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Abstract Recently, Anderson et al. in ([3], Comm. Alg. (2020)) introduced a generaliza-
tion of multiplication modules called S-multiplication modules. In this article, the properties of
S-prime submodules of S-multiplication modules are studied. Furthermore, we show that the
concepts of simple modules, multiplication modules, and S-multiplication modules are equiv-
alent in a torsion-free divisible module over an integral domain. Finally, we construct ring of
matrices R′ whose entries in a module M and demonstrate that M is S-multiplication R-module
is equivalent to the existence of a specific ideal A of rings R′ is S-multiplication ideal.

1 Introduction

Throughout the article, we shall assume, unless otherwise stated, that all rings R are regarded
to be associative rings with identity and all modules are assumed to be nonzero unital right R-
modules. A submodule Y of R-module X is denoted by Y ≤R X and an ideal I of R is denoted
by I ≤ R.

Let X be a right R-module. The annihilator of X , denoted by AnnR(X), is

AnnR(X) = {r ∈ R | Xr = 0}. (1.1)

IfAnnR(X) = 0, thenX is called a faithful module. For any submodule Y ofX ,AnnR(X/Y )
will be denoted by (Y :R X). Therefore (Y :R X) = {r ∈ R | Xr ⊆ Y } and may be written as
(Y : X) if ring R is understood.

For right R-modules X and Y , HomR(X,Y ) denotes the set of all R-homomorphisms from
X to Y and EndR(X) denotes the set of R-endomorphism of X . We refer the reader to [([3], [4],
[5], [15])] for more basic concepts and other notations.

In 1981 ([8]), A. Barnard introduced the concepts of multiplication modules. A right R-
module X is called a multiplication module, if for any submodule Y of X there exists an ideal I
of R such that

Y = XI. (1.2)

Moreover, He showed that distributive modules are characterized as modules for which every
finitely generated submodule is a multiplication module. In 1988, ([9]) Patrick F. Smith showed
that a right R-module X is a multiplication module if and only if Y = X(Y :R X) for all sub-
module Y ofX . They also provided characterizations of multiplication modules over Noetherian
rings and multiplication modules over Artinian rings. Currently, there is a significant amount of
literature dedicated to the investigation of multiplication modules. (See [10], [1], [2], [14], [13]).

Recently, Anderson et al. in ([3], Comm. Alg. (2020)) introduced a generalization of multi-
plication modules called S-multiplication modules, by using a multiplicatively closed subset S
of a ringR. A nonempty subset S of a ringR is said to be a multiplicatively closed subset (briefly,
m.c.s.) of a ring R ([7]), if it contains multiplicative identity and closed under multiplication.
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A right R-module X is said to be S-multiplication module, if for each submodule Y of X
there exist s ∈ S and an ideal I of R such that

Y s ⊆ XI ⊆ Y. (1.3)

In this article, we shall examine the S-multiplication module and continue the work of An-
derson et al. ([3]). We give some characterizations of S-multiplication modules (Proposition
2.3, Theorem 2.19) and show that the concept of S- multiplication module, simple module, and
multiplication module are equivalent in a torsion-free divisible module over an integral domain
(Theorem 2.13). Moreover, we study S-prime submodules of S-multiplication modules (Theo-
rem 2.20, Proposition 2.24, and Corollary 2.25). Finally, we provide a characterization of a finite
(external) sum of modules {Mi}ki=1 such that Mj is faithful for some j ∈ {1, . . . , k} (Theorem
2.28).

2 S-multiplication modules

Let S be a m.c.s. of a ring R. In this section, we provide an example and some properties of
S-multiplication modules.

Definition 2.1. ([3], Anderson, 2020) Suppose that X is a right R-module and S is a m.c.s. of a
ring R. Then X is called an S-multiplication module, if for each submodule Y of X there exist
s ∈ S and an ideal I of R such that Y s ⊆ XI ⊆ Y .

An ideal A of R is an S-multiplication ideal, if for every ideal B of A there exist s ∈ S and
ideal I of R such that Bs ⊆ AI ⊆ B.

From now, we assume that 0 /∈ S. One can see that for everyR-moduleX if S∩AnnR(X) ̸=
∅ then X is trivially an S-multiplication module. Moreover, by the definition, we see that every
multiplication module is an S-multiplication module, but the converse is not true in general. As
shown the following example.

Example 2.2. Consider X = Z2 × Z2 as a right Z-module. Let S = {2n | n ∈ N0}, where N0 is
the set of all non-negative integers. Then

(i) X is an S−multiplication module.

(ii) X is not a multiplication module.

Proof. (i) LetN ≤R X . Choose 2 ∈ S. Since 2Z is an ideal of Z and 0 = N2 = X(2Z) ⊆ N ,
X is an S-multiplication module.
(ii) One can show that submodule Z2 × 0 of X can not written as the form XA for all ideal A of
Z. Suppose to the contrary that Z2 × 0 = XA. Since A is an ideal of Z, A can be written of the
form nZ for some n ∈ N0.
Case 1. n is an even number. Let (m1,m2) ∈ X and r ∈ nZ. Since n is an even number,
(m1,m2)r = (m1r,m2r) = (0, 0). Then XA = 0.
Case 2. n is a odd number. Let (m1,m2) ∈ X . Since n is a odd number, (m1,m2) =
(m1n,m2n) = (m1,m2)n ∈ XA. Then X = XA.
From Case 1. and Case 2., this contradict to the fact that Z2 × 0 ̸= XA. 2

Proposition 2.3. Let M be a right R-module. Then The following are equivalences:

(i) M is an S-multiplication module.

(ii) For any submodule H of M there exists s ∈ S such that Hs ⊆M(H : M) ⊆ H .

(iii) For any submodules H and L of M such that (H : M) = (L : M) there exist s, t ∈ S such
that Hs ⊆ L and Lt ⊆ H.

Proof. (i) ⇐⇒ (ii) It is easy.
(ii) =⇒ (iii) Let H and L be submodules of M such that (H : M) = (L : M). By assumption,
there exist s, t ∈ S which Hs ⊆ M(H :R M) ⊆ H and Lt ⊆ M(L : M) ⊆ L. Therefore
Hs ⊆M(H : M) =M(L : M) ⊆ L. Similarly, Lt ⊆M(L : M) =M(H : M) ⊆ H.
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(iii) =⇒ (ii) Let H ≤R M and L := M(H : M). Since L ⊆ H , (L : M) ⊆ (H : M).
Conversely, for r ∈ (H : M), we get Mr ⊆M(H : M) = L and hence r ∈ (L : M).
Therefore (H : M) = (L : M). By assumption, there exist s, t ∈ S which Hs ⊆ L and Lt ⊆ H.
Since M(H : M) ⊆ H and thus Hs ⊆ L =M(H : M) ⊆ H . 2

Proposition 2.4. Suppose that X is an R-module and R′ a subring of R. If S is m.c.s. of R′ and
X is an S-multiplication R′-module, then X is an S-multiplication R-module.

Proof. Let N be a submodule of R-module X . Hence N is a submodule of XR′ . By as-
sumption, Ns ⊆ XIR′ ⊆ N for some ideal IR′ ≤ R

′
and element s ∈ S since XR′ is

an S-multiplication module. Consider I = RIR′ . Observe that I is an ideal of R such that
Ns ⊆ XIR′ = (XR)IR′ = X(RIR′ ) ⊆ N . Therefore, X is an S-multiplication R-module. 2

Recall from ([5]), a submodule Y ≤R X is called a pure submodule of X if for each A ≤ R,
we have Y A = Y ∩XA.

Proposition 2.5. Every pure submodule of an S-multiplication module is an S-multiplication
module.

Proof. Let X be an S-multiplication module and N a pure submodule of X . Let L ≤R N . By
assumption, Lt ⊆ XI ⊆ L for some t ∈ S and I ≤ R since X is an S-multiplication module.
But N is a pure submodule of X , NI = N ∩XI ⊆ N ∩ L = L. Let lt ∈ Lt. Since L ≤R N ,
lt ∈ Nt ⊆ N . So Lt ⊆ N ∩ (Lt) and thus N ∩ (Lt) = Lt. Then Lt = N ∩ (Lt) ⊆ N ∩ (XI) =
NI ⊆ L. Therefore, N is an S-multiplication module. 2

Corollary 2.6. Every direct summand of an S-multiplication module is S-multiplication.

Proposition 2.7. Let X be an S-multiplication module and π a canonical projection map from
R to R/AnnR(X). Suppose that E is a right ideal of R such that AnnR(X) ⊆ E and π(E) is
an essential right ideal of π(R). Then for any submodule H of X such that XE ∩ H = 0, we
have Hs = 0 for some s ∈ S.

Proof. Suppose thatX is an S-multiplication module. LetA := AnnR(X) andE a right ideal
ofR such thatA ⊆ E. LetH be a submodule ofX such thatXE∩H = 0. ThusHs ⊆ XF ⊆ H
for some ideal F of R and s ∈ S. Then X(E ∩ F ) ⊆ XE ∩XF ⊆ XE ∩H = 0 and we have
E ∩ F ⊆ A. Thus π(E ∩ F ) = 0̄. Let x ∈ π(E)∩ π(F ). Then x = π(e) = π(f) for some e ∈ E
and f ∈ F . Since x = π(e) = e+ A and x = π(f) = f + A, f − e ∈ A. But A ⊆ E, we have
f = f − e + e ∈ E. Thus x = π(f) ∈ π(E ∩ F ). We have π(E) ∩ π(F ) ⊆ π(E ∩ F ) = 0̄.
So π(E) ∩ π(F ) = 0̄. Since π(E) is an essential ideal in π(R), π(F ) = 0̄. It follows that
F ⊆ A = AnnR(X). So XF = 0. But Hs ⊆ XF = 0, Hs = 0. 2

Lemma 2.8. Every R-module Z is faithful EndR(Z)-module.

Proof. Assume that Z is a right R-module. Define EndR(Z) × Z → Z by φ · z = φ(z) for
all z ∈ Z and φ ∈ EndR(Z). Hence Z is a left EndR(Z)-module. Let φ ∈ AnnEndR(Z)(Z).
Then φZ = 0 and we have φ = 0. So AnnEndR(Z)(Z) = 0. Hence Z is a left faithful EndR(Z)-
module. 2

Proposition 2.9. Every right S-multiplicationR-module is a left faithful S-multiplication EndR(X)-
module.

Proof. Let R′ denote the EndR(X) andN be a submodule of an R′-moduleX . For r ∈ R, we
define φr : X → X by φr(m) = mr for all m ∈ X . Obviously, we got φr ∈ R′. Let r ∈ R and
n ∈ N . Since nr = φr(n) = φr·n ∈ N ,N is a submodule ofR-moduleX . By assumption, there
exist I ≤ R and element s ∈ S such that Ns ⊆ XI ⊆ N . Let ΦI = {φr ∈ R′ | r ∈ I}. Hence
R′ΦIR′ ≤ R′ and we have R′ΦIR′ · X = (R′ΦIR′)X = R′ΦI(R′(X)) = (R′ΦI)(X) =
R′(ΦI(X)) =
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R′(XI) = (R′(X))I = XI . So Ns ⊆ XI = R′ΦIR′ ·X ⊆ N . Then X is an S-multiplication
module over R′ and by Lemma 2.8, we have X is a faithful S-multiplication EndR(X)-module.
2

Proposition 2.10. An R-module M is an S-multiplication module if and only if for every sub-
module N ≤R M , Ns ⊆

∑
a∈I

Imφa ⊆ N for some element s ∈ S and ideal I ≤ R.

Proof. Let N be submodule of an S-multiplication R-module M . Then there exist s ∈ S and
an ideal I ≤ R such that Ns ⊆MI ⊆ R. For each a ∈ I , define the map φa : M →M by m 7→
ma. From the definition of S-multiplication module, it is enough to show that

∑
a∈I

Imφa =MI .

(⊆) Let x ∈
∑
a∈I

Imφa. Then x can be written as a finite sum of elements of Imφa, where a ∈ I .

That is, there exist k ∈ N0 and finite set {a1, . . . , ak} of I such that x =
k∑

i=1
xi, where each

xi ∈ Imφai for all i ∈ {1, . . . , k}. Let i ∈ {1, . . . , k}. Since xi ∈ Imφai , there exist mi ∈ M

such that xi = φai
(mi) = miai ∈MI and hence x =

k∑
i=1

xi ∈MI .

(⊇) The converse is similar. 2

From now on until corollary 2.15, R is assume to be an integral domain.

Proposition 2.11. LetR be a ring and J be a non-zero ideal ofR such that JR an S-multiplication
ideal. For any φ,ψ ∈ EndR(J) if φ ◦ ψ = 0, then φ = 0 or ψ = 0.

Proof. Let φ,ψ ∈ EndR(J) such that φ ◦ ψ = 0. Since JR is an S-multiplication ideal,
φ(J)r1 ⊆ JB ⊆ φ(J) and ψ(J)r2 ⊆ JC ⊆ ψ(J) for some B,C ≤ R and r1, r2 ∈ S. Then
J(BC) = (JB)C ⊆ φ(J)C = φ(JC) ⊆ φ(ψ(J)) = (φ ◦ ψ)(J) = 0 and thus J(BC) = 0. But
J ̸= 0 and R is an integral domain. Therefore, either B = 0 or C = 0.
If B = 0. Since φ(J)r1 ⊆ JB = 0, φ(J)r1 = 0. But r1 ̸= 0, then φ(J) = 0 so φ = 0.
Otherwise, if C = 0. Since ψ(J)r2 ⊆ JC = 0, ψ(J)r2 = 0. But r2 ̸= 0, then ψ(J) = 0 so
ψ = 0. 2

Corollary 2.12. Let R a ring. For any φ,ψ ∈ EndR(RR) if φ ◦ ψ = 0, then φ = 0 or ψ = 0.

Proof. By Proposition 2.11 and RR is an S-multiplication module. 2

Recall from ([15]), a right moduleX is said to be divisible, if for every nonzero divisor r ∈ R
and every m ∈ X , we have m = nr for some element n ∈ X .

Moreover, ([16]) Let X be R-modules. The set of torsion element is T (X) := {m ∈ X :
mr = 0 for some 0 ̸= r ∈ R}. Recall that an R-module X is said to be torsion-free if the torsion
subset T (X) = 0, and X is called a torsion module if X = T (X).

Theorem 2.13. Let R be an integral domain and X an torsion-free divisible module. Then the
following are equivalent:

(i) X is an S-multiplication module.

(ii) X is a simple module.

(iii) X is a multiplication module.

Proof. (i) =⇒ (ii) Suppose that Y is a nonzero submodule of R-module X . Then Y s ⊆
XI ⊆ Y for some I ≤ R and element s ∈ S since X is S-multiplication. Observe that I ̸= 0.
Otherwise, we have Y s ⊆ XI = 0. Let y ∈ Y , ys ∈ Y s = 0. Since s ̸= 0 and ys = 0, this
implies that y ∈ T (X) = 0. Hence Y = 0 contradiction. Let m ∈ X and a ∈ I . Since X is
divisible, therefore there is m

′ ∈ X so that m = m′a. Hence m = m′a ∈ XI ⊆ Y and hence
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m ∈ Y . We have X ⊆ Y . So X is a simple module.
(ii) =⇒ (iii) Obvious.
(iii) =⇒ (i) Obvious. 2

Proposition 2.14. Let X be a faithful module over R. If X is an S-multiplication module, each
Y ≤R X with S ∩AnnR(Y ) = ∅ is faithful.

Proof. Let X be a faithful module and Y be a nonzero submodule of X with S ∩AnnR(Y ) =
∅. Since X is S-multiplication module, Y s ⊆ XJ ⊆ Y for some element s ∈ S and ideal
J ≤ R. But S ∩ AnnR(Y ) = ∅, we have Y s ̸= 0. Then XJ ̸= 0, that is J ̸= 0. Let v ∈ R
so that Y v = 0. Then XJv ⊆ Y v = 0. Since X is a faithful module, Jv = 0. But J ̸= 0.
Therefore, we have v = 0. Hence Y is a faithful module. 2

One can view multiplication modules as {1}-multiplication modules and for each submodules
N of X , {1} ∩AnnR(N) = ∅. Then we got the following results.

Corollary 2.15 ([10]). Every nonzero submodule of faithful multiplication module is faithful.

In the next two propositions, R is considered to be a commutative ring.

Proposition 2.16. Let R be a ring and X a right R-module. If X is a faithful S-multiplication
torsion module then for any m ∈ X , ms = 0 for some s ∈ S.

Proof. Let X be a faithful S-multiplication torsion module and m ∈ X . If m = 0, we can
choose 1 ∈ S and m1 = 0. Next, suppose that 0 ̸= m ∈ X . Since X is torsion, there exists a
nonzero divisor c ∈ R such that mc = 0. Since X is S-multiplication module, mRs ⊆ XI ⊆
mR for some an ideal I ≤ R and s ∈ S. Then XIc ⊆ mRc = 0 and hence XIc = 0. Therefore
Ic = 0. But c is a nonzero divisor, I = 0. So ms ∈ mRs ⊆ XI = 0. Hence ms = 0. 2

Proposition 2.17. Let X be a torsion-free R-module. If X is an (R\P )-multiplication module,
then X ̸= XP for all prime ideal P of R.

Proof. Let X be an (R\P )-multiplication module. Assume that X = XP . For 0 ̸= m ∈ X ,
mRs ⊆ XI ⊆ mR for some s /∈ P and some I ≤ R. Then (mR)s ⊆ XI = (XP )I ⊆ XIP ⊆
mRP ⊆ mP and thus ms = mp for some p ∈ P . So m(s− p) = 0. But s− p = 0 since X is a
torsion-free module. Therefore, we have s = p ∈ P . It is contradiction since s ∈ (R\P ). 2

Recall from ([11]), a right R-module X is said to be S-Artinian module, if each family of
descending chain of submodules {Ni}i∈I of X there exist s ∈ S and a positive integer k such
that Nks ⊆ Nn for each n ≥ k. Note that the concept of S-Artinian module is a generalization
of Artinian module.

Theorem 2.18. Let M be an S-multiplication right R-module. If R/AnnR(M) is an S-Artinian
R-module then M is an S-Artinian module.

Proof. Let J := AnnR(M) and Y1 ⊇ Y2 ⊇ Y3 ⊇ . . . ⊇ Yn ⊇ ... be a descending chain of
submodules of a right R-module M . Since (Y1 : M) ⊇ (Y2 : M) ⊇ (Y3 : M) ⊇ . . . ⊇ (Yn :
M) ⊇ ... is a descending chain of ideal of R containing Ann(M), (Y1 : M)/J ⊇ (Y2 : M)/J ⊇
(Y3 : M)/J ⊇ . . . ⊇ (Yn : M)/J ⊇ ... is a descending chain of ideal of R/J . But R/J is an
S-Artinian module, there exist s ∈ S and a positive integer k such that (Yk : M)s/J ⊆ (Yn :
M)/J for all n ≥ k, and hence (Yk : M)s ⊆ (Yn : M). Since M is an S-multiplication module,
there exists s′ ∈ S such that Yks′ ⊆M(Yk : M). So, Yks′s ⊆M(Yk : M)s ⊆M(Yn : M) ⊆ Yn.
So Yks′s ⊆ Yn for all n ≥ k. 2

Theorem 2.19. Let XR be a right module, R
′
= {

[
a m

0 a

]
|m ∈ X and a ∈ R} and A =

{

[
0 m

0 0

]
|m ∈ X}. Then the following are equivalent:
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(i) R′ is the ring under matrix addition and matrix mutiplication.

(ii) A is the ideal of R′.

(iii) XR is an S-multiplication module if and only if AR′ is an S-multiplication right ideal of
R

′
.

Proof. (i) Clear.
(ii) Clear.

(iii) (=⇒) Suppose B ≤ A. Define N := {n ∈ X|

[
0 n

0 0

]
∈ B}. It implies N ≤R X .

Therefore, Ns ⊆ XI ⊆ N for some ideal I ≤ R and element s ∈ S since X is right S-

multiplication module. Define C = {

[
a x

0 a

]
|a ∈ I and x ∈ X}. Then C ≤ R

′
. Let m ∈ N . So[

0 m

0 0

]
s ∈ Bs.

Since ms ∈ Ns ⊆ XI , ms ∈ XI and thus ms =
∑k

l=1 mlil for k ∈ N and ml ∈ X, il ∈ I

for all l(1 ≤ l ≤ k). But

[
0 m

0 0

]
s =

[
0 ms

0 0

]
=

[
0

∑k
l=1 mlil

0 0

]
=

∑k
l=1

[
0 mlil

0 0

]
=

∑k
l=1(

[
0 ml

0 0

][
il ml

0 il

]
) ∈ AC. This implies that Bs ⊆ AC. Let

∑k
l=1

[
0 ml

0 0

][
il ml

0 il

]
∈

AC. Since
∑k

l=1

[
0 ml

0 0

][
il ml

0 il

]
=

∑k
l=1

[
0 mlil

0 0

]
and mlil ∈ XI ⊆ N for all l(1 ≤ l ≤

k) and hence
∑k

l=1 mlil ∈ N . Therefore
∑k

l=1

[
0 ml

0 0

][
il ml

0 il

]
∈ B. So Bs ⊆ AC ⊆ B and

hence A is an S-multiplication ideal of R
′
.

(⇐=) Suppose that A is an S-multiplication right ideal of R
′
. Let N ≤R X . Define

B = {

[
0 n

0 0

]
|n ∈ N}. So B ≤ R

′
and B ⊆ A. Since AR′ is an S-multiplication right

ideal, we have Bs ⊆ AC ⊆ B for some ideal C ≤ R
′

and element s ∈ S. Let I = {a ∈

R : the matrix

[
a m

0 a

]
∈ C for some m ∈ X}. Since C ≤ R

′
, I ≤ R. Choose n ∈ N .

Therefore

[
0 ns

0 0

]
=

[
0 n

0 0

]
s ∈ Bs ⊆ AC. Then

[
0 ns

0 0

]
∈ AC and thus

[
0 ns

0 0

]
=

∑k
l=1

[
0 ml

0 0

][
rl m

′

l

0 rl

]
=

∑k
l=1

[
0 mlrl

0 0

]
=

[
0

∑k
l=1 mlrl

0 0

]
. So ns =

∑k
l=1 mlrl ∈ XI .

Hence Ns ⊆ XI.............(∗).
Let x ∈ XI . Then x =

∑k
l=1 mlil for k ∈ N and ml ∈ X, il ∈ I for all l(1 ≤ l ≤ k).

For l ∈ {1, 2, ..., n}, There is m
′

l for each il such that

[
il m

′

l

0 il

]
∈ C. Since

[
0 ml

0 0

]
∈ A,

∑k
l=1

[
0 ml

0 0

][
il m

′

l

0 il

]
=

∑k
l=1

[
0 mlil

0 0

]
=

[
0

∑k
l=1 mlil

0 0

]
∈ AC ⊆ B. Then

∑k
l=1 mlil ∈

N and hence XI ⊆ N..............(∗∗).

From (∗) and (∗∗), we have Ns ⊆ XI ⊆ N , as desired. 2

Recall from ([12]), a submodule Q ≤R X with (Q :R X) ∩ S = ∅ is said to be S-prime
submodule of X , if there is an s ∈ S such that ma ∈ Q implies as ∈ (Q :R X) or ms ∈ Q for
each a ∈ R and m ∈ X . Also I ≤ R is said to be S-prime ideal, if it is an S-prime submodule
of the submodule RR.
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Proposition 2.20. Let X be an S-multiplication R-module and Q be an S-prime submodule of
X . If K and L are submodules of X such that K ∩ L ⊆ Q, then Ls

′ ⊆ Q or Ks
′ ⊆ Q for some

s
′ ∈ S.

Proof. Suppose Q is an S-prime submodule of X . Let K and L ≤R X such that K ∩ L ⊆ Q.
Since Q is an S-prime submodule of X , there exists s ∈ S such that for each r ∈ R and m ∈ X ,
mr ∈ Q implies rs ∈ (Q :R X) or ms ∈ Q. Assume that Ls ⊈ Q. There exists m ∈ L such that
ms ∈ Ls but ms /∈ Q. Let a ∈ (K :R X). Since ma ∈ L(K :R X) ⊆ L ∩K ⊆ Q and Q is an
S-prime submodule of X , as ∈ (Q :R X) or ms ∈ Q. But ms /∈ Q, we have as ∈ (Q :R X)
so thus (K : X)s ⊆ (Q : X). By assumption, there exists t ∈ S such that Kt ⊆ X(K :R X)
because X is an S-multiplication module. So

K(ts) = (Kt)s ⊆ X(K :R X)s ⊆ X(Q :R X) ⊆ Q.

Hence Ks
′ ⊆ Q where s

′
= ts. 2

Theorem 2.21. Let X be an S-multiplication module and Q a submodule of X . Then Q is an
S-prime submodule of X if and only if (Q :R X) is an S-prime ideal of R.

Proof. By ([3], Proposition 4). 2

Proposition 2.22. Let S be multiplicatively closed subset of R and Q an ideal of R such that
Q ∩ S = ∅. Then Q is an S-prime ideal of R if and only if there exists s ∈ S such that for each
ideal I, J of R with IJ ⊆ Q, so either Is ⊆ Q or Js ⊆ Q.

Proof. By ([12], Corollary 2.6). 2

Now, we will provided proposition 2.22 on the version of submodules of M . First, we will
start with the definition of product of two submodules.

Definition 2.23 ([1]). Let X be an R−module and K,L submodules of X . The product of K
and L is defined as KL = X(K :R X)(L :R X).

If R is a commutative ring, one can show that KL = LK. In the next two proposition, R is
considered to be commutative.

Proposition 2.24. Let Z be an S-multiplication module over R and Q an S-prime submodule of
Z. If K,L ≤ Z such that KL ⊆ Q, then Ks ⊆ Q or Ls ⊆ Q for some element s ∈ S.

Proof. Suppose that KL ⊆ Q. By assumption, Kt ⊆ Z(K : Z) and Lu ⊆ Z(L : Z) for some
t, u ∈ S. Since Q is an S-prime submodule of Z and by Theorem 2.21, (Q : Z) is an S-prime
ideal of R. Since KL = Z(K : Z)(L : Z) ⊆ Q, (K : Z)(L : Z) ⊆ (Q : Z). By ([12], Corollary
2.6), (K : Z)s

′ ⊆ (Q : Z) or (L : Z)s
′ ⊆ (Q : Z) for some s′ ∈ S

Case 1. If (K : Z)s
′ ⊆ (Q : Z). Since Kt ⊆ Z(K : Z), Kts

′ ⊆ Z(K : Z)s
′ ⊆ Z(Q : Z) ⊆ Q.

Case 2. If (L : Z)s
′ ⊆ (Q : Z). Since Lu ⊆ Z(L : Z), Lus

′ ⊆ Z(L : Z)s
′ ⊆ Z(Q : Z) ⊆ Q.

From Case 1. and Case 2., we can choose s = s
′
tu and Ks = Ks

′
tu = Kts

′ ⊆ Qu ⊆ Q or
Ls = Ls

′
tu = Lus

′
t ⊆ Qt ⊆ Q. 2

Corollary 2.25. Let X be an S-multiplication module and Q be a submodule of XR satisfying
(Q :R X) ∩ S = ∅. If there is an u ∈ S such that any submodules L and N of X with LN ⊆ Q,
so either Lu ⊆ Q or Nu ⊆ Q, then Q is an S-prime submodule of X .

Proof. Let B and C be an ideals of R such that BC ⊆ (Q : X). Since (XB)(XC) =
X(BC) ⊆ X(Q : X) ⊆ Q. By assumption, there exist u ∈ S such that (XB)u ⊆ Q or
(XC)u ⊆ Q.
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Case i). (XB)u ⊆ Q. Then Bu ⊆ (Q : X).
Case ii). (XC)u ⊆ Q. Then Cu ⊆ (Q : X).
By proposition 2.22, we have (Q :R X) is an S-prime ideal of R. By Theorem 2.21, Q is an
S-prime submodule of X . 2

Now, we prove that the converse of Corollary 2.25 also hold if S satisfy maximal multiple
condition. Recall from ([3]), a m.c.s. S of R is said to satisfy the maximal multiple condition, if
there exists an s ∈ S such that t | s for each t ∈ S.

Corollary 2.26. Let S be a m.c.s. ofR satisfy maximal multiple condition andX an S-multiplication
module. If Q is an S-prime submodule of X , then there exists s ∈ S such that for all submodule
L and N of X with LN ⊆ Q, so either Ls ⊆ Q or Ns ⊆ Q.

Proof. Let S ⊆ R with t ∈ S such that s|t for all s ∈ S and Q is an S-prime submodule of X .
Suppose L and N are submodules of R-module X with LN ⊆ Q. By Proposition 2.24, Ls

′ ⊆ Q
or Ns′ ⊆ Q for some s′ ∈ S. By maximally element of t, there exist v ∈ R such that t = s′v .
Then Lt = Ls′v ⊆ Qv ⊆ Q or Nt = Ns′v ⊆ Qv ⊆ Q. 2

Recall from ([6]), a right R-module X is called codomain, whenever WR(X) = 0, where
WR(X) = {c ∈ R | X c−→ X is not surjective }.

Theorem 2.27. Suppose X is a codomain. Then X is an S-multiplication module if and only if
S ∩AnnR(N) ̸= ∅ for all nonzero proper submodule N of X.

Proof. (=⇒) Suppose X is an S-multiplication module. Let 0 ̸= N be a proper submodule
of X. Since X is S-multiplication module, Ns ⊆ XI ⊆ N for some element s ∈ S and I ≤ R.
We have I ⊆ WR(X). Since X is a codomain, WR(X) = 0. So I = 0 and thus Ns = 0. Then
s ∈ AnnR(N) and hence s ∈ S ∩AnnR(N).
(⇐=) Clear. 2

Theorem 2.28. Let {Xi}ki=1 be a finite set of a right R-modules and X =
k∏

i=1

Xi.

If Xi is a faithful module for some i ∈ {1, 2, ..., k}, then X is an S-multiplication module if and
only if it satisfies the following condition:

(i) Xi is an S-multiplication module.

(ii) There exist s ∈ S and I ≤ R so that Xis ⊆ XiI with I ⊆ AnnR(Xj) for all j ̸= i.

(iii) There exist an elements t ∈ S with t ∈ AnnR(Xj) for all j ̸= i.

Proof. Let Xi be a faithful module for some i.
(=⇒) Assuming that X is S-multiplication module.
(i) Let H be a submodules of Xi. Since (0 × . . . × H × . . . × 0) is a submodule of X ,

(0 × . . .×H × . . .× 0)s ⊆ XI ⊆ (0 × . . .×H × . . .× 0) for some I ≤ R and element s ∈ S.
Then Hs ⊆ (Xi)I ⊆ H . So Xi is S−multiplication module.

(ii) Since χi := (0 × ... ×Xi × ... × 0) is a submodule of X , therefore χis ⊆ XI ⊆ χi for
some element s ∈ S and I ≤ R. Then Xis ⊆ (Xi)I ⊆ Xi and XjI = 0 for all j ̸= i. Then
I ⊆ AnnR(Xj) for all j ̸= i.

(iii) Consider H =
∏
j ̸=i

Xj . Since H is a submodule of X , it follow that Ht ⊆ XJ ⊆ H for

some element t ∈ S and J ≤ R. Then XiJ = 0. Since Xi is faithful module, J = 0 and thus
Xjt ⊆ XjJ = 0 for all j ̸= i. So Xjt = 0 and hence t ∈ AnnR(Xj).

(⇐=) Let H be a submodule of X and πj : X → Xj a projection map from X to Xj for
all j ∈ {1, 2, ..., k}. Set Hj = πj(H) for all j ∈ {1, 2, ..., k}. Since Xi is an S-multiplication,
this implies that Hir ⊆ XiA ⊆ Hi for some A ≤ R and element r ∈ S. By iii) there exists
t ∈ AnnR(Xj) for all j ̸= i. Then

Hirt ⊆ XiAt ⊆ XiA ⊆ Hi.
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and XjAt ⊆ Xjt = 0. So

Hrt ⊆ (0× ...×Hirt× ...×0) ⊆ (0× ...×XiAt× ...×0) = XAt ⊆ (0× ...×Hi× ...×0) ⊆ H.

Hence X is an S-multiplication module. 2
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