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Abstract In fuzzy logic, a fuzzy set FS is defined as a set where each element has a degree of
membership between 0 and 1. In Lukasiewicz fuzzy LF logic, the membership function based
on the Lukasiewicz t-norm and t-conorm operations. The possibility of LF sets are applied
to BCK/BCI-algebras. Additionally, the thought of LF ideals is presented and its different
properties are explored. Three sorts of subsets assumed ∈-set, q-set and O-set are developed,
and the circumstances under which they can be ideals are examined.

1 Introduction

FSs are a mathematical framework that extends the traditional notion of sets by allowing ele-
ments to have degrees of membership. Unlike classical sets where an element either belongs or
does not belong to a set, FSs allow for partial membership based on a degree of resemblance.
In classical set theory, an element can be represented as a crisp set, denoted as x, where x ei-
ther belongs to the set or does not belong to the set. In contrast, a FS allows for degrees of
membership. The level of membership is a worth somewhere in the range of 0 and 1, where 0
addresses non-participation and 1 addresses full membership. For example, in a FS representing
the height of people, an individual’s height could have a membership value of 0.8, indicating that
they are 80 % tall.

FSs were introduced by Lotfi Zadeh [1] in 1965 as a way to model and reason with imprecise
and uncertain information. They have found applications in various fields, including artificial in-
telligence, control systems, decision-making, pattern recognition, and data analysis. The degree
of membership in a FS is typically represented by a membership function, which assigns a
membership value to each element in the set’s universe of discourse. The shape of the member-
ship function can vary depending on the application and the desired behavior. Commonly used
membership functions include triangular, trapezoidal, Gaussian, and sigmoidal functions. Iséki
and Tanaka first described BCK/it BCI algebras in cite(a2) to generalise the set difference in set
theory. Fuzzy ideal(FI)s and fuzzy subalgebras in BCK algebras were researched by Jun et al.[7]
in 1999.

LF sets, also known as LF sets, are a type of FS that uses the Lukasiewicz t-norm and t-
conorm operations to compute the intersection and union of FSs, respectively. They are named
after Jan Lukasiewicz, a Polish logician who introduced these operations. LF sets have been
widely used in fuzzy logic, FS theory, and fuzzy control systems. They provide a fuzzy rea-
soning framework that is compatible with Lukasiewicz logic, a three-valued logic system that
extends classical two-valued logic by introducing a third truth value, namely “unknown” or “in-
determinate”. This logic allows for reasoning with uncertain or incomplete information, making
it suitable for various applications involving vagueness and imprecision. In BCK/BCI- alge-
bras, Jun [10] investigated fuzzy subalgebras with thresholds. Jun et al. [8, 11, 12] introduced
Lukasiewicz fuzzy subalgebras in BCI/BCK-algebras, FIs and fuzzy subalgebras of BCK-
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algebras, and crossing cubic ideals of BCK-algebras. Balamurugan et al. [13, 14, 15] contem-
plated different parts of BCK/BCI-algebras in light of ideal hypothesis.

Utilizing the Lukasiewicz t-norm idea, we construct the thought of LF sets in light of a
predetermined FS and apply it to BCK/BCI-algebras in this work. We outline requirements
that must be met for a LF set to satisfy this criterion. We discuss descriptions of the LF ideals.
We build three different subsets, called in-set, q-set and O-set, and we determine under what
circumstances they may be ideals.

2 Preliminaries

A BCK/BCI-algebra is a significant class of legitimate algebras that was developed by Iséki
(See [2]) and was thoroughly studied by a number of scholars. We are reminded of the concepts
and fundamental findings that this work needs. For additional details on BCK/BCI-algebras,
consult the books listed in [3, 9]. If the criteria are fulfilled and a fixed Q has a special component
0 and a binary “ ∗ ”:
(I1) (∀q, v, e ∈ Q) (((q ∗ v) ∗ (q ∗ e)) ∗ (e ∗ v) = 0),
(I2) (∀q, v ∈ Q) ((q ∗ (q ∗ v)) ∗ v = 0),
(I3) (∀q ∈ Q) (q ∗ q = 0),
(I4) (∀q, v ∈ Q) (q ∗ v = 0, v ∗ q = 0 ⇒ q = v),
then we say that Q is a BCI-algebra. If a BCI-algebra Q satisfies:
(K) (∀q ∈ Q) (0 ∗ q = 0),
then Q is called a BCK-algebra.
The leq order relation within a BCK/BCI-algebra Q is defined as follows:

(∀q, v ∈ Q, q ≤ v ⇔ q ∗ v = 0). (2.1)

The following criteria are met by each Q in the BCK/BCI algebra. (See [3, 9]):

(∀q ∈ Q, q ∗ 0 = q), (2.2)

(∀q, v, e ∈ Q, q ≤ v ⇒ q ∗ e ≤ v ∗ e, e ∗ b ≤ e ∗ q), (2.3)

(∀q, v, e ∈ Q, (q ∗ e) ∗ (v ∗ e) ≤ q ∗ v). (2.4)

(∀q, v, e ∈ Q, (q ∗ v) ∗ e = (q ∗ e) ∗ v)). (2.5)

Every BCI-algebra Q satisfies (See [8]):

(∀q, v ∈ Q, q ∗ (q ∗ (q ∗ v)) = q ∗ v), (2.6)

(∀q, v ∈ Q, 0 ∗ (q ∗ v) = (0 ∗ q) ∗ (0 ∗ v)). (2.7)

A I subset of a BCK/BCI-algebra Q is referred to as a ideal of Q (See [8, 11]) if it meets:

(∀q, v ∈ I) (q ∗ v ∈ I, v ∈ I ⇒ q ∈ I), (2.8)

A FS ṁ in a set Q of the form

ṁ(v) :=

{
s ∈ (0, 1] if v = q,

0 if v ̸= q,

is said to be a fuzzy point with support q and a value of s and is indicated by [q/s].
For a FS ṁ in a set Q, we say that a fuzzy point [q/s] is
(i) contained in ṁ,shown by [q/s] ∈ ṁ([3]), if ṁ(q) ≥ s,
(ii) quasi-coincident with ṁ, shown by [q/s]qṁ, if ṁ(q) + s > 1.
A FS ṁ within a BCK/BCI-algebra Q is called a FI of Q, if it meets:

(∀q, v ∈ Q, ṁ(q) ≥ min{ṁ(q ∗ v), ṁ(v)}). (2.9)
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3 Lukasiewicz fuzzy ideals

Definition 3.1. Let ṁ be a FS in Q, and let δ ∈ [0, 1]. A function

Łδ
ṁ: Q → [0, 1], q 7→ max{0, ṁ(q) + δ − 1}

is called an δ-LF set of ṁ in Q.

Let Łδ
ṁ be an δ-LF set of a FS ṁ in Q. If δ = 1, then

Łδ
ṁ(q) = max{0, ṁ(q) + 1 − 1} = max{0, ṁ(q)} = ṁ(q), for all q ∈ Q.

If δ = 0, then

Łδ
ṁ(q) = max{0, ṁ(q) + 0 − 1} = max{0, ṁ(q)− 1} = 0, for all q ∈ Q.

Consequently, in direction the δ-LF set, the value of δ can ever be reasoned to be in (0, 1).
Let ṁ be a FS in a set Q and δ ∈ (0, 1). If ṁ(q) + δ ≤ 1 ∀ q ∈ Q, then the δ-LF set Łδ

ṁ of ṁ
in Q is the 0-constant function, (i.e), Łδ

ṁ(q) = 0 for all q ∈ Q. Subsequently, for the δ-LF set
to have a huge structure, a FS ṁ in Q and δ ∈ (0, 1) should be set to delight the accompanying
condition:

(∃q ∈ Q) (ṁ(q) + δ > 1). (3.1)

Proposition 3.2. If ṁ is a FS in a set Q and δ ∈ (0, 1), then its δ-LF set Łδ
ṁ satisfies:

(∀q, v ∈ Q) (ṁ(q) ≥ ṁ(v) ⇒ Łδ
ṁ(q) ≥ Łδ

ṁ(v)), (3.2)

(∀q ∈ Q) ([q/δ]qṁ ⇒ Łδ
ṁ(q) = ṁ(q) + δ − 1), (3.3)

(∀q ∈ Q) (∀δ ∈ (0, 1)) (δ ≥ ϵ ⇒ Łδ
ṁ(q) ≥ Łϵ

ṁ(q)). (3.4)

Proof. Straightforward.

Proposition 3.3. If ġ and ṁ are FSs in a set Q, then

(∀δ ∈ (0, 1)) (Łδ
ġ∪ṁ = Łδ

ġ ∪ Łδ
ṁ and Łδ

ġ∩ṁ = Łδ
ġ ∩ Łδ

ṁ). (3.5)

Proof. For every q ∈ Q, we have

Łδ
ġ∪ṁ(q) = min{0, (ġ ∪ ṁ)(q) + δ − 1}

= min{0, max{ġ(q), ṁ(q)}+ δ − 1}
= min{0,max{ġ(q) + δ − 1, ṁ(q) + δ − 1}}
= max{min{0, ġ(q) + δ − 1},min{0, ṁ(q) + δ − 1}}

= max{Łδ
ġ(q), Łδ

ṁ(q)} = (Łδ
ġ ∪ Łδ

ṁ)(q)

and

Łδ
ġ∩ṁ(q) = max{0, (ġ ∩ ṁ)(q) + δ − 1}

= max{0, min{ġ(q), ṁ(q)}+ δ − 1}
= max{0,min{ġ(q) + δ − 1, ṁ(q) + δ − 1}}
= min{max{0, ġ(q) + δ − 1},max{0, ṁ(q) + δ − 1}}

= min{Łδ
ġ(q), Łδ

ṁ(q)} = (Łδ
ġ ∩ Łδ

ṁ)(q)

which proves (3.5).

In what follows, let Q be a BCK/BCI-algebra, and δ is a component element of (0, 1)
except if diversely determined.

Definition 3.4. Let ṁ be a FS in Q. Then its δ-LF set Łδ
ṁ in Q is called a δ-LF ideal of Q

assuming it fulfills:

[q ∗ v/sȧ] ∈ Łδ
ṁ, [v/sḃ] ∈ Łδ

ṁ ⇒ [q/min{sȧ, sḃ}] ∈ Łδ
ṁ (3.6)

for all q, v ∈ Q and sȧ, sḃ ∈ (0, 1].
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Example 3.5. Consider a BCK-algebra Q = {0, ȧ1, ȧ2, ȧ3, ȧ4} with a binary operation “∗′′
stated by Table 1.

Table 1. Cayley table for the binary operation “∗′′
∗ 0 ȧ1 ȧ2 ȧ3 ȧ4

0 0 0 0 0 0
ȧ1 ȧ1 0 ȧ1 0 0
ȧ2 ȧ2 ȧ2 0 0 0
ȧ3 ȧ3 ȧ3 ȧ3 0 0
ȧ4 ȧ4 ȧ3 ȧ4 ȧ1 0

Define a FS ṁ in Q as follows:

ṁ : Q → [0, 1], q 7→



0.74 if q = 0,
0.67 if q = ȧ1,

0.61 if q = ȧ2,

0.55 if q = ȧ3,

0.40 if q = ȧ4.

Given δ := 0.55, the δ-LF set Łδ
ṁ of ṁ in Q is given as follows:

Łδ
ṁ : Q → [0, 1], q 7→



0.29 if q = 0,
0.22 if q = ȧ1,

0.16 if q = ȧ2,

0.10 if q = ȧ3,

0 if q = ȧ4.

It is routine to verify that Łδ
ṁ is an δ-LF ideal of Q.

Lemma 3.6. Every δ-LF ideal of Q fulfills the accompanying implication.

(∀q, v ∈ Q) (q ≤ v ⇒ Łδ
ṁ(q) ≥ Łδ

ṁ(v)).

Proof. Straightforward.

Proposition 3.7. Let ṁ be a FI of Q, and Łδ
ṁ be an δ-LF ideal of Q. If the inequality holds

q ∗ v ≤ e in Q, then Łδ
ṁ satisfies:

(∀q ∈ Q) (Łδ
ṁ(q) ≥ min{Łδ

ṁ(v),Łδ
ṁ(e)). (3.7)

Proof. Let Łδ
ṁ be an δ-LF ideal of Q, and let q, v, e ∈ Q be such that q∗v ≤ e. Then (q∗v)∗e = 0,

we have

Łδ
ṁ(q) ≥ min{Łδ

ṁ(q ∗ v),Łδ
ṁ(v)}

= min{min{Łδ
ṁ((q ∗ v) ∗ e),Łδ

ṁ(e)},Łδ
ṁ(v)}

= min{min{Łδ
ṁ(0),Łδ

ṁ(e)},Łδ
ṁ(v)}

= min{Łδ
ṁ(v),Łδ

ṁ(e)}.

Theorem 3.8. Let Łδ
ṁ be an δ-LF ideal of Q. Then

Łδ
ṁ(q ∗ v) ≥ min{Łδ

ṁ(q ∗ e),Łδ
ṁ(e ∗ v)},

for all q, v, e ∈ Q.

Proof. Note that ((q ∗ v) ∗ (q ∗ e)) ≤ (e ∗ v). It follows for Lemma 3.6, that
Łδ
ṁ((q ∗ v) ∗ (q ∗ e)) ≥ Łδ

ṁ(e ∗ v).
Now, by Definition 3.4, we have

Łδ
ṁ(q ∗ v) ≥ min{Łδ

ṁ((q ∗ v) ∗ (q ∗ e)),Łδ
ṁ(q ∗ e)}

Łδ
ṁ(q ∗ v) ≥ min{Łδ

ṁ(q ∗ e),Łδ
ṁ(e ∗ v)},

for all q, v, e ∈ Q.
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Theorem 3.9. Let Łδ
ṁ be an δ-LF ideal of Q. Then

Łδ
ṁ(q ∗ (q ∗ v)) ≥ Łδ

ṁ(v),

for all q, v ∈ Q.

Proof. Let Łδ
ṁ be an δ-LF ideal of Q. Then

Łδ
ṁ(q ∗ (q ∗ v)) ≥ min{Łδ

ṁ((q ∗ (q ∗ v)) ∗ v),Łδ
ṁ(v)}

= min{Łδ
ṁ((q ∗ v) ∗ (q ∗ v)),Łδ

ṁ(v)}

= min{Łδ
ṁ(0),Łδ

ṁ(v)}

= Łδ
ṁ(v),

for all q, v ∈ Q.

Proposition 3.10. Let Łδ
ṁ be an δ-LF ideal of Q. Then the following assertions are equivalent.

(1) (∀q, v ∈ Q) Łδ
ṁ(q ∗ v) ≥ Łδ

ṁ((q ∗ v) ∗ v)).
(2) (∀q, v, e ∈ Q) Łδ

ṁ((q ∗ e) ∗ (v ∗ e)) ≥ Łδ
ṁ((q ∗ v) ∗ e))).

Proof. Assume that the condition (1) is valid. Note that
((q ∗ (v ∗ e)) ∗ e) ∗ e = ((q ∗ e) ∗ (v ∗ e)) ∗ e ≤ (q ∗ v) ∗ e

For all q, v, e ∈ Q by using Definition 3.4. As a result of Lemma 3.6,
Łδ
ṁ((q ∗ v) ∗ e)) ≤ Łδ

ṁ(((q ∗ (v ∗ e) ∗ e) ∗ e)
so from Definition 3.4. and (1) that

Łδ
ṁ((q ∗ e) ∗ (v ∗ e)) = Łδ

ṁ((q ∗ (v ∗ e)) ∗ e)

≥ Łδ
ṁ(((q ∗ (v ∗ e)) ∗ e) ∗ e)

≥ Łδ
ṁ((q ∗ v) ∗ e).

Thus (2) holds. Now suppose that (2) is valid. If we replace e by v in (2), then

Łδ
ṁ(q ∗ v) = Łδ

ṁ((q ∗ v) ∗ 0) = Łδ
ṁ((q ∗ v) ∗ (v ∗ v)) ≥ Łδ

ṁ((q ∗ v) ∗ v),

which proves (1).

Theorem 3.11. If Łδ
ṁ be an δ-LF ideal of Q, then for all q, v1, v2, ..., vn ∈ Q,

n∏
i=1

q ∗ vi = 0 ⇒ Łδ
ṁ(q) ≥ min{Łδ

ṁ(v1),Łδ
ṁ(v2)....,Łδ

ṁ(vn)}, (3.8)

where
∏n

i=1 q ∗ vi = (...((q ∗ v1) ∗ v2) ∗ ...) ∗ vn.

Proof. The proof is by induction on n. Let Łδ
ṁ be an δ-LF ideal of Q. Lemma 3.6 and Proposition

3.10 indicate that the requirement (3.8) is valid for n = 1, 2. Suppose Łδ
ṁ meets condition

(3.8) is valid for n = k, that is, for all q, v1, v2, ..., vk ∈ Q,
∏n

i=1 q ∗ vi = 0 implies Łδ
ṁ(q) ≥

min{Łδ
ṁ(v1),Łδ

ṁ(v2), ...,Łδ
ṁ(vk)}.

Let q, v1, v2, ..., vk, vk+1 ∈ Q be such that
∏k+1

i=1 q ∗ vi = 0. Then

Łδ
ṁ(q ∗ v1) ≥ mi{Łδ

ṁ(v2),Łδ
ṁ(v3), ...,Łδ

ṁ(vk+1)}.

Since Łδ
ṁ is a LF ideal of Q, it derives from Definition 3.4,

Łδ
ṁ(q) ≥ min{Łδ

ṁ(q ∗ v1),Łδ
ṁ(v1)} ≥ min{Łδ

ṁ(v1),Łδ
ṁ(v2),Łδ

ṁ(v3), ...,Łδ
ṁ(vk+1).

Theorem 3.12. Let δ-LF set in Q satisfying the condition (3.8). Then Łδ
ṁ be an δ-LF ideal of Q.



LUKASIEWICZ FUZZY IDEALS 67

Proof. Note that (...((0 ∗ q) ∗ q) ∗ ...) ∗ q︸ ︷︷ ︸
n times

= 0. It follows from (3.8) that Łδ
ṁ(0) ≥ Łδ

ṁ(q). Let

q, v, e ∈ Q be such that q ∗ v ≥ c. Then
0 = (q ∗ v) ∗ e = (...(((q ∗ v) ∗ e) ∗ 0) ∗ ...) ∗ 0︸ ︷︷ ︸

n−2 times

,

and so
Łδ
ṁ(q) ≥ min{Łδ

ṁ(v),Łδ
ṁ(e),Łδ

ṁ(0)} = min{Łδ
ṁ(v),Łδ

ṁ(e)}.
Hence, by Proposition 3.10, we conclude that Łδ

ṁ be an δ-LF ideal of Q.

Proposition 3.13. Let ṁ be a FI of Q, and Łδ
ṁ be an δ-LF deal of Q. If the inequality holds

q ≤ v in X, then Łδ
ṁ satisfies:

(∀q ∈ Q) (Łδ
ṁ(q) ≥ Łδ

ṁ(v)). (3.9)

Proof. Łδ
ṁ be an δ-LF ideal of Q, and let q, v, e ∈ Q be such that q ∗ v ≤ e. Then (q ∗ v) ∗ e = 0,

Łδ
ṁ(q) ≥ min{Łδ

ṁ(q ∗ v),Łδ
ṁ(q)}

= min{min{Łδ
ṁ((q ∗ v) ∗ e),Łδ

ṁ(e)},Łδ
ṁ(v)}

= min{min{Łδ
ṁ(0),Łδ

ṁ(e)},Łδ
ṁ(v)}

= min{Łδ
ṁ(v),Łδ

ṁ(e)}.

Theorem 3.14. If ṁ is a FI of Q, then its δ-LF set Łδ
ṁ in Q is an δ-LF ideal of Q.

Proof. Considering that ṁ is a FI of Q. Let q, v ∈ Q and sȧ, sḃ ∈ (0, 1] be ∋ [q ∗ v/sȧ] ∈ Łδ
ṁ

and [v/sḃ] ∈ Łδ
ṁ. Then Łδ

ṁ(q ∗ v) ≥ sȧ and Łδ
ṁ(v) ≥ sḃ. Thus

Łδ
ṁ(q) = max{0, ṁ(q) + δ − 1}

≥ max{0, min{ṁ(q ∗ v), ṁ(v)}+ δ − 1}
= max{0,min{ṁ(q ∗ v) + δ − 1, ṁ(v) + δ − 1}}
= min{max{0, ṁ(q ∗ v) + δ − 1},max{0, ṁ(v) + δ − 1}}

= min{Łδ
ṁ(q ∗ v), Łδ

ṁ(v)}
≥ min{sȧ, sḃ}.

So [q/min{sȧ, sḃ}] ∈ Łδ
ṁ. Hence Łδ

ṁ is an δ-LF ideal of Q.

The next example shows that the contrary to Theorem 3.14 is true.

Example 3.15. Consider a BCI-algebra Q = {0, ȧ1, ȧ2, ȧ3, ȧ4} with a binary operation “ ∗ ”
stated by Table 2.

Table 2. Cayley table for binary “ ∗ ”

∗ 0 ȧ1 ȧ2 ȧ3 ȧ4

0 0 0 ȧ2 ȧ3 ȧ4

ȧ1 ȧ1 0 ȧ2 ȧ3 ȧ4

ȧ2 ȧ2 ȧ2 0 ȧ4 ȧ3

ȧ3 ȧ3 ȧ3 ȧ4 0 ȧ2

ȧ4 ȧ4 ȧ4 ȧ3 ȧ2 0

Define a FS ṁ in Q as follows:

f : Q → [0, 1], q 7→



0.70 if q = 0,
0.66 if q = ȧ1,

0.59 if q = ȧ2,

0.55 if q = ȧ3,

0.37 if q = ȧ4.
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Given δ := 0.42, the δ-LF set Łδ
ṁ of ṁ in Q is given as follows:

Łδ
ṁ : Q → [0, 1], q 7→



0.12 if q = 0,
0.08 if q = ȧ1,

0.01 if q = ȧ2,

0 if q = ȧ3,

0 if q = ȧ4.

It is routine to verify that Łδ
ṁ is an δ-LF ideal of Q. Also, ṁ is a FI of Q.

We consider a characterization of δ-LF ideal.

Theorem 3.16. Let ṁ be a FS in Q. Then, at the point, its δ-LF set Łδ
ṁ in Q is an δ-LF ideal of

Q ⇔ it satisfies:

(∀q, v ∈ Q)(Łδ
ṁ(q) ≥ min{Łδ

ṁ(q ∗ v), Łδ
ṁ(v)}). (3.10)

Proof. Suppose Łδ
ṁ is an δ-LF ideal of Q. Let q, v ∈ Q. It is clear that [q ∗ v/Łδ

ṁ(q)] ∈ Łδ
ṁ and

[v/Łδ
ṁ(y)] ∈ Łδ

ṁ. Then

[q/min{Łδ
ṁ(q ∗ v), Łδ

ṁ(v)}] ∈ Łδ
ṁ

by (3.10), which implies that Łδ
ṁ(q) ≥ min{Łδ

ṁ(q ∗ v), Łδ
ṁ(v)}.

Then again, assume that Łδ
ṁ fulfills the condition (3.10). Let q, v ∈ Q and sȧ, sḃ ∈ (0, 1] be

∋ [q ∗ v/sȧ] ∈ Łδ
ṁ and [v/sḃ] ∈ Łδ

ṁ. Then Łδ
ṁ(q ∗ v) ≥ sȧ and Łδ

ṁ(v) ≥ sḃ, which implies from
(3.10) that

Łδ
ṁ(q) ≥ min{Łδ

ṁ(q ∗ v), Łδ
ṁ(v)} ≥ min{sȧ, sḃ}.

Thus [qmin{sḃ,sḃ}] ∈ Łδ
ṁ. So Łδ

ṁ is an δ-LF ideal of Q.

Proposition 3.17. If ṁ is a FI of Q, then its δ-LF set Łδ
ṁ satisfies:

(∀q, v ∈ Q) (Łδ
ṁ(q ∗ v) = Łδ

ṁ(0) ⇒ Łδ
ṁ(q) ≥ Łδ

ṁ(v)). (3.11)

Proof. Assume that Łδ
ṁ(q ∗ v) = Łδ

ṁ(0) for all q ∈ Q. Then

Łδ
ṁ(q) ≥ min{Łδ

ṁ(q ∗ v), Łδ
ṁ(v)}

= min{Łδ
ṁ(0), Łδ

ṁ(v)}

= Łδ
ṁ(v)

for all q, v ∈ Q.

Proposition 3.18. If ṁ is a FI of a BCI-algebra Q, then its δ−LF set Łδ
ṁ satisfies:

(∀q ∈ Q)(Łδ
ṁ(0 ∗ q) ≥ Łδ

ṁ(q)). (3.12)

Proof. Let ṁ be a FI of a BCI-algebra Q, then

ṁ(0 ∗ q) ≥ min{ṁ((0 ∗ q) ∗ q), ṁ(q)} = min{ṁ((0 ∗ q), ṁ(q)} = min{ṁ(0), ṁ(q)} = ṁ(q)

for all q ∈ Q. As a result of (3.2) that Łδ
ṁ(0 ∗ q) ≥ Łδ

ṁ(q) for all q ∈ Q.

Proposition 3.19. If ṁ is a FI of a BCI-algebra Q, then its δ−LF set Łδ
ṁ satisfies:

[q ∗ v/sȧ] ∈ Łδ
ṁ, [v/sḃ] ∈ Łδ

ṁ ⇒ [q/min{sȧ, sḃ}] ∈ Łδ
ṁ (3.13)

for all q, v ∈ Q and sȧ, sḃ ∈ (0, 1].
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Proof. Let q, v ∈ Q and sȧ, sḃ ∈ (0, 1] be such that [q ∗ v/sȧ] ∈ Łδ
ṁ and [v/sḃ] ∈ Łδ

ṁ. Then
Łδ
ṁ(q ∗ v) ≥ sȧ and Łδ

ṁ(v) ≥ sḃ. Thus

Łδ
ṁ(q) = max{0, ṁ(q) + δ − 1}

≥ max{0,min{ṁ(q ∗ (0 ∗ v)), ṁ(0 ∗ v)}+ δ − 1}
≥ max{0, min{ṁ((q ∗ v) ∗ 0), min{ṁ(0), ṁ(v)}}+ δ − 1}
= max{0, min{ṁ(q ∗ v), ṁ(v)}+ δ − 1}
= max{0,minṁ(q ∗ v) + δ − 1, ṁ(v) + δ − 1}}
= min{max{0, ṁ(q ∗ v) + δ − 1},max{0, ṁ(v) + δ − 1}}

= min{Łδ
ṁ(q ∗ v), Łδ

ṁ(v)}
≥ min{sȧ, sḃ}.

So [q/min{sȧ, sḃ}] ∈ Łδ
ṁ.

We set some prerequisites for a LF set to be a LF ideal.

Theorem 3.20. Let ṁ be a FS in Q. If δ-LF set Łδ
ṁ of ṁ in Q satisfies:

[q ∗ v/sḃ] ∈ Łδ
ṁ, [v/sė] ∈ Łδ

ṁ ⇒ [q/min{sḃ, sċ}] ∈ Łδ
ṁ (3.14)

for all sḃ, sċ ∈ (0, 1] and q, v, e ∈ Q with e ≤ q. Then Łδ
ṁ is an δ-LF ideal of Q.

Proof. Let q, v ∈ Q and sȧ, sḃ ∈ (0, 1] be such that [q ∗ v/sȧ] ∈ Łδ
ṁ and [v/sḃ] ∈ Łδ

ṁ. Since
q ≤ q ∀ q ∈ Q, As a result of (3.14) that [q/min{sȧ, sḃ}] ∈ Łδ

ṁ. Hence Łδ
ṁ is an δ-LF ideal of

Q.

Proposition 3.21. If ṁ is a FS in a BCI-algebra X, then δ−LF ideal Łδ
ṁ of Q satisfies:

[(x ∗ (0 ∗ y))/sȧ] ∈ Łδ
ṁ, [v/sb] ∈ Łδ

ṁ ⇒ [x/min{sa, sb}] ∈ Łδ
ṁ (3.15)

for all q, v ∈ Q and sȧ, sḃ ∈ (0, 1].

Proof. Let q, v ∈ Q and sȧ, sḃ ∈ (0, 1] be such that [(q ∗ (0 ∗ v))/sȧ] ∈ Łδ
ṁ and [v/sḃ] ∈ Łδ

ṁ.
Then Łδ

ṁ(q ∗ (0 ∗ v)) ≥ sȧ and Łδ
ṁ(v) ≥ sḃ. It follows from Theorem 3.16 that

Łδ
ṁ(q) ≥ min{Łδ

ṁ(q ∗ (0 ∗ v)), Łδ
ṁ(0 ∗ v)}

≥ min{Łδ
ṁ(q ∗ (0 ∗ v)), min{Łδ

ṁ(0), Łδ
ṁ(v)}}

= {Łδ
ṁ(q ∗ (0 ∗ v)), Łδ

ṁ(v)} ≥ min{sȧ, sḃ},

i.e., [q/min{sȧ, sḃ}] ∈ Łδ
ṁ.

4 ∈-set and q-set of Lukasiewicz fuzzy ideals

We explore how the ∈-set and q-set of LF together can be ideals.

Definition 4.1. Let ṁ be a FS in Q. For an δ-LF set Łδ
ṁ of ṁ in Q and s ∈ (0, 1], consider the

sets
(Łδ

ṁ, s)∈ := {q ∈ Q | [q/s] ∈ Łδ
ṁ},

which is called the ∈-set, respectively, of Łδ
ṁ (with value s).

Theorem 4.2. Let Łδ
ṁ be an δ-LF set of a FS ṁ in Q. Then ∈-set (Łδ

ṁ, s)∈ of Łδ
ṁ with value

s ∈ (0.5, 1] is a ideal of Q if and only if the following affirmation is true.

(∀q, v ∈ Q) (min{Łδ
ṁ(q ∗ v), Łδ

ṁ(v)} ≤ max{Łδ
ṁ(q), 0.5}). (4.1)
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Proof. Presume that ∈-set (Łδ
ṁ, s)∈ of Łδ

ṁ with a value of s ∈ (0.5, 1] is an ideal of Q. If this is
the case (4.1) is invalid, then ∃ l,m ∈ Q ∋

min{Łδ
ṁ(l ∗m), Łδ

ṁ(m)} > max{Łδ
ṁ(l), 0.5}.

If we take s := min{Łδ
ṁ(l ∗ m), Łδ

ṁ(m)}, then s ∈ (0.5, 1] and [l ∗ m/s], [m/s] ∈ Łδ
ṁ, i.e.,

l,m ∈ (Łδ
ṁ, s)∈. Since (Łδ

ṁ, s)∈ is a ideal of Q, we have l ∈ (Łδ
ṁ, s)∈. But [l/s] ̸∈ Łδ

ṁ implies
l ̸∈ (Łδ

ṁ, s)∈, a contradiction. Thus we have

min{Łδ
ṁ(q ∗ v), Łδ

ṁ(v)} ≤ max{Łδ
ṁ(q), 0.5}.

At the other end, suppose that Łδ
ṁ satisfies (4.1). Let s ∈ (0.5, 1] and q, v ∈ Q be ∋ q ∗ v ∈

(Łδ
ṁ, s)∈ and v ∈ (Łδ

ṁ, s)∈. Then Łδ
ṁ(q ∗ v) ≥ s and Łδ

ṁ(v) ≥ s, which imply from (4.1) that

0.5 < s ≤ min{Łδ
ṁ(q ∗ v), Łδ

ṁ(v)} ≤ max{Łδ
ṁ(q), 0.5}.

Thus [q/t] ∈ Łδ
ṁ, i.e., q ∈ (Łδ

ṁ, s)∈. So (Łδ
ṁ, s)∈ is an ideal of Q for s ∈ (0.5, 1].

Definition 4.3. Let ṁ be a FS in Q. For an δ-LF set Łδ
ṁ of ṁ in Q and s ∈ (0, 1], consider the

sets
(Łδ

ṁ, s)q := {q ∈ Q | [q/s]qŁδ
ṁ},

are referred to as the q-set, respectively, of Łδ
ṁ (with value s).

Theorem 4.4. Let Łδ
ṁ be an δ-LF set of a FS ṁ in Q. If ṁ is a FI of Q, then q-set (Łδ

ṁ, s)q of
Łδ
ṁ with a value of s ∈ (0, 1] is a ideal of Q.

Proof. Let and q, v ∈ (Łδ
ṁ, s)q, s ∈ (0, 1]. Then [q∗v/t]qŁδ

ṁ and [v/s]qŁδ
ṁ, i.e., Łδ

ṁ(q∗v)+s > 1
and Łδ

ṁ(v) + s > 1. It follows from Theorems 3.14 and 3.16 that

Łδ
ṁ(q) + s ≥ min{Łδ

ṁ(q ∗ v), Łδ
ṁ(v)}+ s = min{Łδ

ṁ(q ∗ v) + s, Łδ
ṁ(v) + s} > 1.

Thus [q/s]qŁδ
ṁ. So q ∈ (Łδ

ṁ, s)q. Hence (Łδ
ṁ, s)q is a ideal of Q.

Theorem 4.5. Let ṁ be a FS in Q. For an δ-LF set Łδ
ṁ of ṁ in X , if the q-set (Łδ

ṁ, s)q is a ideal
of Q, then Łδ

ṁ satisfies:

[q ∗ v/sȧ]qŁδ
ṁ, [v/sḃ]qŁδ

ṁ ⇒ [q/max{sȧ, sḃ}] ∈ Łδ
ṁ (4.2)

for all q, v ∈ Q and sȧ, sḃ ∈ (0, 0.5].

Proof. Let q, v ∈ Q and sȧ, sḃ ∈ (0, 0.5] be such that [q ∗ v/sȧ]qŁδ
ṁ and [v/sḃ]qŁδ

ṁ. Then
x ∈ (Łδ

ṁ, sȧ)q ⊆ (Łδ
ṁ,max{sȧ, sḃ})q and y ∈ (Łδ

ṁ, sḃ)q ⊆ (Łδ
ṁ,max{sȧ, sḃ})q. Thus q ∈

(Łδ
ṁ,max{sȧ, sḃ})q. Since max{sȧ, sḃ} ≤ 0.5,

Łδ
ṁ(q) > 1 − max{sȧ, sḃ} ≥ max{sȧ, sḃ}.

So [q/max{sȧ, sḃ}] ∈ Łδ
ṁ.

5 O-set of Lukasiewicz fuzzy ideals

Definition 5.1. Let ṁ be a FS in Q. For an δ-LF set Łδ
ṁ of ṁ in Q, consider a set:

O(Łδ
ṁ) := {q ∈ Q | Łδ

ṁ(q) > 0} (5.1)

are referred to as an O-set of Łδ
ṁ. It has been noted that

O(Łδ
ṁ) = {q ∈ Q | ṁ(q) + δ − 1 > 0}.

Theorem 5.2. Let Łδ
ṁ be an δ-LF set of a FS ṁ in Q. If ṁ is a FI of Q, then O-set O(Łδ

ṁ) of
Łδ
ṁ is an ideal of Q.
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Proof. Let q, v ∈ O(Łδ
ṁ) . Then ṁ(q ∗ v) + δ − 1 > 0 and ṁ(v) + δ − 1 > 0. Suppose ṁ is a

FI of Q. Then Łδ
ṁ is an δ-LF ideal of Q. It follows from Theorem 3.16 that

Łδ
ṁ(q) ≥ min{Łδ

ṁ(q ∗ v), Łδ
ṁ(v)} = min{ṁ(q ∗ v) + δ − 1, ṁ(v) + δ − 1} > 0

Thus q ∈ O(Łδ
ṁ). So O(Łδ

ṁ) is a ideal of Q.

Theorem 5.3. If ṁ is a FS in Q. If an δ-LF set Łδ
ṁ of ṁ in Q satisfies:

[q ∗ v/sȧ] ∈ Łδ
ṁ, [v/sḃ] ∈ Łδ

ṁ ⇒ [q/max{sȧ, sḃ}]qŁδ
ṁ (5.2)

for all q, v ∈ Q and sȧ, sḃ ∈ (0, 1], then O-set O(Łδ
ṁ) of Łδ

ṁ is an ideal of Q.

Proof. Let’s assume Łδ
ṁ fulfills from (5.2), ∀ q, v ∈ Q and sȧ, sḃ ∈ (0, 1]. Łet q ∗ v, v ∈ O(Łδ

ṁ).
Then ṁ(q ∗ v) + δ− 1 > 0, ṁ(v) + δ− 1 > 0. Since [x/Łδ

ṁ(q ∗ v)] ∈ Łδ
ṁ and [v/Łδ

ṁ(v)] ∈ Łδ
ṁ.

it follows from (5.2) that
[q/max{Łδ

ṁ(q ∗ v), Łδ
ṁ(v)}]qŁδ

ṁ. (5.3)
If q ̸∈ O(Łδ

ṁ) , then Łδ
ṁ(q) = 0. Thus we get

Łδ
ṁ(q) + max{Łδ

ṁ(q ∗ v), Łδ
ṁ(v)} = max{Łδ

ṁ(q ∗ v), Łδ
ṁ(v)}

= max{max{0, ṁ(q ∗ v) + δ − 1$,max{, ṁ(v) + δ − 1}}
= max{ṁ(q ∗ v) + δ − 1, ṁ(v) + δ − 1}
= max{ṁ(q ∗ v), ṁ(v)}+ δ − 1

≤ 1 + δ − 1

= δ ≤ 1,

which states that (5.3) is invalid. This is a contradiction. So q ∈ O(Łδ
ṁ). Because of that, O(Łδ

ṁ)
is an ideal of Q.

Theorem 5.4. Let ṁ be a FS in Q. If Łδ
ṁ of ṁ in Q the criteria (4.2) for all q, v ∈ Q and

sȧ, sḃ ∈ (0, 1], then O-set O(Łδ
ṁ) of Łδ

ṁ is an ideal of Q.

Proof. Let q, v ∈ O(Łδ
ṁ) . Then ṁ(q ∗ v) + δ − 1 > 0 and ṁ(v) + δ − 1 > 0. Hence

Łδ
ṁ(q ∗ v) + 1 = max{0, ṁ(q ∗ v) + δ − 1}+ 1

= ṁ(q ∗ v) + δ − 1 + 1

= ṁ(q ∗ v) + δ > 1

and
Łδ
ṁ(v) + 1 = max{0, ṁ(v) + δ − 1}+ 1

= ṁ(v) + δ − 1 + 1

= ṁ(v) + δ > 1,

i.e., [q ∗ v/1]qŁδ
ṁ and [v/1]qŁδ

ṁ. This arises from (4.2) that

[q/1] = [q/max{1, 1}] ∈ Łδ
ṁ. (5.4)

If q ̸∈ O(Łδ
ṁ) , then Łδ

ṁ(q) = 0 < 1 and so (5.4) is invalid. This is a contradiction. Thus
q ∈ O(Łδ

ḟ
). So O(Łδ

ṁ) is a ideal of Q.

6 Conclusion

Based on Lukasiewicz t-standard, Jun et al. [12] tended to supposed a LF set and applied it
to BCI/BCK-algebras. In this paper, we managed the idea of LF ideals in BCK-algebras and
looking for some properties. We thought about portrayal of a LF ideal. We gave a condition
to a LF ideal to be a LF ideal. We additionally gave conditions to the ∈-set, q-set and O-
set to be ideals. Utilizing the thoughts and consequences of this paper, we will concentrate
on different sub-structures in a few logarithmic frameworks, for instance, BCC-algebras, BCH-
algebras, equality algebras, EQ-algebras, hoop algebras, BE-algebras, GE-algebras, and so on,
later on. We will likewise investigate Lukasiewicz bipolar fuzzy sets, Lukasiewicz Pythagorean
fuzzy sets, Lukasiewicz picture fuzzy sets, and so forth as the speculation of LF sets.
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