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Abstract A function f : Fq → Fq is perfect nonlinear or planar if, for every nonzero b ∈ Fq,
the discrete derivative f(x + b) − f(x) − f(b) of f(x) is a bijection of Fq. Perfect nonlinear
functions have a wide range of applications in Combinatorics, Coding Theory, Finite Geom-
etry, Cryptography, and Design Theory. A polynomial of the form

∑
i,j aijx

pi+pj

is called a
Dembowski-Ostrom polynomial (DO polynomial). In this article, we construct four classes of
perfect nonlinear functions of DO-type polynomials over finite fields Fptn , for t = 2 and 3.

1 Introduction

Let q = pn and p be an odd prime. Let Fq be a finite field having q elements. A polyno-
mial ϕ ∈ Fq[x] is a permutation polynomial of Fq if the map x 7→ ϕ(x) is a bijection. The
problem of determining a permutation polynomial over a finite field is nontrivial. Permutation
polynomials have been the subject of study for several years and have a wide range of applica-
tions in cryptography [24, 25], coding theory [11] and combinatorics [26]. The study of special
types of permutation polynomials is an interesting problem, for instance see [1, 16, 10, 12, 22].
Some recent development on permutation polynomials can be found in [17, 15, 21, 3]. The
polynomial ϕ(x) is called planar function or perfect nonlinear (PN) if the discrete derivative
D(ϕ(x)) = ϕ(x + a) − ϕ(x) − ϕ(a) is a permutation polynomial of Fq for every a ∈ F∗

q . Let
ϕ : Fq → Fq be a function and define ∆ϕ = max {n(γ, δ) : γ, δ ∈ Fq; γ ̸= 0}, where n(γ, δ)
indicates the number of solutions of ϕ(x + γ) − ϕ(x) = δ for every γ, δ ∈ Fq, γ ̸= 0. A
function ϕ is defined as differentially d-uniform if ∆ϕ = d. Due to their optimal resistance to
differential cryptanalysis in Block ciphers, functions with low differential uniformity are given
special attention for use in cryptography [5]. The functions which are differential 2-uniform are
called almost perfect nonlinear (APN) functions over fields of characteristic 2. The differential
1-uniform functions are obviously perfect nonlinear or planar functions. The planar functions
cannot exist over finite fields Fq of even characteristic. Since if q is even then both x and x+ a
are solutions of ϕ(x + a) − ϕ(x) = b for b ∈ F∗

q . The planar functions initially appeared in
the article of P. Dembowski and T.G. Ostrom in 1968 [13] where they used such functions to
describe projective planes with specific properties. A polynomial of the form

∑
i,j aijx

pi+pj

is
known as Dembowski-Ostrom polynomial or DO-type polynomial. It is interesting to note that
all known classes of planar functions are of DO-type with the only exception x 3s+1

2 , s odd with
gcd(s, n) = 1 over finite field F3n [9]. It is conjectured that there is no planar functions other
than DO-type over Fpn , for p ≥ 5, [7, 20].

A commutative semifield is a nonassociative commutative ring without zero divisors and
with an identity element. A commutative presemifield is a commutative semifield with the only
exemption of having an identity element. No classification of finite commutative semifields
exists yet, and very few classes of commutative semifields are known so far [8]. Planar DO
polynomials are closely connected to commutative semifields and are used to construct new
finite commutative semifields having odd order. Let ϕ(x) be a planar DO polynomial then we
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define a new operation ∗ on Fq by x∗y = 1
2{ϕ(x+y)−ϕ(x)−ϕ(y)}. Now with the usual addition

and ∗ as multiplication, (Fq,+, ∗) becomes a commutative presemifield. Given a presemifield, it
is possible to define a new operation ⋆ which determines a semifield (Fq,+, ⋆) [8]. In this way,
any finite commutative semifield can be determined by a planar DO polynomial over a finite field
[4, 8]. Planar functions are also used in combinatorics for the construction of partial difference
sets of Paley type, skew Hadamard difference sets [14] and in coding theory to construct linear
and quasi-perfect linear codes [6, 18].

Two functions ϕ, ψ : Fq → Fq are extended affine equivalent (EA-equivalent) if ϕ(x) =
l2(ψ(l1(x))) + l3(x) for bijective affine functions l1, l2 and l3 of Fq. The functions ϕ and ψ are
Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if the graphs of ϕ and ψ are affine equiva-
lent [5]. It is proved in [4] that for perfect nonlinear functions over finite fields, EA-equivalence
coincides with CCZ-equivalence. Finding new classes of inequivalent planar functions is a diffi-
cult problem. Only a handful of classes of perfect nonlinear functions are known so far [2].

As we see, perfect nonlinear functions have crucial applications in many mathematics disci-
plines. But only few classes of planar functions over finite fields of arbitrary odd characteristic
are yet known. So, there is a solid motivation to find new families of perfect nonlinear func-
tions. In this article, we find four classes of DO-type perfect nonlinear polynomials over finite
fields Fpn , n = 2m and 3m for any odd characteristic p. In section 3 of this paper, we present
two classes of perfect nonlinear trinomials over quadratic extension. In section 4, we present
two families of perfect nonlinear functions over cubic extension. Moreover, in the next Section
(Section 2), we give the preliminary results required for the paper.

2 Preliminaries

Definition 2.1. Let Fqn be the extension field of Fq. A polynomial of the form L(x) =
∑n−1

i=0 δix
qi ,

δi ∈ Fqn , is called a linearized polynomial over Fqn .

It easily follows that linearized polynomials are additive in nature, that is, L(x+y) = L(x)+
L(y) for all x, y ∈ Fqn . In fact L(x) is a linear transformation from vector space Fqn to itself
with Fq as field of scalars. The linearized polynomial L(x) becomes a permutation polynomial
of Fqn if and only if 0 is the only root of L(x) in Fqn . The polynomial L(x) + c is said to be an
affine polynomial where c ∈ Fqn is some constant.

Definition 2.2. [19] Let Fqn be the extension field of Fq. For any γ ∈ Fqn , Tr(γ), the trace of γ
over Fq, is a function from Fqn to Fq defined as Tr(γ) = γ + γq + · · ·+ γq

n−1
.

Trace is a linear map (linearized polynomial) from Fqn to Fq and it is a balanced map. This
means that it takes exactly qn−1 elements of Fqn to a single element of Fq.

The next lemma provides characterization of linearized polyomial to be a permutation poly-
nomial in general case.

Lemma 2.3. [19] Let

A =


a0 aqn−1 · · · aq

n−1

1

a1 aq0 · · · aq
n−1

2
...

...
. . .

...

an−1 aqn−2 · · · aq
n−1

0


be a square matrix of order n, where ai ∈ Fqn , i = 0, 1 · · · , n−1. Then the linearized polynomial∑n−1

i=0 aix
qi is a permutation polynomial of Fqn if and only if the matrix A is invertible .

Definition 2.4. Suppose p be a prime and m be any positive integer lying in the range 0 ≤
m ≤ pt+1 − 1. Express m in the power series of base p as m = θ1 + θ2p + · · · θtpt, where
θi ∈ {0, 1, · · · , p− 1}. The summation

∑t
i=0 θi is defined as the p-weight of m, usually denoted

by wp(m)

Definition 2.5. [23] Let ϕ(x) = c0 + c1x + · · · + ctx
t be a polynomial over finite field Fpn .

Algebraic degree of ϕ(x) is defined as the greatest p-weight of any exponent i such that ci ̸= 0,
that is, algebraic degree of ϕ(x) = max{wp(i) : 0 ≤ i ≤ t and ci ̸= 0}.
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Example 2.6. The algebraic degree of linearized polynomial L(x) is one.

Example 2.7. The algebraic degree of Dembowski-Ostrom polynomial, that is, the algebraic
degree of polynomial of the form

∑
i,j aijx

pi+pj

is two.

It is well known that every function ϕ from a finite field Fq to itself is expressible as a
polynomial g over Fq with deg(g) ≤ q − 1 . Therefore every perfect nonlinear function from Fq

to itself is a polynomial over Fq.

Definition 2.8. Let ϕ(x) be a polynomial over Fq and b ∈ F∗
q . Then the discrete derivative of

ϕ(x) in the direction of b is defined as

D(ϕ(x)) = ϕ(x+ b)− ϕ(x)− ϕ(b).

Lemma 2.9. [9] The discrete derivative of a Dembowski-Ostrom polynomial is a linearized poly-
nomial.

Proposition 2.10. Let xu be a monomial with algebraic degree d over a finite field Fpn . Then its
discrete derivative in any direction is a polynomial with algebraic degree d− 1

Proof. Let xu be a monomial with algebraic degree d then u is expressible as c1p
s1 + c2p

s2 +

· · ·+ ckp
sk with 0 < ci ≤ p− 1 and

∑k
i=1 ci = d.

D(xu) =(x+ a)u − xu − au

=(x+ a)
∑k

i=1 cip
si − xu − au

=
k∏

i=1

(x+ a)cip
si − xu − au

=
k∏

i=1

(xp
si
+ ap

si
)ci − xu − au

=
k∏

i=1

(
xcip

si
+

(
ci
1

)
x(ci−1)psi

ap
si
+ · · ·

(
ci
ci

)
acip

si

)
− xu − au

Since
∏k

i=1 x
cip

si = x
∑k

i=1 cip
si = xu, therefore the maximum p-weight of any exponent in the

above product is d− 1. This proves that the algebraic degree of D(xu) is d− 1.

It is easy to see that the discrete derivative is additive in nature, that is, D(ϕ(x) + ψ(x)) =
D(ϕ(x)) +D(ψ(x)) and D(aϕ(x)) = aD(ϕ(x)) for any polynomials ϕ(x) and ψ(x) over Fpn

and for a ∈ F∗
pn . Therefore for ϕ(x) =

∑
αix

i, we have D(ϕ(x)) =
∑
αiD(xi). In view of

this, the following result follows immediately.

Proposition 2.11. If ϕ(x) is any polynomial of algebraic degree d over a finite field Fpn then its
discrete derivative is a polynomial of algebraic degree d− 1.

Example 2.12. Consider the polynomial ϕ(x) = x7 over F3n . The algebraic degree of ϕ(x) is 3,
because 7 = 1·30+2·31. The derivative of ϕ(x) at any point a ∈ F∗

3n is ax6+2a3x4+2a6x3+a6x.
We see that the p-weights of exponents 6, 4, 3, 1 are 2, 2, 1, 1 respectively. Therefore, the
algebraic degree of ϕ(x) is 2.

3 Families of perfect nonlinear functions over Fp2m

In this section, we present two families of perfect nonlinear functions. Like the other known
classes, these classes are of Do-type trinomials of the form Ax2 +Bxp

m+1 + Cxp
2m

.

Theorem 3.1. The function f1(x) = −αx2 +2αxp
m+1 +(α2 +α+1)x2pm

, where α ∈ Fpm , and
α ̸= ±1, is perfect nonlinear over Fpn with n = 2m.
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Proof. The discrete derivative of f1(x) at b ∈ F∗
pn is D(f1(x)) = f1(x+ b)− f1(x)− f1(b). We

have, D(f1(x)) = 2[{−bα+bpm

α}x+{bα+(α2+α+1)bp
m}xpm

]. As we are in the field of odd
characteristic, we can ignore the factor 2 in D(f1(x)). So, we need to show that the linearized
polynomial D(f1(x)) = {−bα+ bp

m

α}x+ {bα+ (α2 + α+ 1)bp
m}xpm

is invertible. Suppose
x = v is a root of D(f1(x)). We are done if we show that v = 0. We have

D(f1(v)) = {−bα+ bp
m

α}v + {bα+ (α2 + α+ 1)bp
m

}vp
m

= 0 (3.1)

D(f1(v))
pm

= {(α2 + α+ 1)b+ bp
m

α}v + {bα− bp
m

α}vp
m

= 0 (3.2)

From D(f1(v))− (D(f1(v))p
m

= 0, we obtain (α+ 1)2{(bv)pm − bv} = 0, yielding

(bv)p
m

= bv. (3.3)

Substituting (3.3) in (3.1) gives

(α2 + 1)bv + α(bp
m

v + bvp
m

) = 0

or equivalently
(α2 + 1)bv + α{Tr(b)Tr(v)− 2bv} = 0

or

(α− 1)2bv + αTr(b)Tr(v) = 0. (3.4)

Case-1 If b ∈ F∗
pm , then (bv)p

m

= bv implies v ∈ Fpm and from (3.4) we find that, (α+1)2bv = 0
this gives v = 0.
Case-2 Suppose b ∈ Fp2m \ Fpm . Now to show that the linearized polynomial D(f1(x)) is in-
vertible, we use Lemma 2.3 and show that the determinant ∆1 ̸= 0, where ∆1 is given by

∆1 =

∣∣∣∣∣ −αb+ αbp
m

(α2 + α+ 1)b+ αbp
m

αb+ (α2 + α+ 1)bp
m

αb− αbp
m

∣∣∣∣∣ .
Solving the determinant, we obtain

∆1 = −(α+ 1)2b2{(α2 + 1)bp
m−1 + α(1 + b2(pm−1))}. (3.5)

We claim that either bp
m−1 = −1 or bp

m−1 ∈ Fp2m\Fpm . If bp
m−1 ∈ F∗

pm , then (bp
m−1)p

m−1 =

1. This implies b2(pm−1) = 1 and therefore bp
m−1 = −1. Hence, it follows that either bp

m−1 =
−1 or bp

m−1 ∈ Fp2m \ Fpm . For convenience let us denote bp
m−1 by β and simplifying (3.5) we

get

−∆1 = (α+ 1)2b2(α+ β)(αβ + 1). (3.6)

If β = −1, we see that −∆1 = (α+ 1)2b2(α− 1)(1 − α) ̸= 0.
Next, if β ̸= −1, then β ∈ Fp2m \ Fpm and α ∈ Fpm therefore, α + β ̸= 0 and αβ ̸= −1.

From (3.6) it follows that ∆1 ̸= 0.

Theorem 3.2. The function

f2(x) = −α(α+ 1)x2 + 2α(α+ 1)xp
m+1 + (3α2 + 3α+ 1)x2pm

is perfect nonlinear over Fpn with n = 2m and α ∈ Fpm , 2α+ 1 ̸= 0.
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Proof. f2(x) = −α(α+ 1)x2 + 2α(α+ 1)xp
m+1 + (3α2 + 3α+ 1)x2pm

. Its discrete derivative
D(f2(x)) = {−α(1+α)b+α(1+α)bpm}x+{α(1+α)b+(3α2+3α+1)bp

m}xpm

is a linearized
polynomial over Fpn . Let v be a root of D(f2(x)). We have

D(f2(v)) = {α(1 + α)(−b+ bp
m

)}v + {α(1 + α)b+ (3α2 + 3α+ 1)bp
m

}vp
m

(3.7)

and

D(f2(v))
pm

= {(3α2 + 3α+ 1)b+ α(1 + α)bp
m

}v + {α(1 + α)(b− bp
m

)}vp
m

. (3.8)

Since D(f2(v)) = 0, we have D(f2(v)) − D(f2(v))p
m

= 0. This gives (2α + 1)2bv − (2α +
1)2(bv)p

m

= 0
or equivalently, we have

(bv)p
m

= bv. (3.9)

Substituting (3.9) in (3.7) gives

(2α2 + 2α+ 1)bv + α(α+ 1){bp
m

v + bvp
m

} = 0

which is furhter equivalent to

(2α2 + 2α+ 1)bv + α(α+ 1){Tr(b)Tr(v)− 2bv} = 0

or

bv + α(α+ 1) Tr(b)Tr(v) = 0. (3.10)

Case-1 If b ∈ F∗
pm , then (bv)p

m

= bv implies that v ∈ Fpm and from (3.10) it follows that
(2α+ 1)2bv = 0 and this gives v = 0.
Case-2 Now assume b ∈ Fp2m \ Fpm . We show that the determinant ∆2 ̸= 0, where ∆2 is given
by

∆2 =

∣∣∣∣∣ α(α+ 1)(bp
m − b) (3α2 + 3α+ 1)b+ α(α+ 1)bp

m

α(α+ 1)b+ (3α2 + 3α+ 1)bp
m

α(α+ 1)(b− bp
m

)

∣∣∣∣∣ .
Solving the determinant we have

∆2 =− (2α+ 1)2{α(α+ 1)(b2 + b2pm

) + (2α2 + 2α+ 1)bp
m+1}

=− (2α+ 1)2b2{α(α+ 1)(1 + bp
m−1)2 + bp

m−1}

Following a similar argument as in Theorem 3.1, it follows that bp
m−1 ∈ Fp2m \Fpm or bp

m−1 =

−1 and we identify bp
m−1 by β.

∆2 = −(2α+ 1)2b2{α(α+ 1)(1 + β)2 + β}

= −(2α+ 1)2b2(β(1 + α) + α)(αβ + α+ 1)

If β = −1, then ∆2 = (2α+1)2b2 ̸= 0. Next, if β ̸= −1, then β ∈ Fp2m \Fpm and α ∈ Fpm . This
gives, α+ β, αβ ∈ Fp2m \ Fpm . Consequently, we have β(1 + α) + α ̸= 0 and αβ + α+ 1 ̸= 0,
and this concludes that ∆2 ̸= 0.

4 Perfect Nonlinear functions over Fp3m

In this section, we propose two classes of planar functions over finite fields Fp3m .

Theorem 4.1. The function f3(x) = −αx2 − 2xp
m+1 + 2(α + 1)xp

2m+1 − αx2pm

+ 2(α +

1)xp
2m+pm

+ (α2 + 2α + 2)x2p2m
is a perfect nonlinear function over Fpn where α ∈ Fpm ,

α ̸= 1,−2 and n = 3m.
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Proof. For f3(x) = −αx2 − 2xp
m+1 + 2(α + 1)xp

2m+1 − αx2pm

+ 2(α + 1)xp
2m+pm

+ (α2 +

2α+ 2)x2p2m
, its discrete derivative at any b ∈ F∗

pn is

D(f3(x)) = f3(x+ b)− f3(x)− f3(b)

= {−αb− bp
m

+ (α+ 1)bp
2m
}x+ {−b− αbp

m

+ (α+ 1)bp
2m
}xp

m

+ {(α+ 1)(b+ bp
m

) + (α2 + 2α+ 2)bp
2m
}xp

2m

D(f3(x))
pm

= {(α2 + 2α+ 2)b+ (1 + α)(bp
m

+ bp
2m
)}x

+ {(1 + α)b− αbp
m

− bp
2m
}xp

m

+ {(1 + α)b− bp
m

− αbp
2m
}xp

2m

D(f3(x))
p2m

= {−αb+ (1 + α)bp
m

− bp
2m
}x

+ {(1 + α)b+ (α2 + 2α+ 2)bp
m

+ (1 + α)bp
2m
}xp

m

+ {−b+ (1 + α)bp
m

− αbp
2m
}xp

2m

Let v be a root of D(f3(x)). Then we have

D(f3(v)) = {−αb− bp
m

+ (α+ 1)bp
2m
}v + {−b− αbp

m

+ (α+ 1)bp
2m
}vp

m

+ {(α+ 1)(b+ bp
m

) + (α2 + 2α+ 2)bp
2m
}vp

2m
= 0

and D(v) = D(f3(v)) + αD(f3(v))p
m

+D(f3(v))p
2m

= 0. We have

D(v) = α(α+ 2){αb+ bp
m

+ bp
2m
}v + (α+ 2){αb+ bp

m

+ bp
2m
}vp

m

+ (α+ 2){αb+ bp
m

+ bp
2m
}vp

2m

= (α+ 2){αb+ bp
m

+ bp
2m
}{αv + vp

m

+ vp
2m
}.

Assuming L(x) = αx+ xp
m

+ xp
2m

, we have D(v) = (α+ 2)L(b)L(v). Moreover, we find that∣∣∣∣∣∣∣
α 1 1
1 α 1
1 1 α

∣∣∣∣∣∣∣ = (α− 1)2(α+ 2) ̸= 0.

In view of Lemma 2.3 it is evident that the linearized polynomial L(x) is invertible and
hence L(b) ̸= 0. Therefore, D(f3(v)) = 0 implies v = 0.

Theorem 4.2. The polynomial f4(x) = u3x2 + 2u2xp
m+1 +(u2 + u)x2pm

+ 2uxp
2m+pm

+ x2p2m

is a planar function over Fpn with n = 3m if u3 + 1 ̸= 0.

Proof. Let D(f4(x)) = f4(x+ b)− f4(x)− f4(b) for any b ∈ F∗
p3m . A simple calculation gives,

D(f4(x)) = 2{(u3b+ u2bp
m

)x+ (u2b+ u2bp
m

+ ubp
m

+ ubp
2m
)xp

m

+ (ubp
m

+ bp
2m
)xp

2m
}

f4(x) is planar if and only if D(f4(x)) is a premutation polynomial of Fp3m . Since 2 ̸= p, without
loss of generality, we may ignore the factor 2 in D(f4(x)).

Taking pm-th and p2m-th power of D(f4(x)) we have,

D(f4(x))
pm

= (bp
m

+ubp
2m
)x+(u3bp

m

+u2bp
2m
)xp

m

+(u2bp
m

+u2bp
2m
+ubp

2m
+ub)xp

2m
(4.1)

and

D(f4(x))
p2m

= (u2bp
2m

+ u2b+ ub+ ubp
m

)x+ (bp
2m

+ ub)xp
m

+ (u3bp
2m

+ u2b)xp
2m

(4.2)

The polynomial D(f4(x)) is a linearized polynomial. Suppose α be any zero of D(f4(x)). It
suffices to show that α = 0. If possible suppose α ̸= 0.
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Consider the polynomial S(x) = D(f4(x)) + u2D(f4(x))p
m − uD(f4(x))p

2m
. We have,

S(x) =(u2bp
m

+ ubp
2m

+ u5bp
m

+ u4bp
2m
)xp

m

+ (ubp
m

+ bp
2m

+ u4bp
m

+ u3bp
2m
)xp

2m

=u(u3 + 1)(ubp
m

+ bp
2m
)xp

m

+ (u3 + 1)(ubp
m

+ bp
2m
)xp

2m

=(u3 + 1)(ubp
m

+ bp
2m
)(uxp

m

+ xp
2m
)

Consider the linearized polynomial H(x) = (uxp
m

+ xp
2m
) over Fp3m . We see that∣∣∣∣∣∣∣

0 1 u

u 0 1
1 u 0

∣∣∣∣∣∣∣ = u3 + 1 ̸= 0

FromLemma 2.3, it follows thatH(x) is a permutation polynomial and consequently S(x) ̸=
0 for all x ∈ F∗

p3m . However, we have α ∈ F∗
p3m such that D(f4(α)) = 0. This implies that

S(α) = 0 and we arrive at contradiction.

5 Conclusion

In this article, we have obtained four classes of perfect nonlinear functions over finite fields of
arbitrary odd characteristic. Our classes, like other known classes, are DO-type polynomials.
Since the paper’s main aim is to propose four classes of perfect nonlinear functions, we have re-
frained from studying their semifields and their inequivalence with the known families of perfect
nonlinear functions. It needs further investigation in this direction.

References
[1] Y. Akbal, B. G. Temür, P. Ongan, A short note on permutation trinomials of prescribed type, Comm.

Algebra, 48(4) (2020), 1608-1612

[2] D. Bartoli, M. Bonini, Planar Polynomials arising from Linearized polynomials, J. Algebra Appl., 21(01)
2022, 2250002(1-8).

[3] G. R. V. Bhatta, B. Shankar, V. N. Mishra, P. Poojary Sequences of numbers via permutation polynomials
over some finite rings, Proyecciones, 39 (2020) 1295–1313.

[4] L. Budaghyan, T. Helleseth, New commutative semifields defined by new PN multinomials, Cryptogr.
Commun. 3 (2011), 1–16.

[5] C. Blondean, K. Nyberg, Perfect nonlinear functions and Cryptography, Finite Fields App., 32 (2015),
120-147.

[6] C. Carlet, C. Ding, J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing
schemes, IEEE Trans. Inf. Theory, 51(6) (2005), 2089-2102.

[7] R. S. Coulter, On the classification of planar monomials over fields of square order, Finite Fields Appl.,
18 (2012), 316-336.

[8] R. S. Coulter, M. Henderson, Commutative presemifields and semifields, Advances in Mathematics, 217
(2008), 282-304.

[9] R. S. Coulter, R. W. Matthews, Planar functions and planes of Lenz–Barlotti class II, Des. Codes Cryp-
togr., 10 (1997), 168-184.

[10] R. Gupta, R. K. Sharma, Further results on permutation polynomials of the form (xpm −x+δ)s+x over
Fp2m , Finite Fields Appl., 50 (2018) 196-208.

[11] Y. Laigle-Chapuy, Permutation polynomials and applications to coding theory, Finite Fields Appl., 13
(2007), 58-70.

[12] Y. Laigle-Chapuy, A Note on a Class of Quadratic Permutations over F2n , In Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes AAECC 2007 (Springer, Berlin, 2007), 130-137.

[13] P. Dembowski, T. G. Ostrom, Planes of order n with collineation groups of order n2, Math. Zeit., 103
(1968), 239-258.

[14] C. Ding, J. Yuan A family of skew Hadamard difference sets, J. Comb. Theory, Ser. A, 113 (2006), 1526-
1535.



Families of Planar functions over finite fields 57

[15] N. Fernando, A note on permutation binomials and trinomials over finite fields, New Zeland J. Math.,
48(2018) 25-29.

[16] X. Gong, G. Gao, W. Liu, On permutation polynomials of the form x1+2k + L(x) Int. J. Comput. Math.,
93(10) (2016), 1715-1722.

[17] V. Jarali , P. Poojary, VGR Bhatta, Construction of Permutation Polynomials Using Additive and Multi-
plicative Characters, Symmetry, 14(8) (2022), 1539.

[18] C. Li, T. Helleseth, Quasi-perfect linear codes from planar and APN functions, Cryptogr. Commun., 8
(2016), 215–227.

[19] R. Lidl , H. Niederreiter, Finite Fields, Encyclopaedia of mathematics and its Applications, Cambridge
University Press, 2003.

[20] G. L. Mullen, D. Panario, Handbook of Finite Fields, CRC Press, Taylor & Francis Group, 2013.

[21] P. Ongan, B. G. Temür, Some permutations and complete permutation polynomials over finite fields,
Turkish J. Math., 43(5) (2019), 2154-2160.

[22] P. Ongan, B. G. Temür, A specific type of permutation and complete permutation polynomials over finite
fields, J. Algebra its Appl., 19(04) (2020), 2050067.

[23] A. Pott, Almost perfect and planar functions, Des. Codes Cryptogr., 78 (2016), 141-195.

[24] R. P. Singh, A. Saikia, B. K. Sarma, Poly-dragon: an efficient multivariate public key cryptosystem J.
Math. Cryptol., 4(4) (2011), 349-364.

[25] R. P. Singh, B. K. Sarma, A. Saikia, A Public Key Cryptosystem using a group of permutation polynomials,
Tatra Mt. Math. Publ., 77 (2020), 139-162.

[26] R. P. Singh, M. K. Singh, Two congurence identities on ordered partitions, INTEGERS: Electronic journal
of Combinatorial Number Theory, 18 (2018), A73.

Author information
Dhananjay Kumar, Department of Mathematics, National Institute of Technology Patna, India.
E-mail: dhananjay.ma17@nitp.ac.in

Rajesh P. Singh, Department of Mathematics, Central University of South Bihar, India.
E-mail: rpsingh@cub.ac.in (Corresponding Author)

Rishi Kumar Jha, Department of Mathematics, National Institute of Technology Patna, India.
E-mail: rkjha@nitp.ac.in


	1 Introduction
	2 Preliminaries
	3 Families of perfect nonlinear functions over Fp2m
	4 Perfect Nonlinear functions over  Fp3m 
	5 Conclusion

