types of rings in which each element of ring can
be expressed by using qpotent elements. In this direction we study the qclean and almost qclean
rings. In section 2, we start by proving various properties of qclean rings. The main focus of
this section is to prove the class of qclean ring is closed under various fundamental structures of
rings like direct product, polynomial, homomorphic images etc. We discuss the matrix ring is
qclean whenever base ring is qclean and also discusses the results on ideal extensions in context
of qclean rings. In section 3, some similar type of things discusses for almost qclean rings.
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Throughout this paper, we consider R as an associative ring with unity. The set of regular ele-
ments, the set of qpotent elements, the set of unit elements, the set of zero divisors and Jacobson
radical are denoted by Reg (R), Q (R), U (R), Z(R) and J (R).

2 qclean Rings

We begin this section with the definition and example of qclean ring.

Definition 2.1. An element r ∈ R is called qclean if r is a sum of unit element and qpotent
element. A ring R is said to be qclean if every element of R is qclean i.e. every element of R is
expressed as a sum of unit element and qpotent element of R.

From the above definition it is clear that every clean element is a qclean but the converse is not
true. This is clear by the following example.

Example 2.2. Let F4 =
{
a+ bα|α2 = α+ 1, a, b ∈ Z2

}
. One can note that F4 is a field of order

4. Now, consider M2(F4) = (

(
a b

c d

)
|a, b, c, d ∈ F4). It is easy to see that M2(F4) is a ring

with usual matrix addition and multiplication. In this ring

(
α α

α α

)
is a qclean element as it can

be expressed as

(
α 0
0 α

)
+

(
0 α

α 0

)
, where the first element is qpotent and the second element

is invertible.

Now we discuss some elementary properties of qclean rings.

Proposition 2.3. Let R be a qclean ring with characteristic two. Then r ∈ R is qclean if and
only if 1 − r is qclean.

Proof. Let r ∈ R be a qclean element with characteristic 2, so we can express r = u+ q, where
u ∈ U (R) and q ∈ Q(R). Then 1−r = −u+(1−q). But (1 − q)

4
= 1−4q+ 3.4

2 q2+4q3−q4 =

1− q4 = 1− q. This imply (1 − q) ∈ Q(R), so 1− r is qclean. Conversely, if 1− r is qclean, so
1 − r = u+ q, where u ∈ U (R) and q ∈ Q(R). Hence r = −u+ (1 − q), so −u ∈ U (R) and
1 − q ∈ Q (R). 2

Corollary 2.4. If r ∈ J (R) then r is qclean.

Proof. As r ∈ J(R) and hence 1 − r ∈ U(R). This implies 1 − r is qclean. Therefore, by
Proposition 2.3, r is qclean. 2

Proposition 2.5. A ring R is qclean if and only if any element r ∈ R can be expressed as
r = u− q, where u ∈ U(R) and q ∈ Q(R).

Proof. Proof is a routine exercise and can be verified easily. 2

Theorem 2.6. Every homomorphic image of qclean is qclean.

Proof. Let R be qclean ring and f : R → R′ be a homomorphism. Let r′ ∈ f(R) then for some
r ∈ R, we have r′ = f(r) . As R is a qclean, r = u + q, where u ∈ U(R), q ∈ Q(R). Then
f (r) = f (u+ q) = f (u) + f (q). Here f (q) = f

(
q4
)
= (f (q))

4 and hence f (q) is qpotent
element. Now we prove f(u) is invertible. For this consider v be the inverse of an element u in
R, hence f (u) f (v) = f (uv) = f (1) = 1 and similarly f (v) f (u) = 1. This shows, f(u) is an
invertible element and hence f(R) is qclean. 2

Theorem 2.7. Let R1, R2, R3... are rings and construct R =
∏

i∈I Ri. Then R is qclean if and
only if each Ri′s are q clean.

Proof. It is evident that Q(R) =
∏

i∈I Q(Ri) and U (R) =
∏

i∈I U(Ri). Hence the result
follows. 2
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Theorem 2.8. Let R be a ring, then the following statements are equivalent:
(i) R is qclean.
(ii) R[[x]] is qclean.

Proof. (i) ⇒ (ii) Let f = b0 + b1x + b2x
2 + . . . . ∈ R[[x]] where bi ∈ R. As R is qclean, so

b0 = u+ q where u ∈ U (R) and q ∈ Q (R) then f = q+ u+ b1x+ b2x
2 + . . . is qclean because

u+ b1x+ b2x
2 + . . . ∈ U(R [[x]]) . Hence the result follows.

(ii) ⇒ (i) As R is a homomorphic image of R[[x]], hence by Theorem 2.6, the result follows. 2

However, the similar type of result is not true for the polynomial ring R [x]. It is followed from
the following proposition.

Proposition 2.9. Let R be commutative ring then R[x] is not qclean.

Proof. Consider x = u + q, where u ∈ U(R[x]) and q ∈ Q(R[x]). Suppose q = a0 + a1x +
a2x

2 + . . . + anx
n and R is commutative with q4 = q, hence ai = 0,∀i ∈ {1, 2, ..., n}. This

implies q ∈ R. Thus −q + x ∈ U (R [x]). It is easy to see that this is impossible. 2

It is always interesting to classify the matrix ring on the basis of base ring. Now we prove,
whenever R is qclean then matrix ring Mn (R) is also qclean.

Proposition 2.10. If q4 = q ∈ R and q3Rq3 and (1 − q3)R(1 − q3) are qclean rings, then R is
qclean.

Proof. As q4 = q, so it is easy to see that q3 is an idempotent element. Now, by Pierce decom-
position of the ring, we have

R =

[
q3Rq3 q3R(1 − q3)(

1 − q3
)
Rq3

(
1 − q3

)
R(1 − q3)

]
. Let P =

[
l x

y m

]
∈ R, as l ∈ q3Rq3 implying

l = f + u, where u ∈ U
(
q3Rq3

)
and f ∈ Q

(
q3R q3

)
. Suppose u′ is an inverse of u then

yu′x ∈
(
1 − q3

)
Rq3q3Rq3q3R

(
1 − q3

)
⊆
(
1 − q3

)
R
(
1 − q3

)
, and m ∈

(
1 − q3

)
R
(
1 − q3

)
gives
m−yu′x ∈

(
1 − q3

)
R
(
1 − q3

)
, so we can write m−yu′x = f ′+v, where f ′ ∈ Q

((
1 − q3

)
R
(
1 − q3

))
and v ∈ U

((
1 − q3

)
R
(
1 − q3

))
with inverse v′. This implies

P =

[
f + u x

y f ′ + v + yu′x

]
=

[
f 0
0 f ′

]
+

[
u x

y v + yu′x

]
. Clearly,

[
f 0
0 f ′

]4

=

[
f4 0
0 f

′4

]
=[

f 0
0 f ′

]
and hence

[
f 0
0 f ′

]
∈ Q (R). Now, we prove

[
u x

y v + yu′x

]
is a unit. For this consider[

q3 0
−yu′ 1 − q3

][
u x

y v + yu′x

][
q3 −u′x

0 1 − q3

]
=

[
q3u q3x

−y +
(
1 − q3

)
y −yu′x+ (1 − q3)(v + yu′x)

]
[
q3 −u′x

0 1 − q3

]
. But q3u = u because u ∈ q3Uq3 and as x ∈ q3R(1 − q3) this implies q3x = x.

Also, −y+
(
1 − q3

)
y = −q3y = 0 because y ∈

(
1 − q3

)
Rq3 . On similar line we can show that

−yu′x+
(
1 − q3

)
(v + yu′x) = v. Hence,[

q3 0
−yu′ 1 − q3

][
u x

y v + yu′x

][
q3 −u′x

0 1 − q3

]
=

[
u x

0 v

][
q3 −u′x

0 1 − q3

]
=

[
uq3 −xq3

0 v(1 − q3)

]
.

But, uq3 = u, −xq3 = 0 and v
(
1 − q3

)
= v. Hence,[

q3 0
−yu′ 1 − q3

][
u x

y v + yu′x

][
q3 −u′x

0 1 − q3

]
=

[
u 0
0 v

]
. Since

[
u 0
0 v

]
,

[
q3 0

−yu′ 1 − q3

]
and[

q3 −u′x

0 1 − q3

]
all are in U(R). Hence

[
u x

y v + yu′x

]
is unit and the result follows. 2

Proposition 2.11. Let q1, q2, . . . .qn be qpotents with q3
i and q3

j are mutually orthogonal for i ̸= j

and q1 + q2 + . . .+ qn = 1 then for each i, if q3
iRq3

i is qclean then R is qclean.
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Proof. This follows from Proposition 2.10 . 2

The following result is a direct consequence of above proposition.

Corollary 2.12. Let R be a qclean ring, then matrix ring Mn (R) is qclean.

Proposition 2.13. Let X and Y are rings and M be Y −X module with formal triangular ring[
X 0
M Y

]
is qclean, then X and Y are qclean.

Proof. Let S =

[
X 0
M Y

]
be a qclean ring, consider an element s ∈ S such that s =

[
x 0
m y

]
=[

f1 0
f2 f3

]
+

[
u1 0
u2 u3

]
, where

[
f1 0
f2 f3

]
∈ Q(S) and

[
u1 0
u2 u3

]
∈ U (S). Thus, x = f1 + u1 and

y = f3+u3. But

[
f1 0
f2 f3

]4

=

[
f1 0
f2 f3

]
this implies f4

1 = f1 and f4
2 = f2 and hence f1 ∈ Q(X)

and f2 ∈ Q (Y ). Also there exist

[
u′

1 0
u′

2 u′
3

]
such that

[
u1 0
u2 u3

][
u′

1 0
u′

2 u′
3

]
=

[
1 0
0 1

]
. Hence

u1 ∈ X and u3 ∈ Y . Therefore, x and y are qclean elements. Hence X and Y are qclean. 2

Let V be an R−R bimodule over a ring R. This bimodule is also a ring with (v1v2) r = v1 (v2r),
(v1r) v2 = v1(rv2) and (rv1)w = r (v1w), where r ∈ R and v1, v2 ∈ V . Then the ideal
extension I (R;V ) = {(x, v) : x ∈ R, v ∈ V } is a ring with multiplication (x, v1) (y, v2) =
(xy, xv2 + v1y + v1v2) and usual addition.

Now, we discuss some results on ideal extension.

Proposition 2.14. Let I(R;V) be an ideal extension as defined above. Then the following state-
ments hold:
(i) If I(R;V ) is qclean, then R is qclean.
(ii) If R is qclean and for any v1 ∈ V, if there exist v2 ∈ V such that v1 + v2 + v1v2 = 0, then
I(R;V ) is qclean.

Proof. (i) Let (r, 0) ∈ I (R;V ) where r ∈ R. Since I (R;V ) is qclean, (r, 0) = (u1, u2) +

(q1, q2), where (q1, q2) ∈ Q(I (R;V )) and (u1, u2) ∈ U (I (R;V )). But (q1, q2)
4
= (q1, q2),

this gives
(
q4

1 , q
3
1q2 + q2

1q2q1 + q2
1q

2
2 + q1q2q

2
1 + q2q

3
1 + q2

2q
2
1 +

(
q1q2 + q2q1 + q2

2

)2
)
= (q1, q2).

Therefore, q4
1 = q1 and hence q1 ∈ Q(R). Similarly we can prove that u1 ∈ U (R). Hence,

r = u1 + q1 is a qclean.
(ii) Since R is qclean, for r ∈ R we have r = u + q, where q ∈ Q (R) and u ∈ U (R).
Therefore for (r, v) ∈ I (R;V ) can be written as (r, v) = (q + u, v) = (u, v) + (q, 0). Clearly,
(q, 0)4

=
(
q4, 0

)
= (q, 0) and hence (q, 0) ∈ Q(I(R;V )). Now to prove (u, v) is invertible

in I(R;V ), consider (u, v) = (u, 0) (1, v′), where v′ = u−1v. Clearly, (u, 0) is invertible in
I (R;V ). Since for v′ ∈ V there exist v′2 ∈ V such that v′ + v′2 + v′v′2 = 0, this implies
(1, v′) (1, v′2) = 1. Therefore (1, v′) is invertible in I(R;V ) and hence (u, v) is invertible in
I (R;V ). This completes the proof. 2

3 Almost qclean rings

We start this section by giving the definition and example of an almost qclean rings.

Definition 3.1. An element r ∈ R is called almost qclean ring if r is a sum of regular element and
qpotent element. If every element of a ring R is almost qclean, then ring R is called as almost
qclean ring. Clearly, qclean ring is almost qclean but the converse need not be true.
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Now, we discuss some properties of almost qclean rings.
In previous section we proved that If R is qclean then each of its homomorpic image is also
qclean. But similar type of result need not be true for almost qclean rings. An example in this
direction is given below:

Example 3.2. Let R = R[a, b] and R′ = R/(a−1)∩(a)∩(a+ 1)∩(b). Clearly Q (R′) = {0′, 1′}.
Here a′, (a − 1)′and (a+ 1)′ are zero divisor elements of R′ and which are not almost qclean,
hence R′ is not almost qclean.

Proposition 3.3. Let R be a ring with characteristic 2, then r ∈ R is almost qclean if and only if
1 − r is almost qclean.

Proof. Proof is similar to the proof of Proposition 2.3. 2

Now, we prove the direct product preserves the property of an almost qclean.

Proposition 3.4. Let R1, R2, R3... are rings and construct R =
∏

i∈I Ri. Then R is almost
qclean if and only if each Ri is an almost qclean.

Proof. Let r = (r1, r2, . . . .ri, . . .) where ri ∈ Ri for each i ∈ I , can be expressed as r = x+ q
where x ∈ Reg (R) and q ∈ Q (R). But

∏
i∈I Reg(Ri) = Reg (R) this implies xi ∈ Reg(Ri)

for each i ∈ I . Similarly if q = (q1, q2, . . . .., qi) ∈ Q (R) then qi ∈ Q (Ri) for each i ∈ I . Hence,
we get ri = xi + qi, where xi ∈ Reg(Ri) and qi ∈ Q (Ri) for each i ∈ I . So Ri is almost
qclean. Conversely, let r = (ri) ∈ R =

∏
i∈I Ri. For each i ∈ I , we can write ai = ri + qi

where ri ∈ Reg(Ri) and qi ∈ Q(Ri). Since ri ∈ Reg(Ri), so there exist si ̸= 0 ∈ Ri such that
siri = 0. Hence r = (ri) ∈ Reg (R). Clearly q = (qi) ∈ Q (R). Hence r is an almost qclean. 2

Proposition 3.5. If ring R is almost qclean, then R[[x]] is almost qclean.

Proof. Let f = a0 +a1x+ . . . ∈ R [[X]]. Since R is an almost qclean, we can write a0 = r0 + q0
where r0 ∈ Reg (R) and q0 ∈ Q (R). Therefore, f = r0 + q0 + a1x + a2x

2 + . . . = q0 + r0 +
a1x+ a2x

2 + . . . = q0 + h(x), where h (x) = r0 + a1x+ a2x
2 + . . .. If h(x) is not regular then

there exist g (x) = b0 + b1x + b2x
2 + . . . such that h (x) g (x) = 0. Therefore r0g (x) = 0 and

hence r0gi = 0∀i, and this gives gi = 0 for all i. This is not possible. So h (x) ∈ reg(R [[x]]).
Also, q ∈ Q (R) ⊆ Q(R [[x]]). Hence R [[x]] is an almost qclean. 2

Proposition 3.6. Let R be a ring which embedded in a ring P, also R and P has the same qpotent,
then R is almost qclean.

Proof. Let R be a ring which embeds in a ring P and has the same qpotent as R. Therefore
for x ∈ R, we have x ∈ P and hence x = u + q where q ∈ Q(P ) and u ∈ U (P ). By given
condition q ∈ Q(R) and this implies u = x − q ∈ R. Now to prove u ∈ Reg(R), we start with
the assumption that u is not regular and therefore there exist y ∈ R such that yu = 0, y ̸= 0.
Since y and u ∈ R, so y, u ∈ P , and hence yu ∈ P . Also as u ∈ U (P ), this implies there exist
u′ ∈ P such that uu′ = 1. Therefore, yu = 0 gives (yu)u′ = 0, y = 0 is a contradiction. Hence
R is almost qclean. 2

Proposition 3.7. Let R be a ring. Then the following statements are equivalent:
(i) R is almost qclean.
(ii) R[[x]]/((xn)) is an almost qclean.

Proof. (i) =⇒ (ii) For a ring R, consider S = R[[x]]/((xn)). First we start by assuming R is
almost qclean and will prove S is an almost qclean . Let f = f0 + f1x+ . . .+ fn−1x

n−1 + (xn)
be an element of S. Since R is qclean, f = (r0 + f1x + . . . + fn−1x

n−1 + (xn)) + (q0 +
(xn), where r0 ∈ Reg(R), q0 ∈ Q(R). Suppose that (r0 + f1x + f2x

2 + . . . + fn−1x
n−1 +

(xn))(g0 + g1x+ g2x
2 + . . .+ gn−1x

n−1 +(xn)) = 0+(xn). This gives r0g0 = 0, r0g1 +f1g0 =
0, . . . , gn−1r0 + gn−2f1 + . . .+ g0fn−1 = 0. This gives g0 = g1 = . . . = gn−1 = 0. Therefore
(r0 + f1x+ f2x

2 + . . .+ fn−1x
n−1) + (xn) ∈ Reg(S). Clearly, q0 + (xn) ∈ Q(S). Hence S is

a qclean.
(ii) =⇒ (i) Let S be an almost qclean and hence for r ∈ R, we have r + (xn) = (f + (xn)) +
(q + (xn)), clearly r = f0 + q0 and it is easy to see that q0 ∈ Q(R). Now we prove f0 is an
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regular element of R. Assume f0 is not regular element of R then there exist g0 ̸= 0 ∈ R such
that f0g0 = 0. Let g = g0x

n−1 ∈ R[[x]], then (f + (xn))(g + (xn)) = 0 + (xn), which is a
contradiction because f + (xn) ∈ Reg(S). Hence R is an almost qclean. 2

It is well known that if ring R is commutative clean ring, then R/nil(R) is also clean. However,
we can prove that if R is almost qclean, then R/nil(R) is also qclean.

Proposition 3.8. If R is a commutative almost qclean, then R/nil(R) is almost qclean.

Proof. Since R is almost qclean, then each element x in R can be expressed as x = r+ q where
r ∈ Reg(R) and q ∈ Q(R). Hence x′ ∈ R′ where R′ = R/nil (R) can be expressed as r′+ q′. It
is easy to see that q′ ∈ Q (R′). So, now we prove r′ ∈ Reg (R′). Consider r′a′ = 0′, this implies
ra ∈ nil(R). Therefore there exists a natural number n such that (ra)n = 0. But r ∈ Reg(R) so
an = 0 , this implies a ∈ nil(R). Hence a′ = 0′ in R and therefore r′ ∈ Reg (R′). 2

Let (T,+) be a torsion-less commutative cancellative monoid ( torsion-less mean if nt1 = nt2 →
t1 = t2 where t1, t2 ∈ T , n ∈ N). It is easy to see that R[x;T ] =

{∑n
i=1 aix

ti
i | ti ∈ T, ai ∈ R

}
is the monoid ring of R over T . Note that if T is a torsion-less cancellative commutative monoid
and R is an integral domain then R[x;T ] is also an integral domain. Also the map R[x;T ] →
R defined by a0 +

∑
ti ̸=0 aix

ti → a0 is a ring homomorphism whenever T is a cancellative
commutative monoid with T ∩ (−T ) = 0.

Proposition 3.9. If q0 +
∑

ti ̸=0 qix
ti ∈ Q(R[x;T ]), where T is commutative torsion-less can-

cellative monoid with T ∩ (−T ) = 0, then q0 ∈ Q(R) and qi ∈ nil(R), for i ̸= 0.

Proof. Consider a mapping f : R[x;T ] → R such that f(a0 +
∑

ti ̸=0 aix
ti
i ) → a0. But as T ∩

(−T ) = 0, this implies f is a ring homomorphism. Thus, if q0 +
∑

ti ̸=0 qix
ti ∈ Q(R[x;T ]), then

q0 ∈ Q(R). Now, consider a map from R[x;T ] → R[x;T ] such that a0 +
∑

ti ̸=0 aix
ti
i → ā0 +∑

ti ̸=0 āix
ti , where R̄ = R/P and P is a prime ideal. Clearly, the kernel of this map is

a0 +
∑

ti ̸=0 aix
ti a0, ai ∈ P . As R̄ is an integral domain and T is torsion-less cancellative

monoid, this gives Q(R̄[x;T ]) = Q(R). This implies q̄i = 0̄ for i ̸= 0, qi ∈ P . Hence
qi ∈

⋂
P = nil(R). 2

Theorem 3.10. Let T be commutative torsion-less cancellative monoid with R =
⊕

β∈T Tβ be
a commutative graded ring. If T0 is almost qclean and each Tβ is torsion-free T0 module, then
R is almost qclean.

Proof. Let x ∈ R, x =
∑

xβ , where xβ ∈ Tβ . Since T0 is almost qclean, x0 = a + q, where
a ∈ Reg(T0) and q ∈ Q(T0). Therefore, x = a +

∑
β ̸=0 xβ + q. Clearly q ∈ Q (R). Now it

suffices to prove that a +
∑

β ̸=0 xβ ∈ Reg (R). Let y = a +
∑

β ̸=0 xβ and assume y ∈ Z (R),
so there exists non zero element β ∈ Tβ with yβ = 0 but then aβ = 0 [7, Theorem 8.4], this
contradict to Tβ is a torsion free T0-module. 2

Theorem 3.11. Let R [x : T ] be an almost qclean, where R is a commutative ring and T be a
commutative torsion-less cancellative monoid with T ∩ (−T ) ̸= 0, then R is an almost qclean.

Proof. Since R is an almost qclean, so for y ∈ R, y = a+q, where a = a0+
∑

ti ̸=0 aix
ti ∈ Reg (R [x;T ])

and q = q0 +
∑

ti ̸=0 qix
ti ∈ Q (R [x;T ]). By Proposition 3.9, q0 ∈ Q (R) and qi ∈ nil (R), for

i ̸= 0. Hence ai = −qi ∈ nil (R) for i ̸= 0. Now to prove a0 ∈ Reg (R), assume that
a0 /∈ Reg (R) i.e. a0 ∈ Z (R [x;T ]). This says there exists a prime ideal P of R([x;T ]) such
that a0 ∈ P ⊆ Z (R [x;T ]) and ai ∈ nil (R) , i ̸= 0. This implies aix

ti ∈ nil (R [x;T ]) ⊆ P .
Hence a ∈ P . But P ⊆ Z (R [x : T ]), this gives a ∈ Z (R [x;T ]) but this is not possible as
a ∈ Reg (R [x;T ]). Thus, a0 ∈ Reg (R) and hence R is almost qclean. 2

Theorem 3.12. Let R = S0
⊕

S1
⊕

S2
⊕

. . . . . . . be a commutative graded ring and if for 1 ≤
i ≤ n − 1, Si is torsion free S0 module with S0 is almost qclean, then (R/Sn

⊕
Sn+1

⊕
. . .) is

qclean.

Proof. Let a ∈ R, a = a0 + a1 + . . . + an−1 + Sn

⊕
Sn+1

⊕
. . . .., where ai ∈ Si. As S0

is almost qclean, so a0 = r + q, where r ∈ Reg (S0) and q ∈ Q (S0). It is easy to see that
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q+ Sn

⊕
Sn+1

⊕
. . . ∈ Q ((R/Sn

⊕
Sn+1

⊕
. . .)). Now we prove y = r+ a1 + . . . .+ an−1 +

Sn

⊕
Sn+1

⊕
.... ∈ Reg ((R/Sn

⊕
Sn+1

⊕
. . .)). Suppose that y /∈ Reg((R/Sn

⊕
Sn+1

⊕
. . .))

i.e y ∈ Z (R/Sn

⊕
Sn+1

⊕
. . .).

But (R/Sn

⊕
Sn+1

⊕
. . .) is a graded ring, by [7, Theorem 8.4], there is a non-zero element

xi

⊕
Sn

⊕
Sn+1

⊕
...., xi ̸= 0 ∈ Si for some 0 ≤ i ≤ n−1 such that (y+Sn

⊕
Sn+1

⊕
....)(xi+

Sn

⊕
Sn+1

⊕
....) = 0+Sn

⊕
Sn+1

⊕
...... This gives yxi+Sn

⊕
Sn+1

⊕
... = 0+Sn

⊕
Sn+1

⊕
...,

hence yxi = 0 which is not possible as Si is torsion-free S0 module. Hence the result follows.
2
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