On the capitulation problem of some pure metacyclic fields of degree 20

FOUAD ELMOUHIB¹, MOHAMED TALBI² and ABDELMALEK AZIZI³

Communicated by Mohammad Ashraf

Dedicated to Prof. B. M. Pandeya on his 78th birthday

MSC 2020 Classification: 11R04, 11R18

Keywords and phrases: pure metacyclic fields, 5-class groups, Capitulation.

Acknowledgement: Authos would like to thank the referee for their valuable time and useful comments, which helps to improve the presentation of paper.

Abstract Let $\Gamma = \mathbb{Q}(\sqrt[5]{n})$ be a pure quintic field, where n is a 5th power-free natural number, $k_0 = \mathbb{Q}(\zeta_5)$ be the cyclotomic field generated by a primitive 5th root of unity ζ_5 , and k = $\mathbb{Q}(\sqrt[5]{n},\zeta_5)$ be the normal closure of Γ . Let $k_5^{(1)}$ be the Hilbert 5-class field of k, $C_{k,5}$ the 5-ideal class group of k, and $C_{k,5}^{(\sigma)}$ the group of ambiguous classes under the action of $Gal(k/k_0) = \langle \sigma \rangle$. When $C_{k,5}$ is of type (5,5) and rank $C_{k,5}^{(\sigma)} = 1$, we treat the capitulation problem of the 5-ideal classes of $C_{k,5}$ in the six intermediate extensions of $k_5^{(1)}/k$.

1 Introduction

Let K be a number field, and F be an unramified abelian extension of K. We say that an ideal \mathcal{I} (or the ideal class of \mathcal{I}) of K capitulates in F, if \mathcal{I} becomes principal by extending it to an ideal of F. Let p be a prime number and $C_{K,p}$ be the p-ideal class group of K such that $C_{K,p}$ is of type (p, p). Let $K_p^{(1)}$ be the Hilbert *p*-class field of *K*, i.e the maximal abelian unramified *p*-extension of K. The most important result on capitulation is the "Principal Ideal Theorem" conjectured by D. Hilbert in [5] and proved by his student P. Furtwängler in [2]. The theorem asserts that the class group of a given number field capitulates completely in its Hilbert class field. Having established the "Principal Ideal Theorem", the question remains, which ideal classes of K capitulate in a field which lies between K and its Hilbert class field. A number of researchers have studied this question, Taussky and Scholz in [12] were the first who treated the capitulation in unramified cyclic degree-3-extensions of several imaginary quadratic fields. Tannaka and Terada proved that for a cyclic extension K/K_0 with Galois group G, the G-invariant ideal classes in K capitulate in the genus field of K/K_0 . Hilbert in his celebrated Zahlbericht, proved his Theorem 94 which states that in an unramified cyclic extension L/K, there are non-principal ideals which capitulate in L. Miyake in [10] gave a generalization of Hilbert's theorem 94, by proving that in an unramified abelian extension F of K, at least [F:K] classes of K capitulate in F.

In this paper we consider p = 5 and $k = \mathbb{Q}(\sqrt[5]{n}, \zeta_5), (\zeta_5 = e^{\frac{2i\pi}{5}})$, which is the normal closure of the pure quintic field $\Gamma = \mathbb{Q}(\sqrt[5]{n})$. We suppose that the 5-class group $C_{k,5}$ of k is of type (5,5), then the Hilbert 5-class field $k_5^{(1)}$ of k has degree 25 over k, and the extension $k_5^{(1)}/k$ contains six intermediate extensions. By $k_0 = \mathbb{Q}(\zeta_5)$ we denote the 5th cyclotomic field, where ζ_5 is a primitive 5th root of unity, and $\lambda = 1 - \zeta_5$ is the unique prime of k_0 above 5. We note that the congruence $n \not\equiv \pm 1, \pm 7 \pmod{25}$ is equivalent to λ being ramified in k/k_0 . Let $C_{k,5}^{(\sigma)}$ be the group of ambiguous ideal classes of k under the action of $Gal(k/k_0) = \langle \sigma \rangle$, p and q are primes such that $p \equiv -1 \pmod{5}$ and $q \equiv \pm 2 \pmod{5}$. According to [[1], Theorem 1.1], if $C_{k,5}$ is of type (5,5) and rank $C_{k,5}^{(\sigma)} = 1$ we have three forms of the radicand *n*:

 $-n = 5^{e}p \neq \pm 1, \pm 7 \pmod{25} \text{ with } e \in \{0, 1, 2, 3, 4\} \text{ and } p \neq -1 \pmod{25}.$ - $n = p^{e}q \equiv \pm 1, \pm 7 \pmod{25} \text{ with } e \in \{1, 2, 3, 4\}, p \neq -1 \pmod{25} \text{ and } q \neq \pm 7 \pmod{25}.$

- $n = p^e$ with $e \in \{1, 2, 3, 4\}$ and $p \equiv -1 \pmod{25}$.

We will study the capitulation of $C_{k,5}$ in the six intermediate extensions of $k_5^{(1)}/k$ in these cases. The paper can be viewed as the continuation of the research of Taussky in [15]. The theoretical results are underpinned by numerical examples obtained with the computational system PARI/GP [16].

Notations.

We use the following notations around the paper:

- $\Gamma = \mathbb{Q}(\sqrt[3]{n})$: a pure quintic field, where $n \neq 1$ is a 5th power-free natural number.
- $k_0 = \mathbb{Q}(\zeta_5)$: the 5th cyclotomic field.
- $k = \mathbb{Q}(\sqrt[5]{n}, \zeta_5)$: the normal closure of Γ , a quintic Kummer extension of k_0 .
- Γ_1 , Γ_2 , Γ_3 , Γ_4 : the four conjugate quintic fields of Γ , contained in k.
- Gal $(k/\Gamma) = \langle \tau \rangle$ such that τ is identity on Γ , and sends ζ_5 to its square. τ has order 4.
- Gal $(k/k_0) = \langle \sigma \rangle$ such that σ is identity on k_0 , and sends $\sqrt[5]{n}$ to $\zeta_5 \sqrt[5]{n}$. σ has order 5.
- The commuting relation between σ and τ is $\tau \sigma = \sigma^3 \tau$.
- Let L a number field, denote by:
 - $L_5^{(1)}$, L^* : the Hilbert 5-class field of L, and the absolute genus field of L.
 - C_L , h_L , $C_{L,5}$: the class group, class number and 5-class group of L.
 - $[\mathcal{I}]$: the class of a fractional ideal \mathcal{I} .

Figure 1: Sub-extensions of $k_5^{(1)}/\mathbb{Q}$

2 Construction of intermediate extensions

2.1 Absolute genus field

In chapter 7 of [6], Ishida has explicitly given the genus field of any pure field. For $\Gamma = \mathbb{Q}(\sqrt[5]{n})$ where *n* is a 5th power-free natural number, we have the following theorem.

Theorem 2.1. Let $\Gamma = \mathbb{Q}(\sqrt[5]{n})$ be a pure quintic field, where $n \ge 2$ is a 5th power-free natural number, and let $p_1, ..., p_r$ be all prime divisors of n such that $p_i \equiv 1 \pmod{5}$. Let Γ^* be the absolute genus field of Γ , then

$$\Gamma^* = \prod_{i=1}^r M(p_i).\Gamma$$

where $M(p_i)$ denotes the unique subfield of degree 5 of the cyclotomic field $\mathbb{Q}(\zeta_{p_i})$. The genus number of Γ is given by, $g_{\Gamma} = [\Gamma^* : \Gamma] = 5^r$.

Proof. See [[6], Theorem 7].

Remark 2.2.

(1) If no prime $p \equiv 1 \pmod{5}$ divides n, i.e r = 0, then $\Gamma^* = \Gamma$.

(2) For any $r \ge 0$, Γ^* is contained in the Hilbert 5-class field $\Gamma_5^{(1)}$ of Γ .

Corollary 2.3. Let h_{Γ} denote the class number of Γ . Then

(1) If 5 divides exactly the class number h_{Γ} , then there is at most one prime $p \equiv 1 \pmod{5}$ that divides the natural n.

(2) If 5 divides exactly h_{Γ} , and if a prime $p \equiv 1 \pmod{5}$ divides n, then $\Gamma^* = \Gamma_5^{(1)}$, $(\Gamma_1)^* = (\Gamma_1)_5^{(1)}$, $(\Gamma_2)^* = (\Gamma_2)_5^{(1)}$, $(\Gamma_3)^* = (\Gamma_3)_5^{(1)}$ and $(\Gamma_4)^* = (\Gamma_4)_5^{(1)}$. Furthermore, $k \cdot \Gamma_5^{(1)} = k \cdot (\Gamma_1)_5^{(1)} = k \cdot (\Gamma_2)_5^{(1)} = k \cdot (\Gamma_3)_5^{(1)} = k \cdot (\Gamma_4)_5^{(1)}$

Proof.

(1) If $p_1, ..., p_r$ are all prime divisors of n that are congruent to 1 (mod 5), then $5^r | h_{\Gamma}$ therfore if 5 divides exactly h_{Γ} then $r \le 1$, so one prime $p \equiv 1 \pmod{5}$ divides n exist, or no one.

(2) If h_{Γ} is exactly divisible by 5 and $p \equiv 1 \pmod{5}$ divides *n*, then $g_{\Gamma} = 5$ so, $\Gamma^* = \Gamma_5^{(1)} = \Gamma M(p)$, we have $g_{\Gamma} = 5$ so, $(\Gamma_1)^* = \Gamma_1 \prod_{i=1}^r M(p_i)$ where p_1, \ldots, p_r are primes congruent to 1 (mod 5) and divide *n*, if 5 divides exactly h_{Γ} then 5 divides exactly h_{Γ_1} , because Γ and Γ_1 are isomorphic, so we obtain $(\Gamma_1)^* = (\Gamma_1)_5^{(1)}$. For the other equalities we use the same reasoning. Furthermore,

$$\begin{cases} k.\Gamma_{5}^{(1)} = k.\Gamma.M(p) = k.M(p) \\ k.(\Gamma_{1})_{5}^{(1)} = k.\Gamma_{1}.M(p) = k.M(p) \\ k.(\Gamma_{2})_{5}^{(1)} = k.\Gamma_{2}.M(p) = k.M(p) \\ k.(\Gamma_{3})_{5}^{(1)} = k.\Gamma_{3}.M(p) = k.M(p) \\ k.(\Gamma_{4})_{5}^{(1)} = k.\Gamma_{4}.M(p) = k.M(p) \end{cases}$$
(2.1)

Hence, $k \cdot \Gamma_5^{(1)} = k \cdot (\Gamma_1)_5^{(1)} = k \cdot (\Gamma_2)_5^{(1)} = k \cdot (\Gamma_3)_5^{(1)} = k \cdot (\Gamma_4)_5^{(1)}$

2.2 Relative genus field $(k/k_0)^*$ of k over k_0

Let Γ , k_0 and k be as before. The relative genus field $(k/k_0)^*$ of k over k_0 is the maximal abelian extension of k_0 which is contained in the Hilbert 5-class field $k_5^{(1)}$ of k. A class $\mathcal{A} \in C_{k,5}$ is called ambiguous class relatively to k/k_0 if $\mathcal{A}^{\sigma} = \mathcal{A}$ where σ is a chosen generator of $Gal(k/k_0)$. We note the group of ambiguous classes by $C_{k,5}^{(\sigma)}$.

The following proposition summarize some important results of [[7], section 5]. Since k is quintic Kummer extension of k_0 , we can write $k = k_0(\sqrt[5]{n})$ such that $n = \mu \lambda^{e_\lambda} \pi_1^{e_1} \dots \pi_g^{e_g}$, where μ is unity of \mathcal{O}_{k_0} , $\lambda = 1 - \zeta_5$ the unique prime above 5 in k_0 , π_i $(1 \le i \le g)$ are prime elements of k_0 such that $\pi_i \equiv a \pmod{5\mathcal{O}_{k_0}}$ with $a, e_i \in \{1, 2, 3, 4\}$ and $e_\lambda, \in \{0, 1, 2, 3, 4\}$. We note by d the number of ramified prime in k/k_0 .

Proposition 2.4. Using the same notations as above.

(1) $C_k^{(\sigma)} = \{ \mathcal{A} \in C_k \mid \mathcal{A}^{\sigma} = \mathcal{A} \}$ the subgroup of ambiguous classes coincides with the 5-class group $C_{k,5}^{(\sigma)} = \{ \mathcal{A} \in C_{k,5} \mid \mathcal{A}^{\sigma} = \mathcal{A} \}.$

- (2) rank $C_{k,5}^{(\sigma)} = d 3 + q^*$.
- (3) $q^* = \begin{cases} 2 & \text{if } \zeta_5, \zeta_5 + 1 \text{ are norm of element in } k \{0\}. \\ 1 & \text{if } \zeta_5^i (\zeta_5 + 1)^j \text{ is the norm of an element in } k \{0\} \text{ for some exponents } i \text{ and } j. \\ 0 & \text{if for no exponents } i, j, \text{ the element } \zeta_5^i (\zeta_5 + 1)^j \text{ is a norm from } k \{0\}. \end{cases}$

(4) Let $k = k_0(\sqrt[5]{n})$, writing $n = \mu \lambda^{e_\lambda} \pi_1^{e_1} \dots \pi_f^{e_f} \pi_{f+1}^{e_{f+1}} \dots \pi_g^{e_g}$, where each $\pi_i \equiv \pm 1, \pm 7 \pmod{\lambda^5}$ for $1 \le i \le f$ and $\pi_j \not\equiv \pm 1, \pm 7 \pmod{\lambda^5}$ for $f + 1 \le j \le g$. Then we have:

- (*i*) there exists $h_i \in \{1, ..., 4\}$ such that $\pi_{f+1} \pi_i^{h_i} \equiv \pm 1, \pm 7 \pmod{\lambda^5}$, for $f+2 \le i \le g$.
- (ii) if $n \neq \pm 1 \pm 7 \pmod{\lambda^5}$ and $q^* = 1$, then the genus field $(k/k_0)^*$ is given as:

$$(k/k_0)^* = k(\sqrt[5]{\pi_1}, \dots, \sqrt[5]{\pi_f}, \sqrt[5]{\pi_{f+1}\pi_{f+2}^{h_{f+2}}}, \dots, \sqrt[5]{\pi_{f+1}\pi_g^{h_g}})$$

where h_i is chosen as in (i).

(*iii*) in the other cases of q^* and congruence of n, $(k/k_0)^*$ is given by deleting an appropriate number of 5th root from the right side of (*ii*).

Let $C_{k,5}$ and $C_{k,5}^{(\sigma)} = 1$ as before. As mentioned above, we have three possible forms of the radicand *n*, and the genus field $(k/k_0)^*$ is given explicitly by:

Lemma 2.5. Let q and p prime numbers such that $q \equiv \pm 2 \pmod{5}$ and $p \equiv -1 \pmod{5}$. Let π_1 and π_2 primes of k_0 such that $p = \pi_1 \pi_2$. If $C_{k,5}$ is of type (5,5) and rank $C_{k,5}^{(\sigma)} = 1$, then:

(1) $n = 5^e p \neq \pm 1, \pm 7 \pmod{25}$, where $e \in \{0, 1, 2, 3, 4\}$ and $p \neq -1 \pmod{25}$. Then $(k/k_0)^* = k(\sqrt[5]{\pi_1^{\alpha_1} \pi_2^{\alpha_2}})$, with $\alpha_1, \alpha_2 \in \{1, 2, 3, 4\}$.

(2) $n = p^e q \equiv \pm 1 \pm 7 \pmod{25}$, where $e \in \{1, 2, 3, 4\}$, $p \not\equiv -1 \pmod{25}$ and $q \not\equiv \pm 7 \pmod{25}$. Then $(k/k_0)^* = k(\sqrt[5]{q\pi_i^{\alpha_i}})$, with i = 1 or 2 and $\alpha \in \{1, 2, 3, 4\}$. (2) $n = n^e$, where $a \in \{1, 2, 3, 4\}$, $n = -1 \pmod{25}$. Then $(k/k_0)^* = k(\sqrt[5]{\pi^{\alpha_1} - \pi^{\alpha_2}})$, with

(3) $n = p^e$, where $e \in \{1, 2, 3, 4\}$, $p \equiv -1 \pmod{25}$. Then $(k/k_0)^* = k(\sqrt[5]{\pi_1^{\alpha_1} \pi_2^{\alpha_2}})$, with $\alpha_1, \alpha_2 \in \{1, 2, 3, 4\}$.

Proof. For the three forms of n, we refer the reader to [[1], Theorem 1.1]. For the relative genus field $(k/k_0)^*$ of each case, its follows from (4) proposition 2.4 and [[7], Theorem 5.15].

2.3 Intermediate extensions of $k_5^{(1)}/k$

Let Γ , k and $C_{k,5}$ be as above. When $C_{k,5}$ is of type (5, 5), it has 6 subgroups of order 5, denoted by H_i , $1 \le i \le 6$. Let K_i be the intermediate extension of $k_5^{(1)}/k$, corresponding by class field theory to H_i .

We begin by some results on the 5-class group $C_{k,5}$.

Lemma 2.6. Let $\operatorname{Gal}(k/\Gamma) = \langle \tau \rangle \simeq \mathbb{Z}/4\mathbb{Z}$ and $C_{k,5}$ be the 5-class group of k. Let $C_{k,5}^+ = \{A \in C_{k,5} \mid A^{\tau^2} = A\}$ and $C_{k,5}^- = \{A \in C_{k,5} \mid A^{\tau^2} = A^{-1}\}$. Then

$$C_{k,5} \simeq C_{k,5}^+ \times C_{k,5}^-.$$

Proof. Let $\mathcal{A} \in C_{k,5}$. Then $\mathcal{A} = \mathcal{A}^{\frac{1+\tau^2}{2}} \mathcal{A}^{\frac{1-\tau^2}{2}}$. (Note that $\mathcal{A}^{\frac{1+\tau^2}{2}}$ and $\mathcal{A}^{\frac{1-\tau^2}{2}}$ are well defined since $C_{k,5}$ is a $\mathbb{Z}_5[\langle \tau \rangle]$ -module.) Hence every element in $C_{k,5}$ can be written as product of an element in $C_{k,5}^+$ and an element in $C_{k,5}^-$. Now let $\mathcal{A} \in C_{k,5}^+ \cap C_{k,5}^-$. Then $\mathcal{A} = \mathcal{A}^{\tau^2} = \mathcal{A}^{-1}$ that is $\mathcal{A}^2 = 1$, thus $\mathcal{A} = 1$ since its a 5-class. Hence $C_{k,5} \cong C_{k,5}^+ \times C_{k,5}^-$.

Now let u be the index of subgroup E_0 generated by the units of intermediate fields of the extension k/\mathbb{Q} in the units group of k. In [[11], Theorems I, II], C.Parry proved that u is a divisor of 5⁶, and he presented the relation formula between the class numbers of k and Γ as follows: $h_k = (\frac{u}{5})(\frac{h_{\Gamma}}{5})^4$. We have the following lemma:

Lemma 2.7. If the 5-class group $C_{k,5}$ of k is of type (5,5), then we have $C_{\Gamma,5} \simeq C_{k,5}^+$.

Proof. Let $C_{k,5}$ is of type (5,5), then $|C_{k,5}| = 25$. According to [11], $|C_{k,5}| = (\frac{u}{5})\frac{|C_{\Gamma,5}|^4}{5^4} = 25$, namely $uh_{\Gamma}^4 = 5^7$. Let $n = v_5(u)$ and $n' = v_5(h_{\Gamma})$ where v_5 is the 5-valuation, so we have that n + 4n' = 7. The unique values which verify the equality is n = 3 and n' = 1. Therefore we get that $u = 5^3$ and h_{Γ} is exactly divisible by 5, which means that $C_{\Gamma,5}$ is of order 5. According to Lemma 2.6, we have that $C_{k,5} \simeq C_{k,5}^+ \times C_{k,5}^-$. Since $C_{k,5}$ is of type (5,5) then $C_{k,5}^+$ is of order 5, otherwise $C_{k,5}^+$ is of order 25, then all classes are fixed by τ^2 , which is not true for

 $\mathcal{A}^{\frac{1-\tau^2}{2}}$, so $C_{k,5}^+$ is of order 5. There is a natural inclusion $C_{\Gamma,5} \hookrightarrow C_{k,5}$ since 5 relatively prime to $[k:\Gamma] = 4$. Furthermore, $C_{\Gamma,5} \hookrightarrow C_{k,5}^+$ as $\mathcal{A}^{\tau^2} = \mathcal{A}$ for all $\mathcal{A} \in C_{\Gamma,5}$. Thus $C_{\Gamma,5} \simeq C_{k,5}^+$.

The following theorem allows us to determine the six intermediate extensions of $k_5^{(1)}/k$, using the action of $Gal(k/\mathbb{Q})$ on $C_{k,5}$.

Theorem 2.8. Using the same notations as above.

(1) rank
$$C_{k,5}^{(\sigma)} \ge 1$$
.

(2) If rank $C_{k,5}^{(\sigma)} = 1$ then $C_{k,5}^{(\sigma)} = C_{k,5}^+ = C_{k,5}^{1-\sigma}$ with $C_{k,5}^{1-\sigma}$ is the principal genus.

(3) Let $\Gamma_5^{(1)}$, $(\Gamma_1)_5^{(1)}$, $(\Gamma_2)_5^{(1)}$, $(\Gamma_3)_5^{(1)}$ and $(\Gamma_4)_5^{(1)}$ be respectively the Hilbert 5-class fields of Γ , Γ_1 , Γ_2 , Γ_3 and Γ_4 . If rank $C_{k,5}^{(\sigma)} = 1$, then $k\Gamma_5^{(1)}$, $k(\Gamma_1)_5^{(1)}$, $k(\Gamma_2)_5^{(1)}$, $k(\Gamma_3)_5^{(1)}$, $k(\Gamma_4)_5^{(1)}$ and $(k/k_0)^*$ are the six intermediate extensions of $k_5^{(1)}/k$. Furthermore σ permutes the fields $k\Gamma_5^{(1)}$, $k(\Gamma_1)_5^{(1)}$, $k(\Gamma_2)_5^{(1)}$, $k(\Gamma_3)_5^{(1)}$

Proof.

(1) Since $Gal(k/k_0) = \langle \sigma \rangle$ is a cyclic group of order 5, which acts on $C_{k,5}$, then the orbits of $C_{k,5}$ under $\langle \sigma \rangle$ must all have order 1 or 5. The identity element is its own orbit, so there must be other orbits of order 5. This shows that the ambiguous subgroup $C_{k,5}^{(\sigma)}$ is non-trivial. Hence rank $C_{k,5}^{(\sigma)} \ge 1$.

(2) A class $\mathcal{A} = [\mathcal{P}]$ where \mathcal{P} is a fractional ideal of k, is called strong ambiguous class, if $\mathcal{P}^{\sigma} = \mathcal{P}$. By $C_{k,s}^{(\sigma)}$ we denote the group of strong ambiguous classes. According to [[1], theorem 1.1] or [[8], Lemma 3.3], since rank $C_{k,5}^{(\sigma)} = 1$ then the radicand n is not divisible by any prime $p \equiv 1 \pmod{5}$. We have that elements of $C_{k,s}^{(\sigma)}$ are fixed by τ^2 since τ^2 fixes all primes ramified in k/k_0 and according to [[3], Proposition 2], $C_{k,5}^{(\sigma)}/C_{k,s}^{(\sigma)}$ is generated by a class modulo $C_{k,5}^{(\sigma)}$ of element chosen in $(C_{k,5}^{(\sigma)})^+$. Thus all elements of $C_{k,5}^{(\sigma)}$ are fixed by τ^2 , then $C_{k,5}^{(\sigma)} \subset C_{k,5}^+$. Therefore $C_{k,5}^{(\sigma)} = C_{k,5}^+$ because they are groups of order 5.

Since σ acts trivially on $C_{k,5}^+$, we have $1 - \sigma$ annihilates $C_{k,5}^+$. Then $(C_{k,5}^+)^{1-\sigma} \subset C_{k,5}^+$. To prove that $C_{k,5}^{1-\sigma} = C_{k,5}^+$ it's sufficient to show that $(C_{k,5}^-)^{1-\sigma}$ is non-trivial and $(C_{k,5}^-)^{1-\sigma} \subset C_{k,5}^+$. If this is trivial then $C_{k,5}^{1-\sigma}$ should be trivial, which imply that $(k/k_0)^*$ will coincide with $k_5^{(1)}$, because by class field theory $(k/k_0)^*$ corresponds to $C_{k,5}^{1-\sigma}$, which is not true in our case. Hence $(C_{k,5}^-)^{1-\sigma}$ is non-trivial.

Let $\mathcal{X} \neq 1 \in (C_{k,5}^{-})^{1-\sigma} = {\mathcal{A}^{1-\sigma} | \mathcal{A} \in C_{k,5}^{-}}$. We put $\mathcal{X} = \mathcal{A}^{1-\sigma}$ with $\mathcal{A} \in C_{k,5}^{-}$. We have $\mathcal{X}^{\tau^2} = (\mathcal{A}^{1-\sigma})^{\tau^2} = \mathcal{A}^{\tau^2}((\mathcal{A}^{\sigma})^{-1})^{\tau^2} = \mathcal{A}^{-1}((\mathcal{A}^{\sigma})^{\tau^2})^{-1} = \mathcal{A}^{-1}(\mathcal{A}^{\sigma\tau^2})^{-1}) = \mathcal{A}^{-1}(\mathcal{A}^{\tau^2\sigma^4})^{-1} = \mathcal{A}^{\sigma^4-1} = (\mathcal{A}^{-\sigma^3-\sigma^2-\sigma-1})^{1-\sigma}$. By the commuting relation between σ and τ we have $(\mathcal{A}^{-\sigma^3-\sigma^2-\sigma-1})^{\tau^2} = (\mathcal{A}^{-\sigma^3\tau^2-\sigma^2\tau^2-\sigma\tau^2}) = (\mathcal{A}^{-\sigma^3-\sigma^2-\sigma-1})^{-1}$, so we get that $\mathcal{A}^{-\sigma^3-\sigma^2-\sigma-1} \in C_{k,5}^{-}$ then we deduce that $((C_{k,5}^{-})^{1-\sigma})^{\tau^2} \subset (C_{k,5}^{-})^{1-\sigma}$, so $(C_{k,5}^{-})^{1-\sigma} \subset C_{k,5}^{+}$ which means that $(C_{k,5}^{-})^{1-\sigma} = C_{k,5}^{+}$.

(3) It's sufficient to see that the six extensions are quintic cyclic and unramified extensions of k, then they are all contained in $k_5^{(1)}$. We need to show that they are distinct. We have $\langle \tau^2 \rangle \subset Gal(k/\Gamma), Gal(k/\Gamma_1) = \langle \tau \sigma^2 \rangle, Gal(k/\Gamma_2) = \langle \tau \sigma^4 \rangle, Gal(k/\Gamma_3) = \langle \tau \sigma \rangle$ and $Gal(k/\Gamma_4) = \langle \tau \sigma^3 \rangle$. By class field theory, the six subgroups of $C_{k,5}$, denoted H_i $(1 \le i \le 6)$, which correspond to the six extensions are as follows:

- $(k/k_0)^*$ corresponds to the principal genus $H_1 = C_{k,5}^{1-\sigma} = C_{k,5}^{(\sigma)} = C_{k,5}^+$ - By Lemma 2.7, we have $C_{k,5}^+ \simeq C_{\Gamma,5}$. Since $C_{k,5}/C_{k,5}^- \simeq C_{k,5}^+$ and $C_{\Gamma,5} \simeq Gal(\Gamma_5^{(1)}/\Gamma)$, we see that $C_{k,5}/C_{k,5}^- \simeq Gal(\Gamma_5^{(1)}/\Gamma) \simeq Gal(k\Gamma_5^{(1)}/k)$. Hence $k\Gamma_5^{(1)}$ corresponds to $H_6 = C_{k,5}^-$.

- $k(\Gamma_1)_5^{(1)}$ corresponds to $H_5 = \{\mathcal{X} \in C_{k,5} \mid \mathcal{X}^{(\tau\sigma^2)^2} = \mathcal{X}^{-1}\}$

- $k(\Gamma_2)_5^{(1)}$ corresponds to $H_4 = \{\mathcal{X} \in C_{k,5} \mid \mathcal{X}^{(\tau\sigma^4)^2} = \mathcal{X}^{-1}\}$

- $k(\Gamma_3)_5^{(1)}$ corresponds to $H_3 = \{\mathcal{X} \in C_{k,5} \mid \mathcal{X}^{(\tau\sigma)^2} = \mathcal{X}^{-1}\}$

- $k(\Gamma_4)_5^{(1)}$ corresponds to $H_2 = \{\mathcal{X} \in C_{k,5} \mid \mathcal{X}^{(\tau\sigma^3)^2} = \mathcal{X}^{-1}\}$

We have that $H_1 \neq H_6$. Suppose that $H_1 = H_5$, for $\mathcal{X} \neq 1 \in H_1 = H_5$ we have $\mathcal{X}^{\tau^2} = \mathcal{X}^{\sigma} = \mathcal{X}$ and $\mathcal{X}^{(\tau\sigma^2)^2} = \mathcal{X}^{\tau^2\sigma} = \mathcal{X}^{-1} = \mathcal{X}$, so we get that $\mathcal{X} = 1$ because its a 5-class. Hence we deduce that $H_1 \neq H_5$.

Now suppose that $H_5 = H_4$, for $\mathcal{X} \neq 1 \in H_5 = H_4$ we have $\mathcal{X}^{(\tau\sigma^2)^2} = \mathcal{X}^{\tau^2\sigma} = \mathcal{X}^{-1}$ and $\mathcal{X}^{(\tau\sigma^4)^2} = \mathcal{X}^{\tau^2\sigma^2} = \mathcal{X}^{-1}$, then $\mathcal{X}^{\tau^2\sigma^2} = \mathcal{X}^{\tau^2\sigma}$. By the commuting relation between σ and τ we have $\mathcal{X}^{\sigma^3\tau^2} = \mathcal{X}^{\sigma^4\tau^2}$, which imply that $\mathcal{X}^{\sigma} = \mathcal{X}$, so $\mathcal{X} \in H_1$, and since $H_1 \neq H_5$, then $\mathcal{X} = 1$ whence $H_5 \neq H_4$. By the same reasoning for the other cases, we prove that the subgroups H_i $(1 \leq i \leq 6)$ of $C_{k,5}$ are distinct, which means that the six quintic unramified extensions $(k/k_0)^*$, $k\Gamma_5^{(1)}, k(\Gamma_1)_5^{(1)}, k(\Gamma_2)_5^{(1)}, k(\Gamma_3)_5^{(1)}$ and $k(\Gamma_4)_5^{(1)}$ are distinct.

We denote by $K_1 = (k/k_0)^*$, $K_2 = k(\Gamma_4)_5^{(1)}$, $K_3 = k(\Gamma_3)_5^{(1)}$, $K_4 = k(\Gamma_2)_5^{(1)}$, $K_5 = k(\Gamma_1)_5^{(1)}$ and $K_6 = k(\Gamma)_5^{(1)}$. Since $K_2 = K_3^{\sigma}$, $K_3 = K_4^{\sigma}$, $K_4 = K_5^{\sigma}$, $K_5 = K_6^{\sigma}$ and $K_6 = K_2^{\sigma}$, then σ permutes the fields K_2, K_3, K_4, K_5 and K_6 .

3 Capitulation problem

Let Γ , k and $C_{k,5}$ be as above. $C_{k,5}$ is elementary abelian bicyclic of type (5,5), it has 6 subgroups H_i $1 \le i \le 6$ of order 5. Let K_i be the intermediate extension of $k_5^{(1)}/k$, corresponding by class field theory to H_i . Since each K_i is cyclic of order 5 over k, there is at least one subgroup of order 5 of $C_{k,5}$, i.e, at least one H_l for some $l \in \{1, 2, 3, 4, 5, 6\}$, which capitulates in K_i (by Hilbert's theorem 94).

Definition 3.1. Let S_j be a generator of H_j $(1 \le j \le 6)$ corresponding to K_j . For $1 \le j \le 6$, let $i_j \in \{0, 1, 2, 3, 4, 5, 6\}$. We say that the capitulation is of type $(i_1, i_2, i_3, i_4, i_5, i_6)$ to mean the following:

- (1) when $i_j \in \{1, 2, 3, 4, 5, 6\}$, then only the class S_{i_j} and its powers capitulate in K_j ;
- (2) when $i_j = 0$, then all the 5-classes capitulate in K_j .

By theorem 2.8, we have that $C_{k,5}^{(\sigma)} = C_{k,5}^+$. Let $C_{k,5}^+ = \langle \mathcal{A} \rangle$ and $C_{k,5}^- = \langle \mathcal{X} \rangle$. According to Lemma 2.7, $C_{k,5}^+ \simeq C_{\Gamma,5}$, we can consider $C_{\Gamma,5}$ as subgroup of $C_{k,5}$, and we may choose the class \mathcal{A} as $\mathcal{A} = [j_{k/\Gamma}(\mathcal{B})]$, when \mathcal{B} is ideal of Γ such that its class generates $C_{\Gamma,5}$.

We order the six intermediate fields K_i of $k_5^{(1)}/k$ $(1 \le i \le 6)$ as follows:

- $K_1 = (k/k_0)^*$ correspond by class field theory to the subgroup $H_1 = C_{k,5}^{1-\sigma} = \langle \mathcal{A} \rangle$.
- $K_6 = k\Gamma_5^{(1)}$ correspond to the subgroup $H_6 = C_{k,5}^- = \langle \mathcal{X} \rangle$.

-
$$K_2 = k(\Gamma_4)_5^{(1)}, K_3 = k(\Gamma_3)_5^{(1)}, K_4 = k(\Gamma_2)_5^{(1)} \text{ and } K_5 = k(\Gamma_1)_5^{(1)}.$$

Our principal result on capitulation can be stated as follows:

Theorem 3.2. Using the same notations as above.

- (1) The class A capitulates in the six quintic extensions K_i , i = 1, 2, 3, 4, 5, 6.
- (2) The same number of classes capitulate in K_2, K_3, K_4, K_5 and K_6 . More precisely, the possible capitulation types are (0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 1, 1, 1, 1, 1) or (1, 1, 1, 1, 1, 1). Possible Taussky types are (A, A, A, A, A) or (A, B, B, B, B, B)

Proof.

(1) Let $C_{k,5}^{(\sigma)} = C_{k,5}^+ = \langle A \rangle$, where $A = [j_{k/\Gamma}(B)]$ such that B is ideal of Γ . Since $\Gamma_5^{(1)}$ is Hilbert 5-class field of Γ , then B becomes principal in $\Gamma_5^{(1)}$. Thus when B considered as ideal of $k\Gamma_5^{(1)}$, B becomes principal in $k\Gamma_5^{(1)}$. Then we get that A capitulates in $k\Gamma_5^{(1)} = K_6$. Since $K_2 = K_3^{\sigma}$, $K_3 = K_4^{\sigma}$, $K_4 = K_5^{\sigma}$, $K_5 = K_6^{\sigma}$, $K_6 = K_2^{\sigma}$ and $A^{\sigma} = A$, we deduce that A capitulates in K_2, K_3, K_4, K_5 and K_6 . To prove that A capitulates in K_1 , we use Tanaka-Terada's theorem. Since $K_1 = (k/k_0)^*$ is the genus field of k/k_0 , and A is ambiguous class, then A capitulates in K_1 .

(2) We have σ permute the fields K_6, K_5, K_4, K_3 , and K_2 , and $C_{k,5}^{\sigma} = C_{k,5}$. Since each element of $C_{k,5}^{(\sigma)} = \langle A \rangle$ capitulates in K_6, K_5, K_4, K_3 , and K_2 , then we have two possibilities: Only A and its powers capitulate in the extensions K_6, K_5, K_4, K_3 , and K_2 , or all the 5-classes capitulate in K_6, K_5, K_4, K_3 , and K_2 . This give us as type of capitulation, $(i_1, 0, 0, 0, 0, 0, 0)$ or $(i_1, 1, 1, 1, 1, 1)$ with $i_1 \in \{0, 1, 2, 3, 4, 5, 6\}$. Since A capitulates in K_1 , then if $i_1 \neq 0$, so i_1 is necessary 1. Thus we prove that the possible types of capitulation are (0, 0, 0, 0, 0, 0), (0, 1, 1, 1, 1, 1), (1, 0, 0, 0, 0, 0) or (1, 1, 1, 1, 1), then the possible Taussky types are (A, A, A, A, A, A) or (A, B, B, B, B, B)

4 Numerical examples

The task to determine the capitulation in a cyclic quintic extension of a base field of degree 20, that is, in a field of absolute degree 100, is definitely far beyond the reach of computational algebra systems like MAGMA and Pari/GP. For this reason we give examples of a pure metacyclic

fields $k = \mathbb{Q}(\sqrt[5]{n}, \zeta_5)$ with *n* takes values from the three forms mentioned above. We have $C_{k,5}$ is of type (5,5) and rank $C_{k,5}^{(\sigma)} = 1$, hence by theorem 3.2 one of capitulation types occur.

n	$h_{k,5}$	$C_{k,5}$	rank $(C_{k,5}^{(\sigma)})$	n	$h_{k,5}$	$C_{k,5}$	rank $(C_{k,5}^{(\sigma)})$
118	25	(5, 5)	1	1999	25	(5, 5)	1
145	25	(5, 5)	1	2007	25	(5, 5)	1
449	25	(5, 5)	1	2507	25	(5, 5)	1
475	25	(5, 5)	1	2725	25	(5, 5)	1
559	25	(5, 5)	1	6725	25	(5, 5)	1
718	25	(5, 5)	1	7375	25	(5, 5)	1
818	25	(5, 5)	1	7493	25	(5, 5)	1
1018	25	(5, 5)	1	28625	25	(5, 5)	1
1195	25	(5, 5)	1	55625	25	(5, 5)	1
1249	25	(5, 5)	1	168125	25	(5, 5)	1
1499	25	(5, 5)	1	149 ²	25	(5, 5)	1
1945	25	(5, 5)	1	199 ³	25	(5, 5)	1
1945	25	(5, 5)	1	349 ³	25	(5, 5)	1

Table 1: $k = \mathbb{Q}(\sqrt[5]{n}, \zeta_5)$ with $C_{k,5}$ is of type (5,5) and rank $C_{k,5}^{(\sigma)} = 1$.

References

- F.Elmouhib, M. Talbi, and A. Azizi: 5-rank of ambiguous class groups of quintic Kummer extensions, Proc Math Sci 132, 12 (2022). https://doi.org/10.1007/s12044-022-00660-z
- Ph. Furtwängler: Beweis des Hauptidealsatzes f
 ür Klassenk
 örper algebraischer Zahlk
 örper., Abh Math. Sem. Univ. Hamburg 7 (1930), 14-36.
- [3] G.Gras: Sur les *l*-classes d'idéaux des extensions non galoisiennes de \mathbb{Q} de degré impaire *l* â clôture galoisienne diédrale de degré 2*l*. J. Math. Soc, Japan 26 (1974), 677 685.
- [4] E.Hecke: Algebraic Number Theory, GTM 77, Springer-Verlag 1981.
- [5] D.Hilbert: Über die Theorie der relativ-Abelschen Zahlköper, Acta Math. 26 (1902), 99-132.
- [6] M.Ishida: The genus Fields of Algebraic Number Fields. Lecture notes in Mathematics Vol 555, Springer-Verlag (1976).
- [7] M.Kulkarni, D. Majumdar, B.Sury: *l*-class groups of cyclic extension of prime degree *l*, J. Ramanujan Math. Soc. 30, No.4 (2015), 413-454.
- [8] K. Iimura: A criterion for the class number of a pure quintic field to be divisible by 5, J. Reine Angew. Math. 292 (1977) 201-210,
- [9] D.C. Mayer: Transfers of metabelian p-groups, Monatsh. Math. 166 (2012), no. 3-4, 467-495, DOI 10.1007/s00605-010-0277-x.
- [10] K. Miyake: Algebraic Investigations of Hilbert's Theorem 94, the Principal Ideal Theorem and Capitulation Problem, Expos. Math. 7 (1989), 289-346.
- [11] C. Parry, Class number relations in pure quintic felds, Symposia Mathematica. 15 (1975), 475-485.
- [12] Scholz and Taussky: Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper, Journal fur die reine und angewandte Mathematik. Volume 171. 1934
- [13] H. Suzuki: A Generalisation of Hilbert's Theorem 94, Nagoya Math. J., vol 121 (1991).
- [14] T. Tannaka: A generalized principal ideal theorem and a proof of aconjecture of Deuring, Ann. Math. 67 (1958).
- [15] O. Taussky: A remark concerning Hilbert's theorem 94, J. reine angew. Math. 239/240 (1970), 435-438.
- [16] The PARI Group, PARI/GP: Version 2.4.9, Bordeaux, 2017, http://pari.math.u-bordeaux.fr.

Author information

FOUAD ELMOUHIB¹, MOHAMED TALBI² and ABDELMALEK AZIZI³, ^{1,3} Department of Mathematics, university Mohammed First, Oujda, Morocco; ² Regional Center of Professions of Education and Training, Oujda, Morocco, Morocco. E-mail: fouad.cd@gmail.com, ksirat1971@gmail.com, abdelmalekazizi@yahoo.fr