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Abstract Recently, Anderson et al. in ([3], Comm. Alg. (2020)) introduced a generaliza-
tion of multiplication modules called S-multiplication modules. In this article, the properties of
S-prime submodules of S-multiplication modules are studied. Furthermore, we show that the
concepts of simple modules, multiplication modules, and S-multiplication modules are equiv-
alent in a torsion-free divisible module over an integral domain. Finally, we construct ring of
matrices R’ whose entries in a module M and demonstrate that M is S-multiplication R-module
is equivalent to the existence of a specific ideal A of rings R’ is S-multiplication ideal.

1 Introduction

Throughout the article, we shall assume, unless otherwise stated, that all rings R are regarded
to be associative rings with identity and all modules are assumed to be nonzero unital right R-
modules. A submodule Y of R-module X is denoted by Y <p X and an ideal I of R is denoted
by I <R.

Let X be a right R-module. The annihilator of X, denoted by Anng(X), is

Anng(X) = {r € R| Xr =0}. (1.1)

If Anngr(X) = 0, then X is called a faithful module. For any submodule Y of X, Anng(X/Y)
will be denoted by (Y :g X). Therefore (Y :g X) = {r € R| Xr C Y} and may be written as
(Y : X) if ring R is understood.

For right R-modules X and Y, Homg(X,Y’) denotes the set of all R-homomorphisms from
X toY and End(X) denotes the set of R-endomorphism of X. We refer the reader to [([3], [4],
[5], [15])] for more basic concepts and other notations.

In 1981 ([8]), A. Barnard introduced the concepts of multiplication modules. A right R-
module X is called a multiplication module, if for any submodule Y of X there exists an ideal [
of R such that

Y = XI. (1.2)

Moreover, He showed that distributive modules are characterized as modules for which every
finitely generated submodule is a multiplication module. In 1988, ([9]) Patrick F. Smith showed
that a right R-module X is a multiplication module if and only if Y = X (Y :z X) for all sub-
module Y of X. They also provided characterizations of multiplication modules over Noetherian
rings and multiplication modules over Artinian rings. Currently, there is a significant amount of
literature dedicated to the investigation of multiplication modules. (See [10], [1], [2], [14], [13]).
Recently, Anderson et al. in ([3], Comm. Alg. (2020)) introduced a generalization of multi-
plication modules called S-multiplication modules, by using a multiplicatively closed subset .S
of aring R. A nonempty subset S of aring R is said to be a multiplicatively closed subset (briefly,
m.c.s.) of aring R ([7]), if it contains multiplicative identity and closed under multiplication.
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A right R-module X is said to be S-multiplication module, if for each submodule Y of X
there exist s € S and an ideal I of R such that

YsC XICY. (1.3)

In this article, we shall examine the S-multiplication module and continue the work of An-
derson et al. ([3]). We give some characterizations of S-multiplication modules (Proposition
2.3, Theorem 2.19) and show that the concept of S- multiplication module, simple module, and
multiplication module are equivalent in a torsion-free divisible module over an integral domain
(Theorem 2.13). Moreover, we study S-prime submodules of S-multiplication modules (Theo-
rem 2.20, Proposition 2.24, and Corollary 2.25). Finally, we provide a characterization of a finite
(external) sum of modules {M;}%_| such that M; is faithful for some j € {1,...,k} (Theorem
2.28).

2 S-multiplication modules

Let S be a m.c.s. of aring R. In this section, we provide an example and some properties of
S-multiplication modules.

Definition 2.1. ([3], Anderson, 2020) Suppose that X is a right R-module and S is a m.c.s. of a
ring R. Then X is called an S-multiplication module, if for each submodule Y of X there exist
s € Sandanideal I of RsuchthatYs C XI CY.

An ideal A of R is an S-multiplication ideal, if for every ideal B of A there exist s € S and
ideal I of R such that Bs C AI C B.

From now, we assume that 0 ¢ S. One can see that for every R-module X if SN Anng(X) #
() then X is trivially an S-multiplication module. Moreover, by the definition, we see that every
multiplication module is an S-multiplication module, but the converse is not true in general. As
shown the following example.

Example 2.2. Consider X = Z, x Z, as aright Z-module. Let S = {2" | n € Ny}, where Ny is
the set of all non-negative integers. Then

(i) X is an S—multiplication module.

(i) X is not a multiplication module.

Proof. (i)Let N <p X.Choose2 € S. Since 2Z is anideal of Zand 0 = N2 = X(2Z) C N,
X is an S-multiplication module.

(i1) One can show that submodule Z, x 0 of X can not written as the form X A for all ideal A of
Z. Suppose to the contrary that Z, x 0 = X A. Since A is an ideal of Z, A can be written of the
form nZ for some n € Ny.

Case 1. n is an even number. Let (m;,m;) € X and r € nZ. Since n is an even number,
(m1, m2)r = (myr,mar) = (0,0). Then XA = 0.

Case 2. n is a odd number. Let (m;,my) € X. Since n is a odd number, (m;,my) =
(min,man) = (my1,my)n € XA. Then X = X A.

From Case 1. and Case 2., this contradict to the fact that Z, x 0 # X A. O

Proposition 2.3. Let M be a right R-module. Then The following are equivalences:
(i) M is an S-multiplication module.
(ii) For any submodule H of M there exists s € S such that Hs C M(H : M) C H.
(iii) For any submodules H and L of M such that (H : M) = (L : M) there exist s,t € S such
that Hs C L and Lt C H.

Proof. (i) < (ii) Itis easy.

(ii) = (iii) Let H and L be submodules of M such that (H : M) = (L : M). By assumption,
there exist s,t € S which Hs C M(H :g M) C H and Lt C M(L : M) C L. Therefore
HsCM(H:M)=M(L:M)C L. Similarly, Lt C M(L: M)=M(H: M) C H.
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(iil) = (i) Let H <g M and L := M(H : M). Since L C H, (L : M) C (H : M).
Conversely, for r € (H : M), we get Mr C M(H : M) = Land hencer € (L: M).

Therefore (H : M) = (L : M). By assumption, there exist s,¢ € S which Hs C L and Lt C H.
Since M(H : M) C Handthus Hs C L = M(H : M) C H. O

Proposition 2.4. Suppose that X is an R-module and R’ a subring of R. If S is m.c.s. of R' and
X is an S-multiplication R'-module, then X is an S-multiplication R-module.

Proof. Let N be a submodule of R-module X. Hence N is a submodule of Xg/. By as-
sumption, Ns C XIp C N for some ideal I, < R and element s € S since X R 18
an S-multiplication module. Consider I = RIy/. Observe that I is an ideal of R such that
Ns C XIpy = (XR)I = X(RIy) C N. Therefore, X is an S-multiplication R-module. O

Recall from ([5]), a submodule Y <g X is called a pure submodule of X if for each A < R,
wehave YA =Y N XA.

Proposition 2.5. Every pure submodule of an S-multiplication module is an S-multiplication
module.

Proof. Let X be an S-multiplication module and N a pure submodule of X. Let L <p N. By
assumption, Lt C X1 C L forsome ¢ € S and I < R since X is an S-multiplication module.
But IV is a pure submodule of X, NI = NNXI C NNL=L. Letlt € Lt. Since L < N,
lte Nt C N.So Lt C Nn(Lt)andthus NN (Lt) = Lt. Then Lt = NN (Lt) C NN (XI) =
NI C L. Therefore, N is an S-multiplication module. O

Corollary 2.6. Every direct summand of an S-multiplication module is S-multiplication.

Proposition 2.7. Let X be an S-multiplication module and 7 a canonical projection map from
R to R/Anng(X). Suppose that E is a right ideal of R such that Annr(X) C E and 7(FE) is
an essential right ideal of 7(R). Then for any submodule H of X such that XE N H = 0, we
have Hs = 0 for some s € S.

Proof.  Suppose that X is an S-multiplication module. Let A := Anng(X) and F aright ideal
of Rsuchthat A C E. Let H be a submodule of X suchthat XENH =0. Thus Hs C XF C H
for some ideal F'of Rand s € S. Then X(ENF) C XENXF C XEN H = 0 and we have
ENF C A Thust(ENF)=0. Letx € n(E) Nn(F). Then x = n(e) = n(f) for some e € F
and f € F. Sincexz =7(e) =e+ Aandz =n(f) = f+ A, f —e € A. But A C E, we have
f=f—e+ec E Thusz = n(f) € 7(ENF). We have 7(E) N7(F) C n(ENF) = 0.
So n(E) N w(F) = 0. Since 7(F) is an essential ideal in 7(R), 7(F) = 0. It follows that
FC A= Annp(X).So XF =0.But Hs C XF =0, Hs = 0. O

Lemma 2.8. Every R-module Z is faithful Endg(Z)-module.

Proof.  Assume that Z is a right R-module. Define Endr(Z) x Z — Z by ¢ - z = ¢(z) for
all z € Z and ¢ € Endgr(Z). Hence Z is a left Endg(Z)-module. Let ¢ € Anngng,(z)(Z).
Then ¢Z = 0 and we have ¢ = 0. S0 Anngyq,(z)(Z) = 0. Hence Z is a left faithful EndR(Z)
module. |

Proposition 2.9. Every right S-multiplication R-module is a left faithful S-multiplication End g (X)-
module.

Proof. Let R’ denote the Endi(X) and N be a submodule of an R'-module X. Forr € R, we
define ¢, : X — X by ¢,.(m) = mr for all m € X. Obviously, we got ¢, € R'. Letr € R and
n € N. Since nr = ¢,(n) = p,.-n € N, N is a submodule of R-module X. By assumption, there
exist I < R and element s € S such that Ns C XTI C N. Let ®; = {¢, € R’ | r € I}. Hence
R'®;R' < R’ and we have R’'®/R’ - X = (R'P;R")X = R'®;(R'(X)) = (R'®;)(X) =
R(®1(X)) =
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RI(XI)= (R (X)) =XI.SoNsC XI=R®/R' -X CN. Then X is an S-multiplication
module over R’ and by Lemma 2.8, we have X is a faithful S-multiplication Endg (X )-module.
]

Proposition 2.10. An R-module M is an S-multiplication module if and only if for every sub-

module N <p M, Ns C > Imgp, C N for some element s € S and ideal I < R.
acl

Proof. Let NV be submodule of an S-multiplication R-module M. Then there exist s € S and
an ideal I < R such that Ns C M I C R. For each a € I, define the map ¢, : M — M by m

ma. From the definition of S-multiplication module, it is enough to show that > Im¢y, = M.
acl
(©) Letz € Y Imyp,. Then x can be written as a finite sum of elements of Im¢y,, where a € I.
acl

k
That is, there exist & € Ny and finite set {aj,...,a;} of I such that z = _ z;, where each

i=1

x; € Imy,, foralli € {1,...,k}. Leti € {1,...,k}. Since x; € Img,,, there exist m; € M
k

such that z; = ¢4, (m;) = ma; € MI and hence z = > z; € M 1.
i=1
(2) The converse is similar. o

From now on until corollary 2.15, R is assume to be an integral domain.

Proposition 2.11. Let R be a ring and J be a non-zero ideal of R such that Jr an S-multiplication
ideal. For any p,v € Endg(J) if p ot =0, then o = 0 or v = 0.

Proof. Let ,¢) € Endgr(J) such that ¢ o ¢p = 0. Since Jp is an S-multiplication ideal,
o(J)r1 € JB C ¢(J) and 9 (J)rs € JC C 4(J) for some B,C < Rand r1,r, € S. Then
J(BC) = (JB)C C p(J)C = p(JC) C ¢(1(J)) = (pot)(J) =0 and thus J(BC) = 0. But
J # 0 and R is an integral domain. Therefore, either B = 0 or C' = 0.

If B =0. Since ¢(J)r; CJB =0, p(J)r; =0.Butry # 0, then ¢(J) =0s0 o =0.
Otherwise, if C = 0. Since ¢(J)r, C JC = 0, ¢(J)r, = 0. But r, # 0, then ¥»(J) = 0 so
¥ =0. o

Corollary 2.12. Let R a ring. For any p,v € Endg(Rg) if oo =0, then ¢ =0 or ¢ = 0.

Proof. By Proposition 2.11 and R is an S-multiplication module. a

Recall from ([15]), a right module X is said to be divisible, if for every nonzero divisorr € R
and every m € X, we have m = nr for some element n € X.

Moreover, ([16]) Let X be R-modules. The set of torsion element is T(X) := {m € X :
mr = 0 for some 0 # r € R}. Recall that an R-module X is said to be torsion-free if the torsion
subset T'(X) = 0, and X is called a forsion module if X =T (X).

Theorem 2.13. Let R be an integral domain and X an torsion-free divisible module. Then the
following are equivalent:

(i) X is an S-multiplication module.
(ii) X is a simple module.

(iii) X is a multiplication module.

Proof. (i) = (ii) Suppose that Y is a nonzero submodule of R-module X. Then Ys C
XI CY forsome I < R and element s € S since X is S-multiplication. Observe that I # 0.
Otherwise, we have Ys C XTI = 0. Lety € Y, ys € Ys = 0. Since s # 0 and ys = 0, this
implies that y € T'(X) = 0. Hence Y = O contradiction. Let m € X and a € I. Since X is
divisible, therefore there is m € X so that m = m’a. Hence m = m’a € XI C Y and hence
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m €Y. Wehave X C Y. So X is a simple module.
(il) = (iii) Obvious.
(iii) = (i) Obvious. ad

Proposition 2.14. Let X be a faithful module over R. If X is an S-multiplication module, each
Y <p X with SN Anng(Y) = @ is faithful.

Proof. Let X be a faithful module and Y be a nonzero submodule of X with SN Anng(Y) =
&. Since X is S-multiplication module, Ys C XJ C Y for some element s € S and ideal
J < R. But SN Anng(Y) = @, we have Y's # 0. Then XJ # 0, thatis J # 0. Letv € R
so that Yv = 0. Then XJv C Yv = 0. Since X is a faithful module, Jv = 0. But J # 0.
Therefore, we have v = 0. Hence Y is a faithful module. O

One can view multiplication modules as {1 }-multiplication modules and for each submodules
Nof X, {1} N Anng(N) = &. Then we got the following results.

Corollary 2.15 ([10]). Every nonzero submodule of faithful multiplication module is faithful.
In the next two propositions, R is considered to be a commutative ring.

Proposition 2.16. Let R be a ring and X a right R-module. If X is a faithful S-multiplication
torsion module then for any m € X, ms = 0 for some s € S.

Proof. Let X be a faithful S-multiplication torsion module and m € X. If m = 0, we can
choose 1 € S and m1 = 0. Next, suppose that 0 # m € X. Since X is torsion, there exists a
nonzero divisor ¢ € R such that mc¢ = 0. Since X is S-multiplication module, mRs C X1 C
mAR for some anideal ] < Rand s € S. Then XIc C mRec = 0 and hence X Ic = 0. Therefore
Ic = 0. But cis anonzero divisor, I = 0. So ms € mRs C XI = 0. Hence ms = 0. O

Proposition 2.17. Let X be a torsion-free R-module. If X is an (R\P)-multiplication module,
then X # X P for all prime ideal P of R.

Proof. Let X be an (R\ P)-multiplication module. Assume that X = XP. For0 # m € X,
mRs C XI C mR for some s ¢ P and some I < R. Then (mR)s C XI = (XP)I C XIP C
mRP C mP and thus ms = mp for some p € P. So m(s —p) = 0. But s — p = O since X is a
torsion-free module. Therefore, we have s = p € P. It is contradiction since s € (R\P). |

Recall from ([11]), a right R-module X is said to be S-Artinian module, if each family of
descending chain of submodules {N;};c; of X there exist s € S and a positive integer k such
that Nis C N, for each n > k. Note that the concept of S-Artinian module is a generalization
of Artinian module.

Theorem 2.18. Ler M be an S-multiplication right R-module. If R/Anng(M) is an S-Artinian
R-module then M is an S-Artinian module.

Proof. LetJ := Annp(M)andY; DY, 2 Y3 D ... DY, D ... be a descending chain of
submodules of a right R-module M. Since (Y; : M) 2 (Y2: M) D (Y3: M) D ...2 (Y, :
M) D ...is a descending chain of ideal of R containing Ann(M), (Y, : M)/T 2 (Y2: M)/T 2
(Ya: M)/ T2 ...2(Y,: M)/J D ...is a descending chain of ideal of R/J. But R/ is an
S-Artinian module, there exist s € S and a positive integer k such that (Y, : M)s/J C (Y, :
M)/ J forall n > k, and hence (Y}, : M)s C (Y, : M). Since M is an S-multiplication module,
there exists s’ € S such that Y;s' C M (Y : M). So, Ys's C M(Yy, : M)s C M(Y,, : M) CY,.
SoY,s's CY, foralln > k. O

a m

Theorem 2.19. Let Xy be a right module, R = {lo
a

]|m€XandaeR}andA:

0
mn m € X }. Then the following are equivalent:
0 0 8 q
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(i) R is the ring under matrix addition and matrix mutiplication.
(ii) A is the ideal of R'.

(iii) Xg is an S-multiplication module if and only if Ag/ is an S-multiplication right ideal of
R.

Proof. (i) Clear.
(ii) Clear.
0
(iii) (=) Suppose B < A. Define N := {n € X| 0 :)L € B}. It implies N <p X.
Therefore, Ns C XI C N for some ideal I < R and element s € S since X is right S-

multiplication module. Define C' = {

0 m
0 0
Since ms € Ns C XI, ms € X1 and thus ms = Zf’zlmlil fork e Nand m; € X,i5;, € I
0 ms 0 Zf—l mm k 0 mlil
S = = - = Zl:l =
0 0 0 0 0 0

Omlilml
0 0]1]0 4

‘0‘ x] lac Tandz € X}. Then C < R'. Letm € N. So
a

s € Bs.

0 m

forall [(1 <[ < k). But
0 0

|0 myl i my
Zl=1([o OHO i

AC. Since Zf:l [O ml] [Zl ml
!

) € AC. This implies that Bs C AC. Let Y°)_,

m

0 mm

0 01]1]0 =« 0 O

=30, [ ] and myi; € XI C N forall (1 <1<

0 ,
k) and hence SF |, myi; € N. Therefore 3, l ml] [ll ™| € B.So Bs C AC C B and

0 0]]0 4

hence A is an S-multiplication ideal of R.

(«<=) Suppose that A is an S-multiplication right ideal of R'. Let N <p X. Define
B = {lg 8} In € N}. So B < R and B C A. Since A is an S-multiplication right
ideal, we have Bs C AC C B for some ideal C < R and element s € S. Let I = {a €

R : the matrix @ m € Cforsomem € X}. Since C < R/, I < R. Choose n € N.
a

Therefore ne 0 n s € Bs C AC. Then 0 ns € AC and thus 0 ns =
0 00 0 o0

k 0 my T m/ k 0 myr; 0 Zk: mr; k
Yot [0 ollo Tll = 1 o ol=lo ! 10 .Sons =, mreXI.
Hence Ns C X1............. ().
Let z € XI. Then z = Y.F  myij for k € Nand m; € X,i; € I forall (1 < [ < k).
For ! € {1,2,...,n}, There is m; for each 4; such that U ml € C. Since 0 n(”)u € A,

i

ko [0 my| i omy |0 mug 0 Y, muis k .
S [0 O] lO ill] =30, [0 0 1 = [0 L E) € AC C B. Then Y ;_, myi; €
N and hence X1 C N.............. (#%).

From (x) and (xx), we have Ns C X1 C N, as desired. O

Recall from ([12]), a submodule @ <p X with (Q :g X) NS = & is said to be S-prime
submodule of X, if there is an s € S such that ma € Q implies as € (Q :g X) or ms € Q for
eacha € Rand m € X. Also I < R is said to be S-prime ideal, if it is an S-prime submodule
of the submodule Rp.
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Proposition 2.20. Let X be an S-multiplication R-module and @) be an S-prime submodule of
X. If K and L are submodules of X such that KN L C Q, then Ls C Q or Ks C @ for some
s €8.

Proof. Suppose @ is an S-prime submodule of X. Let K and L <p X suchthat K N L C Q.
Since () is an S-prime submodule of X, there exists s € S such that for eachr € Rand m € X,
mr € @ implies rs € (Q :g X) or ms € Q. Assume that Ls ;( Q. There exists m € L such that
ms € Lsbutms ¢ Q. Leta € (K :g X). Sincema € L(K :g X) CLNK C Q and Q is an
S-prime submodule of X, as € (Q :g X) or ms € Q. But ms ¢ Q, we have as € (Q :r X)
so thus (K : X)s C (Q : X). By assumption, there exists ¢ € S such that Kt C X(K :p X)
because X is an S-multiplication module. So

K(ts) = (Kt)s C X(K g X)s C X(Q :r X) C Q.

Hence Ks C ) where s =ts. O

Theorem 2.21. Let X be an S-multiplication module and Q) a submodule of X. Then Q is an
S-prime submodule of X if and only if (Q :g X) is an S-prime ideal of R.

Proof. By ([3], Proposition 4). m|

Proposition 2.22. Let S be multiplicatively closed subset of R and ) an ideal of R such that
QNS =a. Then Q is an S-prime ideal of R if and only if there exists s € S such that for each
ideal I, J of Rwith IJ C Q, so either Is C Q or Js C Q.

Proof. By ([12], Corollary 2.6). O

Now, we will provided proposition 2.22 on the version of submodules of M. First, we will
start with the definition of product of two submodules.

Definition 2.23 ([1]). Let X be an R—module and K, L submodules of X. The product of K
and L is defined as KL = X (K :g X)(L :g X).

If R is a commutative ring, one can show that KL = LK. In the next two proposition, R is
considered to be commutative.

Proposition 2.24. Let Z be an S-multiplication module over R and @) an S-prime submodule of
Z.If K,L < Z such that KL C Q, then Ks C Q or Ls C @ for some element s € S.

Proof.  Suppose that KL C Q. By assumption, Kt C Z(K : Z) and Lu C Z(L : Z) for some
t,u € S. Since @ is an S-prime submodule of Z and by Theorem 2.21, (Q : Z) is an S-prime
ideal of R. Since KL=Z(K : Z)(L: Z) CQ, (K : Z)(L: Z) C (Q : Z). By ([12], Corollary
2.6),(K:2Z)s C(Q:Z)or(L:Z)s C(Q: Z)forsomes’ €8

Case 1. If (K : Z)s' C (Q: Z). Since Kt C Z(K : Z), Kts C Z(K : Z)s C Z(Q: Z) C Q.
Case 2. If (L : Z)s' C (Q: Z). Since Lu C Z(L: Z), Lus C Z(L: Z)s C Z(Q: Z) C Q.
From Ca§e 1. and /Case 2., we can choose s = s tu and Ks = Ks'tu = Kts C Qu C Qor
Ls=Lstu= LustC QtCQ. O

Corollary 2.25. Let X be an S-multiplication module and Q) be a submodule of X satisfying
(Q:r X)NS = @. If there is an u € S such that any submodules L and N of X with LN C Q,
so either Lu C Q or Nu C @, then Q is an S-prime submodule of X.

Proof. Let B and C be an ideals of R such that BC C (Q : X). Since (XB)(XC) =
X(BC) C X(Q : X) C Q. By assumption, there exist u € S such that (XB)u C Q or
(XChu CQ.
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Case i). (XB)u C Q. Then Bu C (Q : X).
Case ii). (XC)u C Q. Then Cu C (Q : X).
By proposition 2.22, we have (Q :zg X) is an S-prime ideal of R. By Theorem 2.21, @ is an
S-prime submodule of X. m]

Now, we prove that the converse of Corollary 2.25 also hold if S satisfy maximal multiple
condition. Recall from ([3]), a m.c.s. S of R is said to satisfy the maximal multiple condition, if
there exists an s € S such that¢ | s foreach ¢ € S.

Corollary 2.26. Let S be am.c.s. of R satisfy maximal multiple condition and X an S-multiplication
module. If Q) is an S-prime submodule of X, then there exists s € S such that for all submodule
Land N of X with LN C Q, so either Ls C Q or Ns C Q.

Proof. LetS C R witht¢ € S such that s|t forall s € S and @ is an S-prime submodule of X.
Suppose L and N are submodules of R-module X with LN C ). By Proposition 2.24, Ls C Q
or Ns' C Q for some s’ € S. By maximally element of ¢, there exist v € R such that ¢ = s'v .
Then Lt = Ls'v C Qu C Qor Nt = Ns'v C Qu C Q. a

Recall from ([6]), a right R-module X is called codomain, whenever Wr(X) = 0, where
Wr(X) ={c€ R| X 5 X is not surjective }.

Theorem 2.27. Suppose X is a codomain. Then X is an S-multiplication module if and only if
SN Anng(N) # & for all nonzero proper submodule N of X.

Proof. (=) Suppose X is an S-multiplication module. Let 0 # N be a proper submodule
of X. Since X is S-multiplication module, Ns C XTI C N for some element s € S and I < R.
We have I C Wg(X). Since X is a codomain, Wr(X) = 0. So I = 0 and thus Ns = 0. Then
s € Anng(N) and hence s € SN Anng(N).

(«<=) Clear. O

k
Theorem 2.28. Let { X, }¥_, be a finite set of a right R-modules and X = H X;.

i=I
If X, is a faithful module for some i € {1,2,...,k}, then X is an S-multiplication module if and
only if it satisfies the following condition:

(i) X; is an S-multiplication module.
(ii) There exist s € S and I < R so that X;s C X;I with I C Anng(X;) for all j # i.
(iii) There exist an elementst € S witht € Anng(X;) for all j # i.

Proof. Let X; be a faithful module for some 7.

(=) Assuming that X is S-multiplication module.

(i) Let H be a submodules of X;. Since (0 x ... x H x ... x 0) is a submodule of X,
Ox...xHx...x0)sCXIC(0x...x Hx...x0)forsome I <R andelements € S.
Then Hs C (X;)I C H. So X; is S—multiplication module.

(i) Since x; := (0 X ... x X; x ... x 0) is a submodule of X, therefore x;s C XI C x; for
some element s € S and I < R. Then X;s C (X;)I C X, and X;I = O for all j # 7. Then
I C Anng(X;) forall j # i.

(iii) Consider H = H X. Since H is a submodule of X, it follow that Ht C XJ C H for

i
some element ¢t € S and J < R. Then X;J = 0. Since X; is faithful module, J = O and thus
X;t C X;J =0forall j #i. So X;t =0and hence t € Anng(X;).

(«<=) Let H be a submodule of X and 7; : X — X a projection map from X to X; for
all j € {1,2,...,k}. Set H; = n;j(H) forall j € {1,2,...,k}. Since X, is an S-multiplication,
this implies that H;r C X;A C H; for some A < R and element r € S. By i) there exists
t € Anng(X;) for all j # 4. Then



104

S. Baupradist and K. Hukaew

and X; At C X;t = 0. So

Hrt COx...xHirtx..x0) C (0x..x X;Atx...x0) = XAt C (0x..x H; x...x0) C H.

Hence X is an S-multiplication module. |

References

(1]

(2]

(3]

(4]
(3]
(6]

(7]
(8]
(9]
[10]

[11]

[12]

[13]
[14]
[15]

[16]

R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci., 27, 1715-1724
(2003).

D. D. Anderson and Y. Al-Shaniafi, Multiplication modules and the ideal, Comm. Algebra, 30, 3383-3390
(2002).

D. D. Anderson, T. Arabaci, U Tekir and S. Koc., On S -multiplication modules, Comm. Algebra, 48(8),
3398-3407 (2020).

D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra, 30(9), 4407-4416 (2002).
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag (1974).

H. Ansari-Toroghy and F. Farshadifar, Comultiplication modules and related results, Honam Math. J.,
30(1), 91-99 (2008).

Michael Atiyah, Introduction to commutative algebra, CRC Press, (2018).
A.Barnard, Multiplication modules, J. Algebra, 71(1), 174-178 (1981).
Z.A. El-Bast and P.P. Smith, Multiplication modules, Comm. Algebra, 16(4), 755-779 (1988).

D. Lee and H. Lee, Some Remarks on Faithful Multiplication Modules, J. Chungcheong Math. Soc., 6(1),
131-137 (1993).

M. Ozen, O. A. Naji, U Tekir,and K. P. Shum, Characterization Theorems of S-Artinian Modules, C. R.
Acad. Bulgare Sci., 74(4), 496-505 (2021).

E. S. Sevim, T. Arabaci, U Tekir,. and S. Koc,, On S-prime submodules, Turkish J. Math., 43(2), 1036-
1046 (2019).

P. F. Smith, Fully Invariant Multiplication Modules, Palest. J. Math., 4, 462—470 (2015).
A. A. Tuganbaev, Multiplication modules and ideals, J. Math. Sci., 136(4), 4116-4130 (2006).

R. Wisbauer, Foundations of Module Theory and Ring Theory, Vol. 3 of Algebra, Logic and Applications,
Gordon and Breach Science, (1991).

E. Yldez, U. Tekir and S. Kog, On S-Comultiplication Modules, Turkish J. Math., 46(5), 2034-2046
(2022)

Author information

S. Baupradist and K. Hukaew, Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, Bangkok 10330, Thailand.

E-mail: samruam.b@chula.ac.th, fairbwn@gmail.com



	1 Introduction
	2 S-multiplication modules

