MORE CHARACTERIZATIONS OF S-MULTIPLICATION MODULES

S. Baupradist and K. Hukaew

Communicated by Manoj Kumar Patel

Dedicated to Prof. B. M. Pandeya on his 78th birthday

MSC 2020 Classification: 13A15, 16P40.

Keywords and phrases: multiplicatively closed subset, S-prime submodule, multiplication module, S-multiplication module.

Abstract Recently, Anderson et al. in ([3], Comm. Alg. (2020)) introduced a generalization of multiplication modules called S-multiplication modules. In this article, the properties of S-prime submodules of S-multiplication modules are studied. Furthermore, we show that the concepts of simple modules, multiplication modules, and S-multiplication modules are equivalent in a torsion-free divisible module over an integral domain. Finally, we construct ring of matrices R' whose entries in a module M and demonstrate that M is S-multiplication R-module is equivalent to the existence of a specific ideal A of rings R' is S-multiplication ideal.

1 Introduction

Throughout the article, we shall assume, unless otherwise stated, that all rings R are regarded to be associative rings with identity and all modules are assumed to be nonzero unital right R-modules. A submodule Y of R-module X is denoted by $Y \leq_R X$ and an ideal I of R is denoted by $I \leq R$.

Let X be a right R-module. The annihilator of X, denoted by $Ann_R(X)$, is

$$Ann_{R}(X) = \{ r \in R \mid Xr = 0 \}.$$
(1.1)

If $Ann_R(X) = 0$, then X is called a *faithful module*. For any submodule Y of X, $Ann_R(X/Y)$ will be denoted by $(Y :_R X)$. Therefore $(Y :_R X) = \{r \in R \mid Xr \subseteq Y\}$ and may be written as (Y : X) if ring R is understood.

For right *R*-modules *X* and *Y*, $Hom_R(X, Y)$ denotes the set of all *R*-homomorphisms from *X* to *Y* and $End_R(X)$ denotes the set of *R*-endomorphism of *X*. We refer the reader to [([3], [4], [5], [15])] for more basic concepts and other notations.

In 1981 ([8]), A. Barnard introduced the concepts of multiplication modules. A right R-module X is called *a multiplication module*, if for any submodule Y of X there exists an ideal I of R such that

$$Y = XI. \tag{1.2}$$

Moreover, He showed that distributive modules are characterized as modules for which every finitely generated submodule is a multiplication module. In 1988, ([9]) Patrick F. Smith showed that a right *R*-module *X* is a multiplication module if and only if $Y = X(Y :_R X)$ for all submodule *Y* of *X*. They also provided characterizations of multiplication modules over Noetherian rings and multiplication modules over Artinian rings. Currently, there is a significant amount of literature dedicated to the investigation of multiplication modules. (See [10], [1], [2], [14], [13]).

Recently, Anderson et al. in ([3], Comm. Alg. (2020)) introduced a generalization of multiplication modules called S-multiplication modules, by using a multiplicatively closed subset S of a ring R. A nonempty subset S of a ring R is said to be a *multiplicatively closed subset* (briefly, m.c.s.) of a ring R ([7]), if it contains multiplicative identity and closed under multiplication.

A right *R*-module *X* is said to be *S*-multiplication module, if for each submodule *Y* of *X* there exist $s \in S$ and an ideal *I* of *R* such that

$$Ys \subseteq XI \subseteq Y. \tag{1.3}$$

In this article, we shall examine the S-multiplication module and continue the work of Anderson et al. ([3]). We give some characterizations of S-multiplication modules (Proposition 2.3, Theorem 2.19) and show that the concept of S- multiplication module, simple module, and multiplication module are equivalent in a torsion-free divisible module over an integral domain (Theorem 2.13). Moreover, we study S-prime submodules of S-multiplication modules (Theorem 2.20, Proposition 2.24, and Corollary 2.25). Finally, we provide a characterization of a finite (external) sum of modules $\{M_i\}_{i=1}^k$ such that M_j is faithful for some $j \in \{1, \ldots, k\}$ (Theorem 2.28).

2 S-multiplication modules

Let S be a m.c.s. of a ring R. In this section, we provide an example and some properties of S-multiplication modules.

Definition 2.1. ([3], Anderson, 2020) Suppose that X is a right R-module and S is a m.c.s. of a ring R. Then X is called an S-multiplication module, if for each submodule Y of X there exist $s \in S$ and an ideal I of R such that $Ys \subseteq XI \subseteq Y$.

An ideal A of R is an S-multiplication ideal, if for every ideal B of A there exist $s \in S$ and ideal I of R such that $Bs \subseteq AI \subseteq B$.

From now, we assume that $0 \notin S$. One can see that for every *R*-module *X* if $S \cap Ann_R(X) \neq \emptyset$ then *X* is trivially an *S*-multiplication module. Moreover, by the definition, we see that every multiplication module is an *S*-multiplication module, but the converse is not true in general. As shown the following example.

Example 2.2. Consider $X = \mathbb{Z}_2 \times \mathbb{Z}_2$ as a right \mathbb{Z} -module. Let $S = \{2^n \mid n \in \mathbb{N}_0\}$, where \mathbb{N}_0 is the set of all non-negative integers. Then

- (i) X is an S-multiplication module.
- (ii) X is not a multiplication module.

Proof. (i) Let $N \leq_R X$. Choose $2 \in S$. Since $2\mathbb{Z}$ is an ideal of \mathbb{Z} and $0 = N2 = X(2\mathbb{Z}) \subseteq N$, X is an S-multiplication module.

(ii) One can show that submodule $\mathbb{Z}_2 \times 0$ of X can not written as the form XA for all ideal A of \mathbb{Z} . Suppose to the contrary that $\mathbb{Z}_2 \times 0 = XA$. Since A is an ideal of \mathbb{Z} , A can be written of the form $n\mathbb{Z}$ for some $n \in \mathbb{N}_0$.

Case 1. *n* is an even number. Let $(m_1, m_2) \in X$ and $r \in n\mathbb{Z}$. Since *n* is an even number, $(m_1, m_2)r = (m_1r, m_2r) = (0, 0)$. Then XA = 0.

Case 2. *n* is a odd number. Let $(m_1, m_2) \in X$. Since *n* is a odd number, $(m_1, m_2) = (m_1, m_2 n) = (m_1, m_2) n \in XA$. Then X = XA.

From Case 1. and Case 2., this contradict to the fact that $\mathbb{Z}_2 \times 0 \neq XA$.

Proposition 2.3. Let M be a right R-module. Then The following are equivalences:

- (i) M is an S-multiplication module.
- (ii) For any submodule H of M there exists $s \in S$ such that $Hs \subseteq M(H:M) \subseteq H$.
- (iii) For any submodules H and L of M such that (H : M) = (L : M) there exist $s, t \in S$ such that $Hs \subseteq L$ and $Lt \subseteq H$.

Proof. (i) \iff (ii) It is easy.

(ii) \Longrightarrow (iii) Let H and L be submodules of M such that (H : M) = (L : M). By assumption, there exist $s, t \in S$ which $Hs \subseteq M(H :_R M) \subseteq H$ and $Lt \subseteq M(L : M) \subseteq L$. Therefore $Hs \subseteq M(H : M) = M(L : M) \subseteq L$. Similarly, $Lt \subseteq M(L : M) = M(H : M) \subseteq H$.

(iii) \Longrightarrow (ii) Let $H \leq_R M$ and L := M(H : M). Since $L \subseteq H$, $(L : M) \subseteq (H : M)$. Conversely, for $r \in (H : M)$, we get $Mr \subseteq M(H : M) = L$ and hence $r \in (L : M)$. Therefore (H : M) = (L : M). By assumption, there exist $s, t \in S$ which $Hs \subseteq L$ and $Lt \subseteq H$. Since $M(H : M) \subseteq H$ and thus $Hs \subseteq L = M(H : M) \subseteq H$.

Proposition 2.4. Suppose that X is an R-module and R' a subring of R. If S is m.c.s. of R' and X is an S-multiplication R'-module, then X is an S-multiplication R-module.

Proof. Let N be a submodule of R-module X. Hence N is a submodule of $X_{R'}$. By assumption, $Ns \subseteq XI_{R'} \subseteq N$ for some ideal $I_{R'} \leq R'$ and element $s \in S$ since $X_{R'}$ is an S-multiplication module. Consider $I = RI_{R'}$. Observe that I is an ideal of R such that $Ns \subseteq XI_{R'} = (XR)I_{R'} = X(RI_{R'}) \subseteq N$. Therefore, X is an S-multiplication R-module. \Box

Recall from ([5]), a submodule $Y \leq_R X$ is called a *pure submodule* of X if for each $A \leq R$, we have $YA = Y \cap XA$.

Proposition 2.5. Every pure submodule of an S-multiplication module is an S-multiplication module.

Proof. Let X be an S-multiplication module and N a pure submodule of X. Let $L \leq_R N$. By assumption, $Lt \subseteq XI \subseteq L$ for some $t \in S$ and $I \leq R$ since X is an S-multiplication module. But N is a pure submodule of X, $NI = N \cap XI \subseteq N \cap L = L$. Let $lt \in Lt$. Since $L \leq_R N$, $lt \in Nt \subseteq N$. So $Lt \subseteq N \cap (Lt)$ and thus $N \cap (Lt) = Lt$. Then $Lt = N \cap (Lt) \subseteq N \cap (XI) = NI \subseteq L$. Therefore, N is an S-multiplication module.

Corollary 2.6. Every direct summand of an S-multiplication module is S-multiplication.

Proposition 2.7. Let X be an S-multiplication module and π a canonical projection map from R to $R/Ann_R(X)$. Suppose that E is a right ideal of R such that $Ann_R(X) \subseteq E$ and $\pi(E)$ is an essential right ideal of $\pi(R)$. Then for any submodule H of X such that $XE \cap H = 0$, we have Hs = 0 for some $s \in S$.

Proof. Suppose that X is an S-multiplication module. Let $A := Ann_R(X)$ and E a right ideal of R such that $A \subseteq E$. Let H be a submodule of X such that $XE \cap H = 0$. Thus $Hs \subseteq XF \subseteq H$ for some ideal F of R and $s \in S$. Then $X(E \cap F) \subseteq XE \cap XF \subseteq XE \cap H = 0$ and we have $E \cap F \subseteq A$. Thus $\pi(E \cap F) = \overline{0}$. Let $x \in \pi(E) \cap \pi(F)$. Then $x = \pi(e) = \pi(f)$ for some $e \in E$ and $f \in F$. Since $x = \pi(e) = e + A$ and $x = \pi(f) = f + A$, $f - e \in A$. But $A \subseteq E$, we have $f = f - e + e \in E$. Thus $x = \pi(f) \in \pi(E \cap F)$. We have $\pi(E) \cap \pi(F) \subseteq \pi(E \cap F) = \overline{0}$. So $\pi(E) \cap \pi(F) = \overline{0}$. Since $\pi(E)$ is an essential ideal in $\pi(R)$, $\pi(F) = \overline{0}$. It follows that $F \subseteq A = Ann_R(X)$. So XF = 0. But $Hs \subseteq XF = 0$, Hs = 0.

Lemma 2.8. Every *R*-module *Z* is faithful $\operatorname{End}_R(Z)$ -module.

Proof. Assume that Z is a right R-module. Define $\operatorname{End}_R(Z) \times Z \to Z$ by $\varphi \cdot z = \varphi(z)$ for all $z \in Z$ and $\varphi \in \operatorname{End}_R(Z)$. Hence Z is a left $\operatorname{End}_R(Z)$ -module. Let $\varphi \in \operatorname{Ann}_{\operatorname{End}_R(Z)}(Z)$. Then $\varphi Z = 0$ and we have $\varphi = 0$. So $\operatorname{Ann}_{\operatorname{End}_R(Z)}(Z) = 0$. Hence Z is a left faithful $\operatorname{End}_R(Z)$ -module.

Proposition 2.9. Every right S-multiplication R-module is a left faithful S-multiplication $\text{End}_R(X)$ -module.

Proof. Let \mathcal{R}' denote the $\operatorname{End}_R(X)$ and N be a submodule of an \mathcal{R}' -module X. For $r \in R$, we define $\varphi_r : X \to X$ by $\varphi_r(m) = mr$ for all $m \in X$. Obviously, we got $\varphi_r \in \mathcal{R}'$. Let $r \in R$ and $n \in N$. Since $nr = \varphi_r(n) = \varphi_r \cdot n \in N$, N is a submodule of R-module X. By assumption, there exist $I \leq R$ and element $s \in S$ such that $Ns \subseteq XI \subseteq N$. Let $\Phi_I = \{\varphi_r \in \mathcal{R}' \mid r \in I\}$. Hence $\mathcal{R}'\Phi_I\mathcal{R}' \leq \mathcal{R}'$ and we have $\mathcal{R}'\Phi_I\mathcal{R}' \cdot X = (\mathcal{R}'\Phi_I\mathcal{R}')X = \mathcal{R}'\Phi_I(\mathcal{R}'(X)) = (\mathcal{R}'\Phi_I)(X) = \mathcal{R}'(\Phi_I(X)) =$

 $\mathcal{R}'(XI) = (\mathcal{R}'(X))I = XI$. So $Ns \subseteq XI = \mathcal{R}' \Phi_I \mathcal{R}' \cdot X \subseteq N$. Then X is an S-multiplication module over \mathcal{R}' and by Lemma 2.8, we have X is a faithful S-multiplication $\operatorname{End}_R(X)$ -module.

Proposition 2.10. An *R*-module *M* is an *S*-multiplication module if and only if for every submodule $N \leq_R M$, $Ns \subseteq \sum_{a \in I} Im \varphi_a \subseteq N$ for some element $s \in S$ and ideal $I \leq R$.

Proof. Let N be submodule of an S-multiplication R-module M. Then there exist $s \in S$ and an ideal $I \leq R$ such that $Ns \subseteq MI \subseteq R$. For each $a \in I$, define the map $\varphi_a : M \to M$ by $m \mapsto$ ma. From the definition of S-multiplication module, it is enough to show that $\sum_{a \in I} \text{Im}\varphi_a = MI$.

 (\subseteq) Let $x \in \sum_{a \in I} \operatorname{Im} \varphi_a$. Then x can be written as a finite sum of elements of $\operatorname{Im} \varphi_a$, where $a \in I$.

That is, there exist $k \in \mathbb{N}_0$ and finite set $\{a_1, \ldots, a_k\}$ of I such that $x = \sum_{i=1}^{k} x_i$, where each $x_i \in \operatorname{Im} \varphi_{a_i}$ for all $i \in \{1, \ldots, k\}$. Let $i \in \{1, \ldots, k\}$. Since $x_i \in \operatorname{Im} \varphi_{a_i}$, there exist $m_i \in M$ such that $x_i = \varphi_{a_i}(m_i) = m_i a_i \in MI$ and hence $x = \sum_{i=1}^k x_i \in MI$. (\supseteq) The converse is similar. Π

From now on until corollary 2.15, R is assume to be an integral domain.

Proposition 2.11. Let R be a ring and J be a non-zero ideal of R such that J_R an S-multiplication *ideal.* For any $\varphi, \psi \in \text{End}_R(J)$ if $\varphi \circ \psi = 0$, then $\varphi = 0$ or $\psi = 0$.

Proof. Let $\varphi, \psi \in \text{End}_R(J)$ such that $\varphi \circ \psi = 0$. Since J_R is an S-multiplication ideal, $\varphi(J)r_1 \subseteq JB \subseteq \varphi(J)$ and $\psi(J)r_2 \subseteq JC \subseteq \psi(J)$ for some $B, C \leq R$ and $r_1, r_2 \in S$. Then $J(BC) = (JB)C \subseteq \varphi(J)C = \varphi(JC) \subseteq \varphi(\psi(J)) = (\varphi \circ \psi)(J) = 0$ and thus J(BC) = 0. But $J \neq 0$ and R is an integral domain. Therefore, either B = 0 or C = 0. If B = 0. Since $\varphi(J)r_1 \subseteq JB = 0$, $\varphi(J)r_1 = 0$. But $r_1 \neq 0$, then $\varphi(J) = 0$ so $\varphi = 0$. Otherwise, if C = 0. Since $\psi(J)r_2 \subseteq JC = 0$, $\psi(J)r_2 = 0$. But $r_2 \neq 0$, then $\psi(J) = 0$ so $\psi = 0.$

Corollary 2.12. Let R a ring. For any $\varphi, \psi \in \text{End}_R(R_R)$ if $\varphi \circ \psi = 0$, then $\varphi = 0$ or $\psi = 0$.

By Proposition 2.11 and R_R is an S-multiplication module. **Proof.**

Recall from ([15]), a right module X is said to be *divisible*, if for every nonzero divisor $r \in R$ and every $m \in X$, we have m = nr for some element $n \in X$.

Moreover, ([16]) Let X be R-modules. The set of torsion element is $T(X) := \{m \in X :$ mr = 0 for some $0 \neq r \in R$. Recall that an *R*-module X is said to be *torsion-free* if the torsion subset T(X) = 0, and X is called a *torsion module* if X = T(X).

Theorem 2.13. Let R be an integral domain and X an torsion-free divisible module. Then the following are equivalent:

- (i) X is an S-multiplication module.
- (ii) X is a simple module.
- (iii) X is a multiplication module.

(i) \implies (ii) Suppose that Y is a nonzero submodule of R-module X. Then $Ys \subseteq$ Proof. $XI \subseteq Y$ for some $I \leq R$ and element $s \in S$ since X is S-multiplication. Observe that $I \neq 0$. Otherwise, we have $Ys \subseteq XI = 0$. Let $y \in Y$, $ys \in Ys = 0$. Since $s \neq 0$ and ys = 0, this implies that $y \in T(X) = 0$. Hence Y = 0 contradiction. Let $m \in X$ and $a \in I$. Since X is divisible, therefore there is $m' \in X$ so that m = m'a. Hence $m = m'a \in XI \subseteq Y$ and hence

Π

 $m \in Y$. We have $X \subseteq Y$. So X is a simple module. (ii) \Longrightarrow (iii) Obvious. (iii) \Longrightarrow (i) Obvious.

Proposition 2.14. Let X be a faithful module over R. If X is an S-multiplication module, each $Y \leq_R X$ with $S \cap Ann_R(Y) = \emptyset$ is faithful.

Proof. Let X be a faithful module and Y be a nonzero submodule of X with $S \cap Ann_R(Y) = \emptyset$. Since X is S-multiplication module, $Ys \subseteq XJ \subseteq Y$ for some element $s \in S$ and ideal $J \leq R$. But $S \cap Ann_R(Y) = \emptyset$, we have $Ys \neq 0$. Then $XJ \neq 0$, that is $J \neq 0$. Let $v \in R$ so that Yv = 0. Then $XJv \subseteq Yv = 0$. Since X is a faithful module, Jv = 0. But $J \neq 0$. Therefore, we have v = 0. Hence Y is a faithful module. \Box

One can view multiplication modules as $\{1\}$ -multiplication modules and for each submodules N of X, $\{1\} \cap Ann_R(N) = \emptyset$. Then we got the following results.

Corollary 2.15 ([10]). Every nonzero submodule of faithful multiplication module is faithful.

In the next two propositions, R is considered to be a commutative ring.

Proposition 2.16. Let R be a ring and X a right R-module. If X is a faithful S-multiplication torsion module then for any $m \in X$, ms = 0 for some $s \in S$.

Proof. Let X be a faithful S-multiplication torsion module and $m \in X$. If m = 0, we can choose $1 \in S$ and m1 = 0. Next, suppose that $0 \neq m \in X$. Since X is torsion, there exists a nonzero divisor $c \in R$ such that mc = 0. Since X is S-multiplication module, $mRs \subseteq XI \subseteq mR$ for some an ideal $I \leq R$ and $s \in S$. Then $XIc \subseteq mRc = 0$ and hence XIc = 0. Therefore Ic = 0. But c is a nonzero divisor, I = 0. So $ms \in mRs \subseteq XI = 0$. Hence ms = 0. \Box

Proposition 2.17. Let X be a torsion-free R-module. If X is an $(R \setminus P)$ -multiplication module, then $X \neq XP$ for all prime ideal P of R.

Proof. Let X be an $(R \setminus P)$ -multiplication module. Assume that X = XP. For $0 \neq m \in X$, $mRs \subseteq XI \subseteq mR$ for some $s \notin P$ and some $I \leq R$. Then $(mR)s \subseteq XI = (XP)I \subseteq XIP \subseteq mRP \subseteq mP$ and thus ms = mp for some $p \in P$. So m(s - p) = 0. But s - p = 0 since X is a torsion-free module. Therefore, we have $s = p \in P$. It is contradiction since $s \in (R \setminus P)$. \Box

Recall from ([11]), a right *R*-module *X* is said to be *S*-Artinian module, if each family of descending chain of submodules $\{N_i\}_{i \in I}$ of *X* there exist $s \in S$ and a positive integer *k* such that $N_k s \subseteq N_n$ for each $n \ge k$. Note that the concept of *S*-Artinian module is a generalization of Artinian module.

Theorem 2.18. Let M be an S-multiplication right R-module. If $R/Ann_R(M)$ is an S-Artinian R-module then M is an S-Artinian module.

Proof. Let $\mathcal{J} := Ann_R(M)$ and $Y_1 \supseteq Y_2 \supseteq Y_3 \supseteq \ldots \supseteq Y_n \supseteq \ldots$ be a descending chain of submodules of a right *R*-module *M*. Since $(Y_1 : M) \supseteq (Y_2 : M) \supseteq (Y_3 : M) \supseteq \ldots \supseteq (Y_n : M) \supseteq \ldots \supseteq (Y_n : M) \supseteq \ldots \supseteq (Y_n : M) / \mathcal{J} \supseteq \ldots$ is a descending chain of ideal of *R* containing Ann(M), $(Y_1 : M) / \mathcal{J} \supseteq (Y_2 : M) / \mathcal{J} \supseteq (Y_3 : M) / \mathcal{J} \supseteq \ldots \supseteq (Y_n : M) / \mathcal{J} \supseteq \ldots$ is a descending chain of ideal of R / \mathcal{J} . But R / \mathcal{J} is an *S*-Artinian module, there exist $s \in S$ and a positive integer *k* such that $(Y_k : M)s / \mathcal{J} \subseteq (Y_n : M) / \mathcal{J}$ for all $n \ge k$, and hence $(Y_k : M)s \subseteq (Y_n : M)$. Since *M* is an *S*-multiplication module, there exists $s' \in S$ such that $Y_k s' \subseteq M(Y_k : M)$. So, $Y_k s' s \subseteq M(Y_k : M)s \subseteq M(Y_n : M) \subseteq Y_n$. So $Y_k s' s \subseteq Y_n$ for all $n \ge k$.

Theorem 2.19. Let X_R be a right module, $R' = \{ \begin{bmatrix} a & m \\ 0 & a \end{bmatrix} | m \in X \text{ and } a \in R \}$ and $A = \begin{bmatrix} 0 & m \end{bmatrix}$

 $\left\{ \begin{bmatrix} 0 & m \\ 0 & 0 \end{bmatrix} | m \in X \right\}$. Then the following are equivalent:

- (i) R' is the ring under matrix addition and matrix mutiplication.
- (ii) A is the ideal of R'.
- (iii) X_R is an S-multiplication module if and only if $A_{R'}$ is an S-multiplication right ideal of R'.

Proof. (i) Clear. (ii) Clear.

(iii) (\Longrightarrow) Suppose $B \leq A$. Define $N := \{n \in X | \begin{bmatrix} 0 & n \\ 0 & 0 \end{bmatrix} \in B\}$. It implies $N \leq_R X$. Therefore, $Ns \subseteq XI \subseteq N$ for some ideal $I \leq R$ and element $s \in S$ since X is right Smultiplication module. Define $C = \{ \begin{bmatrix} a & x \\ 0 & a \end{bmatrix} | a \in I \text{ and } x \in X \}$. Then $C \leq R'$. Let $m \in N$. So

$$\begin{vmatrix} 0 & m \\ 0 & 0 \end{vmatrix} s \in Bs$$

Since $ms \in Ns \subseteq XI$, $ms \in XI$ and thus $ms = \sum_{l=1}^{k} m_l i_l$ for $k \in \mathbb{N}$ and $m_l \in X, i_l \in I$ for all $l(1 \leq l \leq k)$. But $\begin{bmatrix} 0 & m \\ 0 & 0 \end{bmatrix} s = \begin{bmatrix} 0 & ms \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \sum_{l=1}^{k} m_l i_l \\ 0 & 0 \end{bmatrix} = \sum_{l=1}^{k} \begin{bmatrix} 0 & m_l i_l \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_l & m_l \\ 0 & i_l \end{bmatrix}) \in AC$. This implies that $Bs \subseteq AC$. Let $\sum_{l=1}^{k} \begin{bmatrix} 0 & m_l \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_l & m_l \\ 0 & i_l \end{bmatrix} \in AC$. Since $\sum_{l=1}^{k} \begin{bmatrix} 0 & m_l \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_l & m_l \\ 0 & i_l \end{bmatrix} = \sum_{l=1}^{k} \begin{bmatrix} 0 & m_l i_l \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_l & m_l \\ 0 & i_l \end{bmatrix} = \sum_{l=1}^{k} \begin{bmatrix} 0 & m_l i_l \\ 0 & 0 \end{bmatrix}$ and $m_l i_l \in XI \subseteq N$ for all $l(1 \leq l \leq k)$ and hence $\sum_{l=1}^{k} m_l i_l \in N$. Therefore $\sum_{l=1}^{k} \begin{bmatrix} 0 & m_l \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_l & m_l \\ 0 & i_l \end{bmatrix} \in B$. So $Bs \subseteq AC \subseteq B$ and hence A is an S-multiplication ideal of R'.

 $(\Longleftrightarrow) \text{ Suppose that } A \text{ is an } S\text{-multiplication right ideal of } R'. \text{ Let } N \leq_R X. \text{ Define } B = \left\{ \begin{bmatrix} 0 & n \\ 0 & 0 \end{bmatrix} | n \in N \right\}. \text{ So } B \leq R' \text{ and } B \subseteq A. \text{ Since } A_{R'} \text{ is an } S\text{-multiplication right ideal, we have } Bs \subseteq AC \subseteq B \text{ for some ideal } C \leq R' \text{ and element } s \in S. \text{ Let } I = \{a \in R: \text{ the matrix } \begin{bmatrix} a & m \\ 0 & a \end{bmatrix} \in C \text{ for some } m \in X \}. \text{ Since } C \leq R', I \leq R. \text{ Choose } n \in N.$ Therefore $\begin{bmatrix} 0 & ns \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & n \\ 0 & 0 \end{bmatrix} s \in Bs \subseteq AC. \text{ Then } \begin{bmatrix} 0 & ns \\ 0 & 0 \end{bmatrix} \in AC \text{ and thus } \begin{bmatrix} 0 & ns \\ 0 & 0 \end{bmatrix} = \sum_{l=1}^{k} \begin{bmatrix} 0 & m_l l \\ 0 & r_l \end{bmatrix} = \sum_{l=1}^{k} \begin{bmatrix} 0 & m_l r_l \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \sum_{l=1}^{k} m_l r_l \\ 0 & 0 \end{bmatrix}. \text{ So } ns = \sum_{l=1}^{k} m_l r_l \in XI.$ Hence $Ns \subseteq XI.....(*).$ Let $x \in XI.$ Then $x = \sum_{l=1}^{k} m_l i_l$ for $k \in \mathbb{N}$ and $m_l \in X, i_l \in I$ for all $l(1 \leq l \leq k)$. For $l \in \{1, 2, ..., n\}$, There is m'_l for each i_l such that $\begin{bmatrix} i_l & m'_l \\ 0 & i_l \end{bmatrix} \in C.$ Since $\begin{bmatrix} 0 & m_l \\ 0 & 0 \end{bmatrix} \in A,$ $\sum_{l=1}^{k} \begin{bmatrix} 0 & m_l \\ 0 & i_l \end{bmatrix} \begin{bmatrix} i_l & m'_l \\ 0 & i_l \end{bmatrix} = \sum_{l=1}^{k} \begin{bmatrix} 0 & m_l i_l \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \sum_{l=1}^{k} m_l i_l i_l \\ 0 & i_l \end{bmatrix} \in AC \subseteq B.$ Then $\sum_{l=1}^{k} m_l i_l \in A$, $\sum_{l=1}^{k} m_l i_l \in X.$

From (*) and (**), we have $Ns \subseteq XI \subseteq N$, as desired.

Recall from ([12]), a submodule $Q \leq_R X$ with $(Q :_R X) \cap S = \emptyset$ is said to be *S*-prime submodule of X, if there is an $s \in S$ such that $ma \in Q$ implies $as \in (Q :_R X)$ or $ms \in Q$ for each $a \in R$ and $m \in X$. Also $I \leq R$ is said to be *S*-prime ideal, if it is an *S*-prime submodule of the submodule R_R .

П

Proposition 2.20. Let X be an S-multiplication R-module and Q be an S-prime submodule of X. If K and L are submodules of X such that $K \cap L \subseteq Q$, then $Ls' \subseteq Q$ or $Ks' \subseteq Q$ for some $s' \in S$.

Proof. Suppose Q is an S-prime submodule of X. Let K and $L \leq_R X$ such that $K \cap L \subseteq Q$. Since Q is an S-prime submodule of X, there exists $s \in S$ such that for each $r \in R$ and $m \in X$, $mr \in Q$ implies $rs \in (Q :_R X)$ or $ms \in Q$. Assume that $Ls \notin Q$. There exists $m \in L$ such that $ms \in Ls$ but $ms \notin Q$. Let $a \in (K :_R X)$. Since $ma \in L(K :_R X) \subseteq L \cap K \subseteq Q$ and Q is an S-prime submodule of X, $as \in (Q :_R X)$ or $ms \in Q$. But $ms \notin Q$, we have $as \in (Q :_R X)$ so thus $(K : X)s \subseteq (Q : X)$. By assumption, there exists $t \in S$ such that $Kt \subseteq X(K :_R X)$ because X is an S-multiplication module. So

$$K(ts) = (Kt)s \subseteq X(K:_R X)s \subseteq X(Q:_R X) \subseteq Q$$

Hence $Ks^{'} \subseteq Q$ where $s^{'} = ts$.

Theorem 2.21. Let X be an S-multiplication module and Q a submodule of X. Then Q is an S-prime submodule of X if and only if $(Q :_R X)$ is an S-prime ideal of R.

Proof. By ([3], Proposition 4).

Proposition 2.22. Let S be multiplicatively closed subset of R and Q an ideal of R such that $Q \cap S = \emptyset$. Then Q is an S-prime ideal of R if and only if there exists $s \in S$ such that for each ideal I, J of R with $IJ \subseteq Q$, so either $Is \subseteq Q$ or $Js \subseteq Q$.

Proof. By ([12], Corollary 2.6).

Now, we will provided proposition 2.22 on the version of submodules of M. First, we will start with the definition of product of two submodules.

Definition 2.23 ([1]). Let X be an R-module and K, L submodules of X. The product of K and L is defined as $KL = X(K :_R X)(L :_R X)$.

If R is a commutative ring, one can show that KL = LK. In the next two proposition, R is considered to be commutative.

Proposition 2.24. Let Z be an S-multiplication module over R and Q an S-prime submodule of Z. If $K, L \leq Z$ such that $KL \subseteq Q$, then $Ks \subseteq Q$ or $Ls \subseteq Q$ for some element $s \in S$.

Proof. Suppose that $KL \subseteq Q$. By assumption, $Kt \subseteq Z(K : Z)$ and $Lu \subseteq Z(L : Z)$ for some $t, u \in S$. Since Q is an S-prime submodule of Z and by Theorem 2.21, (Q : Z) is an S-prime ideal of R. Since $KL = Z(K : Z)(L : Z) \subseteq Q$, $(K : Z)(L : Z) \subseteq (Q : Z)$. By ([12], Corollary 2.6), $(K : Z)s' \subseteq (Q : Z)$ or $(L : Z)s' \subseteq (Q : Z)$ for some $s' \in S$ Case 1. If $(K : Z)s' \subseteq (Q : Z)$. Since $Kt \subseteq Z(K : Z)$, $Kts' \subseteq Z(K : Z)s' \subseteq Z(Q : Z) \subseteq Q$. Case 2. If $(L : Z)s' \subseteq (Q : Z)$. Since $Lu \subseteq Z(L : Z)$, $Lus' \subseteq Z(L : Z)s' \subseteq Z(Q : Z) \subseteq Q$. From Case 1. and Case 2., we can choose s = s'tu and $Ks = Ks'tu = Kts' \subseteq Qu \subseteq Q$ or

 $Ls = Ls'tu = Lus't \subseteq Qt \subseteq Q.$

Corollary 2.25. Let X be an S-multiplication module and Q be a submodule of X_R satisfying $(Q:_R X) \cap S = \emptyset$. If there is an $u \in S$ such that any submodules L and N of X with $LN \subseteq Q$, so either $Lu \subseteq Q$ or $Nu \subseteq Q$, then Q is an S-prime submodule of X.

Proof. Let B and C be an ideals of R such that $BC \subseteq (Q : X)$. Since $(XB)(XC) = X(BC) \subseteq X(Q : X) \subseteq Q$. By assumption, there exist $u \in S$ such that $(XB)u \subseteq Q$ or $(XC)u \subseteq Q$.

П

Case i). $(XB)u \subseteq Q$. Then $Bu \subseteq (Q:X)$. Case *ii*). $(XC)u \subseteq Q$. Then $Cu \subseteq (Q:X)$. By proposition 2.22, we have $(Q:_R X)$ is an S-prime ideal of R. By Theorem 2.21, Q is an S-prime submodule of X.

Now, we prove that the converse of Corollary 2.25 also hold if S satisfy maximal multiple condition. Recall from ([3]), a m.c.s. S of R is said to satisfy the maximal multiple condition, if there exists an $s \in S$ such that $t \mid s$ for each $t \in S$.

Corollary 2.26. Let S be a m.c.s. of R satisfy maximal multiple condition and X an S-multiplication module. If Q is an S-prime submodule of X, then there exists $s \in S$ such that for all submodule *L* and *N* of *X* with $LN \subseteq Q$, so either $Ls \subseteq Q$ or $Ns \subseteq Q$.

Let $S \subseteq R$ with $t \in S$ such that s | t for all $s \in S$ and Q is an S-prime submodule of X. Proof. Suppose L and N are submodules of R-module X with $LN \subseteq Q$. By Proposition 2.24, $Ls' \subseteq Q$ or $Ns' \subseteq Q$ for some $s' \in S$. By maximally element of t, there exist $v \in R$ such that t = s'v. Then $Lt = Ls'v \subseteq Qv \subseteq Q$ or $Nt = Ns'v \subseteq Qv \subseteq Q$.

Recall from ([6]), a right *R*-module X is called *codomain*, whenever $W_R(X) = 0$, where $W_R(X) = \{ c \in R \mid X \xrightarrow{c} X \text{ is not surjective } \}.$

Theorem 2.27. Suppose X is a codomain. Then X is an S-multiplication module if and only if $S \cap Ann_R(N) \neq \emptyset$ for all nonzero proper submodule N of X.

 (\Longrightarrow) Suppose X is an S-multiplication module. Let $0 \neq N$ be a proper submodule Proof. of X. Since X is S-multiplication module, $Ns \subseteq XI \subseteq N$ for some element $s \in S$ and $I \leq R$. We have $I \subseteq W_R(X)$. Since X is a codomain, $W_R(X) = 0$. So I = 0 and thus Ns = 0. Then $s \in Ann_R(N)$ and hence $s \in S \cap Ann_R(N)$. (\Leftarrow) Clear.

Theorem 2.28. Let $\{X_i\}_{i=1}^k$ be a finite set of a right *R*-modules and $X = \prod_{i=1}^n X_i$.

If X_i is a faithful module for some $i \in \{1, 2, ..., k\}$, then X is an S-multiplication module if and only if it satisfies the following condition:

- (i) X_i is an S-multiplication module.
- (ii) There exist $s \in S$ and $I \leq R$ so that $X_i s \subseteq X_i I$ with $I \subseteq Ann_R(X_i)$ for all $j \neq i$.
- (iii) There exist an elements $t \in S$ with $t \in Ann_R(X_j)$ for all $j \neq i$.

Proof. Let X_i be a faithful module for some *i*.

 (\Longrightarrow) Assuming that X is S-multiplication module.

(i) Let H be a submodules of X_i . Since $(0 \times \ldots \times H \times \ldots \times 0)$ is a submodule of X, $(0 \times \ldots \times H \times \ldots \times 0) s \subseteq XI \subseteq (0 \times \ldots \times H \times \ldots \times 0)$ for some $I \leq R$ and element $s \in S$. Then $Hs \subseteq (X_i)I \subseteq H$. So X_i is S-multiplication module.

(ii) Since $\chi_i := (0 \times ... \times X_i \times ... \times 0)$ is a submodule of X, therefore $\chi_i s \subseteq XI \subseteq \chi_i$ for some element $s \in S$ and $I \leq R$. Then $X_i s \subseteq (X_i) I \subseteq X_i$ and $X_j I = 0$ for all $j \neq i$. Then $I \subseteq Ann_R(X_j)$ for all $j \neq i$.

(iii) Consider $H = \prod X_j$. Since H is a submodule of X, it follow that $Ht \subseteq XJ \subseteq H$ for

some element $t \in S$ and $J \leq R$. Then $X_i J = 0$. Since X_i is faithful module, J = 0 and thus $X_j t \subseteq X_j J = 0$ for all $j \neq i$. So $X_j t = 0$ and hence $t \in Ann_R(X_j)$.

(\Leftarrow) Let H be a submodule of X and $\pi_j : X \to X_j$ a projection map from X to X_j for all $j \in \{1, 2, ..., k\}$. Set $H_j = \pi_j(H)$ for all $j \in \{1, 2, ..., k\}$. Since X_i is an S-multiplication, this implies that $H_i r \subseteq X_i A \subseteq H_i$ for some $A \leq R$ and element $r \in S$. By *iii*) there exists $t \in Ann_R(X_i)$ for all $j \neq i$. Then

$$H_irt \subseteq X_iAt \subseteq X_iA \subseteq H_i.$$

and $X_i A t \subseteq X_i t = 0$. So

 $Hrt \subseteq (0 \times ... \times H_i rt \times ... \times 0) \subseteq (0 \times ... \times X_i At \times ... \times 0) = XAt \subseteq (0 \times ... \times H_i \times ... \times 0) \subseteq H.$

Hence X is an S-multiplication module.

References

- [1] R. Ameri, On the prime submodules of multiplication modules, *Int. J. Math. Math. Sci.*, **27**, 1715-1724 (2003).
- [2] D. D. Anderson and Y. Al-Shaniafi, Multiplication modules and the ideal, *Comm. Algebra*, **30**, 3383-3390 (2002).
- [3] D. D. Anderson, T. Arabaci, Ü Tekír and S. Koc., On S-multiplication modules, Comm. Algebra, 48(8), 3398-3407 (2020).
- [4] D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra, 30(9), 4407-4416 (2002).
- [5] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag (1974).
- [6] H. Ansari-Toroghy and F. Farshadifar, Comultiplication modules and related results, *Honam Math. J.*, 30(1), 91-99 (2008).
- [7] Michael Atiyah, Introduction to commutative algebra, CRC Press, (2018).
- [8] A.Barnard, Multiplication modules, J. Algebra, 71(1), 174-178 (1981).
- [9] Z.A. El-Bast and P.P. Smith, Multiplication modules, Comm. Algebra, 16(4), 755-779 (1988).
- [10] D. Lee and H. Lee, Some Remarks on Faithful Multiplication Modules, J. Chungcheong Math. Soc., 6(1), 131-137 (1993).
- [11] M. Ozen, O. A. Naji, Ü Tekír, and K. P. Shum, Characterization Theorems of S-Artinian Modules, C. R. Acad. Bulgare Sci., 74(4), 496-505 (2021).
- [12] E. S. Sevím, T. Arabaci, Ü Tekír, and S. Koc, On S-prime submodules, Turkish J. Math., 43(2), 1036-1046 (2019).
- [13] P. F. Smith, Fully Invariant Multiplication Modules, Palest. J. Math., 4, 462–470 (2015).
- [14] A. A. Tuganbaev, Multiplication modules and ideals, J. Math. Sci., 136(4), 4116-4130 (2006).
- [15] R. Wisbauer, Foundations of Module Theory and Ring Theory, Vol. 3 of Algebra, Logic and Applications, Gordon and Breach Science, (1991).
- [16] E. Yıldız, Ü. Tekir and S. Koç, On S-Comultiplication Modules, Turkish J. Math., 46(5), 2034-2046 (2022)

Author information

S. Baupradist and K. Hukaew, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

E-mail: samruam.b@chula.ac.th, fairbwn@gmail.com