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Abstract The concept of an e-M -Noetherian module is a generalisation of Noetherian and e-
Noetherian modules which is defined as every ascending chain of essentialM -cyclic submodules
gets terminated. In this paper, we proved that if N is an e-N -Noetherian R-module and M be
simple R-module, then the direct sum of N and M is e-(N ⊕M)-Noetherian. Let R be a ring
then we define an e-R-Noetherian ring, if it is an e-M -Noetherian module, where M=RR. Also
we proved that for a principal ideal ring R, the notions of an e-Noetherian and e-R-Noetherian
rings are equivalent.

1 Introduction

Suppose M and N are left R-modules, then N is known as M -cyclic if N ∼= M/K for some
submodule K of M . In [4], authors have discussed about the concept of chain conditions on
M -cyclic submodules and also studied about chain conditions on R-cyclic left ideals of rings.
With this motivation, we introduce the chain conditions on essential M -cyclic submodules and
essential R-cyclic ideals in details. A submodule K of a module M is called an essential if for
every submodule L of M which is nonzero and has non-trivial intersection with K. A module
M is known as Noetherian, if every ascending chain of submodules of M gets terminated, for
example any finite abelian groups over integers. A module M is defined to be an e-Noetherian,
if for any chain L1 ⊆e L2 ⊆e L3 ⊆e · · · ⊆e Ln ⊆e · · · of essential submodules of M gets stabi-
lized, i.e. there exists some positive integer r, such that Lr = Lr+1. For example if we consider
Z32, then the ascending chain of essential submodules 16Z32 ⊆e 8Z32 ⊆e 4Z32 ⊆e 2Z32 ⊆e Z32
is stationary. We recall that a module L is called an uniform, if every non-zero submodules is
essential in L.

In this paper we introduce the notion of e-M -Noetherian modules and rings and then we study
about the characterizations of these modules and rings. The paper itself is split into three sec-
tions, where first section is devoted to introduction including motivation and preliminary ideas
related to the article. In the second section we discuss about several fundamental properties of
e-M -Noetherian modules, where we extend few results of Noetherian and e-Noetherian modules
and also establish some new statements. We proved that an e-Noetherian module is always an e-
M -Noetherian but the converse is true only if End(M) is a division ring. We then proved that if
N is an e-N -NoetherianR-module andM is a simpleR-module then the direct sum ofN andM
is e-(N ⊕M)-Noetherian (Theorem 2.12). We also showed that if each Mi are e-Mi-Noetherian
then

∑r
i=1 ⊕Mi is e-(

∑r
i=1 ⊕Mi)-Noetherian and conversely (Proposition 2.9).

In the third section we discuss about e-R-Noetherian rings. We proved that every principal ideal
ring R with ascending chain of essential left R-cyclic ideals is e-R-Noetherian (Proposition 3.1)
and a ring R is an e-R-Noetherian if and only if any direct sum of injective modules is injective
(Theorem 3.3). Besides, we showed that for a commutative ring R if it is an e-R-Noetherian,
then every descending chain on annihilators stabilizes and if it is self-injective, then R is an e-
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R-Noetherian (Lemma 3.6).

Throughout this paper, we consider R is an associative ring with unit element and all modules
are unitary left R-modules.

Remark 1.1. Every essential L-cyclic submodules of an essential M -cyclic submodule L is
again an essential M -cyclic.

2 Essential M -Noetherian Modules

A moduleM is said to be an essentialM -Noetherian (in short, e-M -Noetherian) if any ascending
chain g1(M) ⊆e g2(M) ⊆e g3(M) ⊆e · · · ⊆e gn(M) ⊆e · · · of essential M -cyclic submodules
of M is stationary, i.e. there exists r ∈ N such that gr(M) = gr+1(M) where gi ∈ End(M) and
i ∈ N. Clearly every Noetherian, simple, uniform, semisimple modules are e-M -Noetherian.
An example of an e-M -Noetherian module will be Z27. Consider the terminating chain 9Z27 ⊆e
3Z27 ⊆e Z27, here every submodule in this ascending chain is essential and hence Z27 is an e-
Z27-Noetherian. Clearly if a module is an uniform and Noetherian then it is an e-M -Noetherian.

Theorem 2.1. Suppose M is an R-module, then

(i) M is an e-M -Noetherian if and only if every family of non-empty essential M -cyclic sub-
modules of M has a maximal element.

(ii) M is an e-M -Noetherian if and only if every essentialM -cyclic submodules ofM is finitely
generated.

Proof. (i) Assume thatM is an e-M -Noetherian module and suppose Ω be a non-empty family
of essentialM -cyclic submodules ofM. If there is no maximal element in Ω then we can se-
lect continously a chain of essential M -cyclic submodules g0(M) ⊆e g1(M) ⊆e · · · ⊆e · · ·
from Ω, which arrive at contradiction to our assumption that M is e-M -Noetherian. Hence,
we get that the family of essential M -cyclic submodules of M has a maximal element.
Conversely, consider a chain g0(M) ⊆e g1(M) ⊆e · · · ⊆e · · · of essential M -cyclic
submodules of M. By assumption, the set of essential M -cyclic submodules of M as
{gn(M) : n ∈ N} contains a maximal element gi(M). Nonetheless, after that we have
gk(M) = gi(M) for all k ≥ i, hence M is an e-M -Noetherian.

(ii) Let M be an e-M -Noetherian and consider an essential M -cyclic submodule P of M .
We denote Ω the collection of all finitely generated essential P -cyclic submodules of P ,
then by Remark 1.1, Ω is the family of essential M -cyclic submodule of M . Because M
is e-M -Noetherian, then Ω will have a maximal member g0(P ) by part 1. Put g0(P ) =
Rg(p1) + Rg(p2) + Rg(p3) + · · · + Rg(pn) and suppose that g0(P ) ̸= P . So there exists
g(p) ∈ P such that g(p) /∈ g0(P ), but then g0(P ) +Rg(p) = Rg(p1) +Rg(p2) +Rg(p3) +
· · · + Rg(pn) + Rg(p) is a member of Ω strictly containing g0(P ), which contradict the
maximality of g0(P ) so we have g0(P ) = P and thus P is finitely generated.
Conversely, now suppose that every essential M -cyclic submodule of M is finitely gener-
ated and assume an ascending chain g1(M) ⊆e g2(M) ⊆e g3(M) ⊆e · · · ⊆e gn(M) ⊆e · · ·
of essential M -cyclic submodules of M . Put g(M) = ∪∞

i=1gi(M), then g(M) is an es-
sential M -cyclic submodule of M and hence g(M) is finitely generated. Let g(M) =
Rg(m1) + Rg(m2) + Rg(m3) + · · · + Rg(mr), now each g(mj) belongs to one of the
gi(M)’s, so there exists m such that g(m1), g(m2), · · · , g(mr) belong to gm(M). But then
g(M) = gm(M) and gn(M) = gm(M) ∀n ≥ m, therefore M is an e-M -Noetherian.

Corollary 2.2. Every submoduleN of an e-M -Noetherian moduleM is also an e-M -Noetherian.

Theorem 2.3. M is an e-M -Noetherian module, when M be an e-Noetherian.

Proof. Suppose g1(M) ⊆e g2(M) ⊆e · · · ⊆e gn(M) ⊆e gn+1 ⊆e · · · be an ascending chain
of essential M -cyclic submodules of M . Because M is an e-Noetherian [9, Theorem 2] holds.
Hence the above chain stabilizes.
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Proposition 2.4. If End(M ) is a division ring, then an e-M -Noetherian module is an e-Noetherian.

Proof. Suppose M is an e-M -Noetherian module. So it has an ascending chain of essential
M -cyclic submodules which terminates i.e. h1(M) ⊆e h2(M) ⊆e · · ·hn(M) = hn+1(M) · · · .
Choosing hi(M) = h(Mi) as in [4], we have the above chain as h(M1) ⊆e h(M2) ⊆e · · · ⊆e
h(Mn) = h(Mn+1) · · · , where h ∈ End(M). Since End(M) is a division ring and so h−1 ∈
End(M). If we operate it in the above chain we get a chain of essential submodules which
is ascending and terminates i.e. M1 ⊆e M2 ⊆e · · · ⊆e Mn = Mn+1 · · · . Thus M is an
e-Noetherian.

Proposition 2.5. An epi-retractable module M is an e-M -Noetherian if and only if it is an e-
Noetherian.

Proof. Suppose M is an epi-retractable module which is an e-M -Noetherian. As every submod-
ule in an epi-retractable module is M -cyclic hence any ascending chain of essential M -cyclic
submodules turns into ascending chain of essential submodules of M that terminates, since M
is an e-M -Noetherian. Converse part is obvious by Theorem 2.3.

A sequence of the type · · · → An−1
πn−1−−−→ An

πn−−→ An+1 → · · · of R homomorphisms is
called an exact sequence if Img(πn−1) = ker(πn) for all n ∈ N. An exact sequence of the type
0 → P

π−→ Q
ψ−→ R → 0 is known as short exact sequence, where π and ψ is one-one and onto

homomorphisms respectively.

Theorem 2.6. Suppose 0 → M1
ϕ−→ M

ψ−→ M2 → 0 be a short exact sequence of R-modules.
Then M is an e-M -Noetherian if and only if both M1 and M2 are e-M1-Noetherian and e-M2-
Noetherian respectively.

Proof. Suppose that M1 be a submodule of M and that M/M1 ∼= M2. Assume that M is an
e-M -Noetherian. Since M1-cyclic submodule of M1 are also M -cyclic submodule of M, so we
have M1 is an e-M1-Noetherian by Corollary 2.2. For next part, consider a chain of essential
M2-cyclic submodules of M2 i.e. g1(M2) ⊆e g2(M2) ⊆e g3(M2) ⊆e · · · ⊆e gn(M2) ⊆e · · · of
M/M1 where gi ∈ End(M2) and corresponding to this chain by [12, Proposition 1.9], we have
h1(M) ⊆e h2(M) ⊆e h3(M) ⊆e · · · ⊆e hn(M) ⊆e · · · of essential M -cyclic submodules of M
which contains M1 and there exists n such that hr(M) = hn(M) for all r ≥ n, as M is an e-M -
Noetherian. Returning to M/M1, we see that gr(M2) = gn(M2) ∀ r ≥ n. Hence M/M1 ∼= M2
is an e-M2-Noetherian module.
Conversely, now suppose that M1 and M/M1 ∼= M2 are e-M1-Noetherian and e-M2-Noetherian
respectively. Now consider the ascending chain of essentialM -cyclic submodules i.e. g1(M) ⊆e
g2(M) ⊆e g3(M) · · · ⊆e gn(M) ⊆e · · · of M . Claim that gn(M) = gm(M) for all n ≥
m. This gives ascending chains g1(M) ∩ M1 ⊆e g2(M) ∩ M1 ⊆e g3(M) ∩ M1 ⊆e · · · ⊆e
gr(M) ∩M1 ⊆e · · · and (g1(M) +M1)/M1 ⊆e (g2(M) +M1)/M1 ⊆e (g3(M) +M1)/M1 ⊆e
· · · ⊆e (gr(M) + M1)/M1 ⊆e · · · . of M1 and M/M1 ∼= M2 respectively. Clearly both of
these chains terminates, so there exists m ∈ N such that (gn(M) ∩M1) = (gm(M) ∩M1) and
(gn(M) +M1)/M1 = (gm(M) +M1)/M1 for all n ≥ m. Now we proceed to the final step.
Since gn(M) = gn(M) ∩ (gn(M) +M1)
= gn(M) ∩ (gm(M) +M1)
= gm(M) + (gn(M) ∩M1) (by modular property)
= gm(M) + (gm(M) ∩M1) (since gn(M) ∩M1 = gm(M) ∩M1)
= gm(M) ∩ (gm(M) +M1) (by modular property)
=gm(M)
hence gn(M) = gm(M) ∀ n ≥ m. Hence M is an e-M -Noetherian module.

Corollary 2.7. A module M is an e-M -Noetherian if and only if its submodule K and quotient
module M/K are e-K-Noetherian and e-M/K-Noetherian respectively.

Proof. If we assume an exact sequence 0 → K
ϕ−→ M

ψ−→ M/K → 0 , where ϕ is one-one
homomorphism and ψ an onto homomorphism. Clearly the proof holds from above result.

Corollary 2.8. (i) Every submodules and quotient modules of an uniform e-Noetherian mod-
ules are e-M -Noetherian.
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(ii) If M is an uniform module such that it contains a submodule K with K as e-K-Noetherian
and M/K as e-M/K-Noetherian then M is an e-M -Noetherian.

Proof. The above theorem leads directly to proof.

Proposition 2.9. Let M1,M2,M3, · · · ,Mr are any R-modules. Then ⊕ni=1Mi is e-⊕ri=1Mi-
Noetherian if and only if each Mi is an e-Mi-Noetherian.

Proof. Let ⊕ri=1Mi is e-⊕ri=1Mi-Noetherian. It is obvious that the result is true for r = 1. Con-

sider for r ≥ 2, an exact sequence 0 → ⊕r−1
i=1 Mi

ϕ−→ ⊕ri=1Mi
π−→ Mr → 0 where the mapping

ϕ and π are the injection and projection mapping respectively. Using Theorem 2.6, we have
⊕r−1
i=1 Mi and Mr are e-⊕r−1

i=1 Mi-Noetherian and e-Mr-Noetherian respectively. Taking i = r
then clearly we get Mi is an e-Mi-Noetherian.
Conversely, assume that each Mi is an e-Mi-Noetherian. By the principle of mathematical in-
duction, suppose ⊕r−1

i=1 Mi is e-⊕r−1
i=1 Mi-Noetherian and Mr is an e-Mr-Noetherian respectively.

Taking the exact sequence 0 → ⊕r−1
i=1 Mi

ϕ−→ ⊕ri=1Mi
π−→ Mr → 0, where the mapping ϕ and π

are the injection and projection mapping respectively and so by Theorem 2.6, we have ⊕ri=1Mi

is e-⊕ri=1Mi-Noetherian.

Corollary 2.10. Let M1,M2,M3, · · · ,Mr are simple R-modules. Then ⊕ri=1Mi is e-⊕ri=1Mi-
Noetherian.

Corollary 2.11. The homomorphic image of an e-M -Noetherian module is an e-M -Noetherian.

Proof. Suppose M is an e-M -Noetherian and K be any submodule of M . If g : M → K is a
R-module homomorphism then we have M/kerg ∼= g(M) by first isomorphism theorem. Hence
g(M) is an e-M -Noetherian by Corollary 2.7.

Theorem 2.12. Let N be an e-N -Noetherian module and M be a simple R-module, then N ⊕M
is e-(N ⊕M)-Noetherian.

Proof. Let f(M1) ⊆e f(M2) ⊆e · · · be any chain of essential (N ⊕M)-cyclic submodules of
N ⊕M . We discuss two cases.

1. If f(Mi) ∩M = 0 ∀i, then all f(Mi) ∼= Ki, where Ki are any submodules of N . Given
that N is e-N -Noetherian this implies that f(Mn) = f(Mi) ∀i ≥ n, proof is done.

2. We have M ∩ f(Mi) ̸= 0 since f(Mi) is nonzero. Since M is simple so this implies that
f(Mi) ∩M = M and thus M ⊆ f(Mi) ∀i ≥ p. Applying modular property we get, f(Mi) =
f(Mi)∩(N⊕M) = (f(Mi)∩N)⊕M , similarly f(Mi+1) = (f(Mi+1)∩N)⊕M . Suppose that
f(Mk)∩N ⊆e f(Mk+1)∩N ⊆e · · · is a chain of ascending essentialN -cyclic submodules ofN .
Because N is an e-N -Noetherian this follows that there exists s ≥ k, f(Mi)∩N = f(Mi+1)∩N
∀i ≥ s. Thus (f(Mi) ∩ N) ⊕M = (f(Mi+1) ∩ N) ⊕M ∀i ≥ s and hence f(Mi) = f(Mi+1)
∀i ≥ s. Thus N ⊕M is e-(N ⊕M)-Noetherian.

Lemma 2.13. If M be an e-M -Noetherian left R-module then M cannot have an infinite direct
sum of nonzero submodules.

Proof. Proof is obvious.

3 Essential R-Noetherian rings

We call a ringR an essentialR-Noetherian ring (in short, e-R-Noetherian) if it is e-M -Noetherian
module, where M=RR for example, residue class of integers modulo n for ∀n > 0 and semisim-
ple rings. An ideal I of R is finitely generated if there is a finite subset X of R such that
I=< X >. If an ideal I is generated by one element then it is known as principal ideal. A ring R
where every ideal is principal is known as a principal ideal ring. If R is also an integral domain
then it is called a principal ideal domain.

Proposition 3.1. Every principal ideal ring R with ascending chain of essential left R-cyclic
ideals f(I1) ⊆e f(I2) ⊆e · · · ⊆e f(In) ⊆e · · · is e-R-Noetherian, where f ∈ End(R).



e-M -Noetherian Modules and Rings 85

Proof. Consider the family of essential left R-cyclic ideals of R as {f(Ii) : i ∈ N} where
f ∈ End(R) such that f(Ir) ⊆ f(Ir+1) ∀r ∈ N. Then f(I) =

⋃
i∈N f(Ii) is also essential

principal left R-cyclic ideal of R, as every f(Ii)’s are essential in R. Let f(I) be generated by
an element a ∈ f(I). Now since a ∈ f(I), so there exists an index k ∈ N such that a ∈ f(Ik).
Claim that f(Ik) = f(Ir) ∀ r ≥ k. Suppose this is not true, then there exists r > k such that
f(Ik) ⊆ f(Ir) and f(Ik) ̸= f(Ir) i.e. f(Ir) \ f(Ik) is nonempty. Suppose x ∈ f(Ir) but
x /∈ f(Ik), then x ∈ f(I) =

⋃
i∈N f(Ii) so x = b.a for some b ∈ R as ′a′ generator of f(I).

Again f(Ik) is left ideal and a ∈ f(Ik), we have b.a ∈ f(Ik) as x = b.a implies that x ∈ f(Ik)
which arrive at contradiction to our supposition x /∈ f(Ik). Thus the given chain of essential
principal left ideal will terminate and hence R is e-R-Noetherian.

Corollary 3.2. Every principal ideal domain R is an e-R-Noetherian.

Proof. Proof is straight forward in light of above proposition.

Theorem 3.3. A ring R is left e-R-Noetherian if and only if any direct sum of injective left R-
modules is injective.

Proof. Let R is left e-R-Noetherian ring and assume F = ⊕i∈IFi is a direct sum of injective left
R-modules Fi. Suppose L is a left ideal of R and we consider the homomorphism ϕ : L → F .
Since R is e-R-Noetherian, we have every ideal is finitely generated and suppose the generators
be x1, x2, · · · , xn. Now each ϕ(xk) consists of finitely many nonzero components in F which
implies that ϕ(xk) ∈ ⊕i∈IkFi where Ik is finite subset of I . Again let I∗ =

⋃n
i=1 Ii and F ∗ =

⊕i∈I∗Fi so each ϕ(xk) ∈ F ∗ hence ϕ(L) ⊆ F ∗. Also I∗ is finite so we get a homomorphism
RR→ F ∗ ⊆ F because F ∗ is injective. Thus F is injective.
Conversely, we assume that the direct sum of injective left R-modules is injective. Let f(K1) ⊆e
f(K2) ⊆e · · · be a chain of essential R-cyclic ideals of R. Consider P =

⋃
i∈N f(Ki) which is a

left essential R-cyclic ideal of R. Suppose J=E(R/f(K1))⊕E(R/f(K2))⊕ · · · and we define
a function ψ : P → J by

ψ(p) = (p+ f(K1), p+ f(K2) · · · , ) (p ∈ P )

Now if p ∈ P then there exists q ∈ N such that p ∈ f(Kq) so that p + f(Kr) = 0 ∀r ≥ q and
ψ(p) ∈ J . Clearly J is injective and we have x ∈ J such that ψ(p) = px (p ∈ P ). Also we
have l ∈ N and xi ∈ E(R/f(Ki)), i ∈ N such that x = (x1, x2, · · · ) and xs = 0 ∀s ≥ l. For
p ∈ P we have

(p+ f(K1), p+ f(K2) · · · , ) = ψ(p) = p(x1, x2, · · · )

suggests that p+ f(Kl) = pxl = 0 and so p ∈ f(Kl). Hence f(Kq) ⊆e f(Kl). Thus f(Kl) =
f(Kl+1) = · · · and so R is left e-R-Noetherian.

Theorem 3.4. A ring R is an e-R-Noetherian if and only if every finitely generated R-module M
is an e-M -Noetherian.

Proof. We consider R is an e-R-Noetherian ring and M is a finitely generated R-module. Let
F be any free module so there exists a surjective homomorphism ψ : F → M . Because M
is finitely generated so F ∼= ⊕ni=1R where n ∈ N. Consider ϕ : ⊕ni=1R → M is a onto R-
homomorphism. Clearly ⊕ni=1R is an R-module hence we have homomorphic image of ϕ i.e. M
is also e-M -Noetherian. Thus M is e-M -Noetherian. Conversely let M be a finitely generated
R-module which is an e-M -Noetherian. We know that for any finitely generated module over a
Noetherian ring is Noetherian. Using this fact we can say R-module R is an e-R-Noetherian.

Lemma 3.5. Let R be an uniform e-R-Noetherian regular ring. Then R is semisimple.

Proof. Let R be an e-R-Noetherian ring. Clearly every ideal of R is finitely generated. Since R
is regular hence every finitely generated ideal is a direct summand of R which implies that R is
a semisimple ring.

Lemma 3.6. Let R be a commutative ring.

(i) If R is an e-R-Noetherian then it holds descending chain condition on annihilators.



86 H. Chakraborty, R. K. Singh and M. K. Patel

(ii) If R is self-injective then R is an e-R-Noetherian.

Proof. (i) Consider the descending chain of essential R-cyclic ideals which are annihilators of
R, i.e. K1 ⊇e K2 ⊇e · · · . If we take annihilators on the above chain we attain an ascending
chain i.e. ann(K1) ⊆e ann(K2) ⊆e · · · . Because R is an e-R-Noetherian we have an index
r, such that ann(Ki) = ann(Kr) ∀i ≥ r. Again considering annihilators of these annihilators
ideals we obtain Ki = Kr ∀i ≥ r.

(ii) Let R be self injective, so R fulfills the descending chain condition on annihilators and
by [2, Theorem 2], the ring R is Quasi Frobenius. Hence R is an e-Noetherian by [2, Theorem
2] and thus R is an e-R-Noetherian.
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