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Abstract This paper aims to investigate the behaviour of cyclic codes over a finite ring, where
the ring S = Tq[v,w]/⟨v2 − α2, w3 − β2w, vw −wv⟩ is constructed using a field Tq of order
q, with q being an odd prime power, and nonzero elements α and β from Tq. With the help of
Gray images of cyclic code over the defined ring S, we construct LCD codes. A condition is also
established for cyclic codes that contain their duals. Additionally, by using the self-orthogonal
condition of cyclic codes over S, we are able to construct quantum codes.

1 Introduction

In quantum communication and quantum computing, quantum codes are employed to safeguard
quantum information from noise introduced into the channel during transmission. Following
shor’s [25] ground-breaking discovery, quantum error correcting(QEC) codes are fast evolv-
ing from classical error correcting (CEC) codes. Further, Calderbank et al. [8] suggested a
technique for obtaining QEC codes from CEC codes. A study of QEC codes has been ad-
vanced at an incredible rate. Using classical cyclic codes over finite field Tq, many good QEC
codes with dual or self-orthogonal containing features have been obtained (for references see
[4, 11, 12, 13, 18, 19, 20, 26], where further references can be found). Firstly, Qian et al. [24]
established QEC codes over the ring T2 +uT2 having the condition u2 = 0 using cyclic codes of
odd length. In [23], Patel et al. establish the structure of cyclic codes over the ring M2(T2+uT2)
and also obtained their generators. Ali et al. [2] gives the construction of cyclic codes over the
class of commutative rings. In 2019, Ashraf et al. [5] obtained QEC codes over the finite non-
chain ring. Motivated by these results, we construct QEC codes as well as optimal codes over
the ring S, with the help of Gray map.

A linear complementary dual code is a linear code that trivially meets its dual (abbreviated
as LCD). The nearest-codeword decoding problem for LCD codes is more straightforward than
it is for linear codes, and an LCD code with a potentially large minimum distance simultane-
ously thwarts the SCA (side-channel attack) and FIA (fault-injection attack) in a cryptosystem
[9], among other advantages of LCD codes over linear codes. Keep in mind that Massey [22]
introduced LCD codes. Later, LCD codes were offered by Yang and Massey [28] as cyclic codes
with various limitations on their generator polynomials. Recently, authors [10] and [21] explored
LCD codes over finite chain rings in order to expand these codes across finite rings. In the recent
past, Yadav et al. [27] explored LCD circulant codes over a nonchain ring. In 2023, Ali et al. [1]
obtained quantum and LCD codes over nonchain ring.

With the help of the self-orthogonal property, we construct QEC codes over Tq from cyclic
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codes over the finite ring S in this study. In this article, we also construct LCD codes using the
Gray image. The advantage of exploring quantum codes from cyclic codes over the ring S is that
many good quantum codes can be constructed. Our results extend and unify the results proved
in [5]. The two main contributions of this study are, specifically:

(i) In this paper, we discuss LCD codes over a ring S which is a nonchain ring and find the
optimal LCD codes from the Gray images of cyclic codes.

(ii) The article offers improved quantum codes than the old quantum codes appeared in
some references.

2 Preliminaries

For an odd prime p such that q = pm, where m is a positive integer. Let Tq be the field of order
q and consider the ring S = Tq[v,w]/⟨v2 − α2, w3 − β2w, vw − wv⟩, where α and β are the
nonzero elements of Tq. Simply, we see that S is a semi-local, commutative, and nonchain ring.
We start off by providing some fundamental definitions:

(i) The number of components that differ between two codewords x = x1x2 . . . xn and
y = y1y2 . . . yn is known as the Hamming distance, and it is represented by the symbol
d(x,y).

(ii) The Hamming weight of a codeword x = x1x2 . . . xn is the number of nonzero compo-
nents xi and it is represented by wt(x).

(iii) Let x,y ∈ Tn
q . The Euclidean inner product of x and y is defined as x · y =

x0y0 + x1y1 + . . .+ xn−1yn−1.

(iv) A nonempty subset E of the ring S is known as a linear code of length n if it is an
S-submodule of Sn and each element in E is called a codeword.

(v) A code E is known as self-orthogonal if E ⊆ E⊥, self-dual if E = E⊥ and dual contain-
ing if E⊥ ⊆ E.

(vi) A linear code that meets its dual trivially is called linear complementary dual code (ab-
breviated as LCD code).

(vii) If every cyclic shift of a codeword c in E is also a codeword in E, then the linear code
E of length n over S is said to be cyclic, i.e., if c = (c0, c1, c2, . . . , cn−1) ∈ E, then its cyclic
shift θ(c) = (cn−1, c0, . . . , cn−2) ∈ E, where the operator θ is known as cyclic shift.

(viii) A linear code E is said to be reversible if cr = (cn−1, cn−2, . . . , c0) ∈ E whenever
c = (c0, c1, c2, . . . , cn−1) ∈ E.

The ring S can be written as S = Tq + vTq + wTq + vwTq + w2Tq + vw2Tq such that
v2 = α2, w3 = β2w, vw = wv and an element s of S is like as s = a1 + a2v+ a3w+ a4w2 +
a5vw+ a6vw2, ai ∈ Tq, 1 ≤ i ≤ 6.

By using orthogonal idempotents, we can uniquely represent an arbitrary element of this ring
as follows :

J1 =
(α+ v)(β2 −w2)

2αβ2 ,

J2 =
(α− v)(β2 −w2)

2αβ2 ,
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J3 =
(α+ v)(βw+w2)

4αβ2 ,

J4 =
(α− v)(βw+w2)

4αβ2 ,

J5 =
(α+ v)(−βw+w2)

4αβ2

and

J6 =
(α− v)(−βw+w2)

4αβ2 .

It is straightforward to see that J2
i = Ji, JiJj = 0 and J1 + J2 + J3 + J4 + J5 + J6 = 1

where i, j = 1, 2, 3, 4, 5, 6 and i ̸= j. By the orthogonal idempotent decomposition, we have
S = J1S ⊕ J2S ⊕ J3S ⊕ J4S ⊕ J5S ⊕ J6S ∼= J1Tq ⊕ J2Tq ⊕ J3Tq ⊕ J4Tq ⊕ J5Tq ⊕ J6Tq. It
is easy to observe that JiS ∼= JiTq , where 1 ≤ i ≤ 6. Each element s ∈ S can be written as
s = J1s1 + J2s2 + J3s3 + J4s4 + J5s5 + J6s6, where si ∈ Tq and 1 ≤ i ≤ 6. Let N ∈ GL6(Tq)
be an invertible matrix such that NNT = ϵI6, the transpose of the matrix N is denoted by NT ,
I6 is an identity matrix of order 6, ϵ ∈ Tq\{0} for si ∈ Tq, 1 ≤ i ≤ 6, where GL6(Tq) is the
linear group of all 6 × 6 invertible matrices over Tq.
The Gray map Γ : S −→ T6

q is defined by Γ(J1s1 + J2s2 + J3s3 + J4s4 + J5s5 + J6s6) =

(s1, s2, s3, s4, s5, s6)N = sN, where s =
6∑

j=0
Jjsj ∈ S for sj ∈ Tq, 1 ≤ j ≤ 6. Here, we use

s for the vector (s1, s2, s3, s4, s5, s6).

The Gray map extended easily from Sn to T6n
q , defined

Γ : Sn −→ T6n
q

by

Γ(s0, s1, · · · , sn−1) = ((s0,1, s0,2, · · · , s0,6)N, (s1,1, s1,2, · · · , s1,6)N, · · · , (sn−1,1, sn−1,2, · · · ,
sn−1,6)N)

= (s0N, s1N, · · · , sn−1N),

where each si =
6∑

j=0
Jjsi,j for 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ 6.

For any element s = J1s1 + J2s2 + J3s3 + J4s4 + J5s5 + J6s6 ∈ S, the Lee weight of s is
defined as wL(s) = wH(Γ(s)), where wH represents the Hamming weight for codes over Tq.
We start this section with the following result on the Gray map:

Proposition 2.1. The Gray map Γ is a distance preserving Tq-linear map from (Sn, dL) to
(T6n

q , dH), where dL = dH .

Proof. Let s, t ∈ Sn and such that

s = J1s1 + J2s2 + J3s3 + J4s4 + J5s5 + J6s6

t = J1t1 + J2t2 + J3t3 + J4t4 + J5t5 + J6t6

and si, ti ∈ Tn
q for 1 ≤ i ≤ 6. Then, we have

Γ(s+ t) = Γ(J1s1 + J1t1 + J2s2 + J2t2 + J3s3

+J3t3 + J4s4 + J4t4 + J5s5 + J5t5

+J6s6 + J6t6)

= (s1, s2, s3, s4, s5, s6)N + (t1, t2, t3, t4, t5,

t6)N

= Γ(s) + Γ(t).
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Also for any α ∈ Tq, we have

Γ(αs) = Γ(J1αs1 + J2αs2 + J3αs3 + J4αs4 +

J5αs5 + J6αs6)

= Γ(α(J1s1 + J2s2 + J3s3 + J4s4 + J5s5

+J6s6))

= α(s1, s2, s3, s4, s5, s6)N

= αΓ(s).

Hence, Γ is Tq-linear. For second part, we know that

dL(s, t) = wL(s− t)

= wH(Γ(s− t))

= wH(Γ(s)− Γ(t))

= dH(Γ(s),Γ(t)).

Therefore, Γ is a distance preserving map.

Define ζ1 ⊗ ζ2 ⊗ ζ3 ⊗ ζ4 ⊗ ζ5 ⊗ ζ6 = {(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) | ξi ∈ ζi : 1 ≤ i ≤ 6} and
ζ1 ⊕ ζ2 ⊕ ζ3 ⊕ ζ4 ⊕ ζ5 ⊕ ζ6 = {(ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6) | ξi ∈ ζi : 1 ≤ i ≤ 6}. Let E be a
linear code of length n over S. We assume that

E1 = {t1 ∈ Tn
q | J1t1+J2t2+J3t3+J4t4+J5t5+J6t6 ∈ E, for some t2, t3, t4, t5, t6 ∈ Tn

q },

E2 = {t2 ∈ Tn
q | J1t1+J2t2+J3t3+J4t4+J5t5+J6t6 ∈ E, for some t1, t3, t4, t5, t6 ∈ Tn

q },

E3 = {t3 ∈ Tn
q | J1t1+J2t2+J3t3+J4t4+J5t5+J6t6 ∈ E, for some t1, t2, t4, t5, t6 ∈ Tn

q },

E4 = {t4 ∈ Tn
q | J1t1+J2t2+J3t3+J4t4+J5t5+J6t6 ∈ E, for some t1, t2, t3, t5, t6 ∈ Tn

q },

E5 = {t5 ∈ Tn
q | J1t1+J2t2+J3t3+J4t4+J5t5+J6t6 ∈ E, for some t1, t2, t3, t4, t6 ∈ Tn

q },

and

E6 = {t6 ∈ Tn
q | J1t1+J2t2+J3t3+J4t4+J5t5+J6t6 ∈ E, for some t1, t2, t3, t4, t5 ∈ Tn

q }.

Here, every Ei is a linear code of length n over Tq, for 1 ≤ i ≤ 6. Therefore, every linear
code of length n can be shown as E = J1E1 ⊕ J2E2 ⊕ J3E3 ⊕ J4E4 ⊕ J5E5 ⊕ J6E6 such that
|E| = |E1||E2||E3||E4||E5||E6| over S. If the rows of a matrix form a minimal generating set of
the linear code E then the matrix will be called a generator matrix of the linear code. Suppose Ni

is the generator matrix for the linear code Ei, where i = 1, 2, 3, 4, 5, 6, then a generator matrix
of E is

N =



J1N1

J2N2

J3N3

J4N4

J5N5

J6N6
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and a generator matrix of Γ(E) is

Γ(N) =



Γ(J1N1)

Γ(J2N2)

Γ(J3N3)

Γ(J4N4)

Γ(J5N5)

Γ(J6N6)


.

Proposition 2.2. Let E = J1E1 ⊕ J2E2 ⊕ J3E3 ⊕ J4E4 ⊕ J5E5 ⊕ J6E6 be a linear code having

length n over S. Then Γ(E) is a linear code having the parameters [6n,
6∑

i=1
ki, d] over Tq for

1 ≤ i ≤ 6, where each Ei is [n, ki, di] for d = min{di}.

Proposition 2.3. Let E be a linear code having length n over S. Then Γ(E) = E1 ⊗ E2 ⊗ E3 ⊗
E4 ⊗ E5 ⊗ E6.

Proof. The way of proof is same as in [6].

Theorem 2.4. If E is a self-orthogonal linear code with length n over S, then its Gray image
Γ(E) is also a self-orthogonal linear code with length 6n over Tq.

Proof. Let us consider that x, y ∈ Γ(E) such that x = (x0, x1, ..., xn−1) and y = (y0, y1, ..., yn−1).
We will show that x·y = 0. Then there exists x

′
= (x

′

0, x
′

1, ..., x
′

n−1) and y = (y
′

0, y
′

1, ..., y
′

n−1) ∈
E and N ∈ GL6(Tq) such that x = Γ(x

′
) = (x

′

0N, x
′

1N, ..., x
′

n−1N) and y = Γ(y
′
) =

(y
′

0N, y
′

1N, ..., y
′

n−1N), where NNT = λI6, λ ∈ Tq\{0} Now,

x · y = xyT

=
n−1∑
j=0

x
′

jNNT y
′

j

T

=
n−1∑
j=0

x
′

jϵI6y
′

j

T

= ϵ

n−1∑
j=0

x
′

jy
′

j .

Since x and y are arbitrary and E is self orthogonal, then we have x
′ · y′

=
n−1∑
j=0

x
′

jy
′

j = 0. Hence

x · y = 0. Consequently Γ(E) self-orthogonal linear code having length 6n over Tq.

3 Structural Properties of Cyclic Codes Over S

This section will examine the particular structure of cyclic codes over the defined ring S and give
some results. We start with the theorem over cyclic codes.

Theorem 3.1. Let E = J1E1 ⊕ J2E2 ⊕ J3E3 ⊕ J4E4 ⊕ J5E5 ⊕ J6E6 be a linear code of length
n over S. Then, E is cyclic code over S if and only if each Ei is cyclic code over Tq, where
1 ≤ i ≤ 6.

Proof. Let s be any codeword in E such that s = (s0, s1, ..., sn−1), we can write its components
as sj = J1s

1
j + J2s

2
j + J3s

3
j + J4s

4
j + J5s

5
j + J6s

6
j , where s1

j , s2
j , s3

j , s4
j , s5

j , s6
j ∈ Tq and

0 ≤ j ≤ n− 1. Let
s1 = (s1

0, s
1
1, ..., s

1
n−1),

s2 = (s2
0, s

2
1, ..., s

2
n−1),
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s3 = (s3
0, s

3
1, ..., s

3
n−1),

s4 = (s4
0, s

4
1, ..., s

4
n−1),

s5 = (s5
0, s

5
1, ..., s

5
n−1),

s6 = (s6
0, s

6
1, ..., s

6
n−1),

where s1 ∈ E1, s2 ∈ E2, s3 ∈ E3, s4 ∈ E4, s5 ∈ E5, s6 ∈ E6. Next, let us consider that
E1, E2, E3, E4, E5 and E6 are cyclic codes over Tq. This implies that

θ(s1) = (s1
n−1, s

1
0, ..., s

1
n−2) ∈ E1,

θ(s2) = (s2
n−1, s

2
0, ..., s

2
n−2) ∈ E2,

θ(s3) = (s3
n−1, s

3
0, ..., s

3
n−2) ∈ E3,

θ(s4) = (s4
n−1, s

4
0, ..., s

4
n−2) ∈ E4,

θ(s5) = (s5
n−1, s

5
0, ..., s

5
n−2) ∈ E5,

θ(s6) = (s6
n−1, s

6
0, ..., s

6
n−2) ∈ E6.

Thus J1θ(s1)+ J2θ(s2)+ J3θ(s3)+ J4θ(s4)+ J5θ(s5)+ J6θ(s6) ∈ E. It can be easily seen that
J1θ(s1) + J2θ(s2) + J3θ(s3) + J4θ(s4) + J5θ(s5) + J6θ(s6) = θ(s). Hence, θ(s) ∈ E. From
here, E will be a cyclic code over the ring S.
For the converse part, we assume that E is a cyclic code over S. Let sj = J1s

1
j + J2s

2
j +

J3s
3
j + J4s

4
j + J5s

5
j + J6s

6
j , where s1 = (s1

0, s1
1, ..., s1

n−1), s2 = (s2
0, s2

1, ..., s2
n−1), s3 =

(s3
0, s

3
1, ..., s

3
n−1), s4 = (s4

0, s
4
1, ..., s

4
n−1), s5 = (s5

0, s
5
1, ..., s

5
n−1) and s6 = (s6

0, s
6
1, ..., s

6
n−1).

Then, s1 ∈ E1, s2 ∈ E2, s3 ∈ E3, s4 ∈ E4, s5 ∈ E5 and s6 ∈ E6. Now again, s =
(s0, s1, ... , sn−1) ∈ E, then by the hypothesis θ(s) ∈ E. We have J1θ(s1)+J2θ(s2)+J3θ(s3)+
J4θ(s4)+J5θ(s5)+J6θ(s6) ∈ E. Here θ(s1) ∈ E1, θ(s2) ∈ E2, θ(s3) ∈ E3, θ(s4) ∈ E4, θ(s5) ∈
E5 and θ(s6) ∈ E6. Consequently, E1, E2, E3, E4, E5 and E6 are cyclic codes over Tq.

Theorem 3.2. Let E = J1E1 ⊕ J2E2 ⊕ J3E3 ⊕ J4E4 ⊕ J5E5 ⊕ J6E6 be a cyclic code of length n

over S and hi(s) is the generator polynomial of Ei. Then E = ⟨h(s)⟩ and |E| = q
6n−

6∑
i=0

deg(hi(s))
,

where h(s) = J1h1(s) + J2h2(s) + J3h3(s) + J4h4(s) + J5h5(s) + J6h6(s) and 1 ≤ i ≤ 6.

Proof. Given Ei = ⟨hi(s)⟩, where 1 ≤ i ≤ 6 and E = J1E1⊕J2E2⊕J3E3⊕J4E4⊕J5E5⊕J6E6.
Suppose c ∈ E such that c = {c(s) | J1h1(s)+J2h2(s)+J3h3(s)+J4h4(s)+J5h5(s)+J6h6(s)}
for hi(s) ∈ Ei. Therefore, E ⊆ ⟨J1h1(s), J2h2(s), J3h3(s),J4h4(s),J5h5(s),J6h6(s)⟩ ⊆
S[s]/⟨sn−1⟩. Now again J1q1(s)h1(s)+J2q2(s)h2(s)+J3q3(s)h3(s)+J4q4(s)h4(s)+J5q5(s)h5(s)
+J6q6(s)h6(s) ∈ ⟨J1h1(s)+J2h2(s)+J3h3(s)+J4h4(s)+J5h5(s)+J6h6(s)⟩ ⊆ S[s]/⟨sn−1⟩,
where qi(s) ∈ S[s]/⟨sn − 1⟩, there are hi(s) ∈ Tq[s]/⟨sn − 1⟩ such that

Jiqi(s) = Jihi(s),

where 1 ≤ i ≤ 6. Hence ⟨J1h1(s),J2h2(s),J3h3(s),J4h4(s),J5h5(s),J6h6(s)⟩ ⊆ E. This
implies ⟨J1h1(s),J2h2(s), J3h3(s),J4h4(s),J5h5(s),J6h6(s)⟩ = E. But |E| = |E1||E2||E3|
|E4||E5||E6|, we find that

|E| = q
6n−

6∑
i=0

deg(hi(s))
.

Theorem 3.3. Let E = J1E1 ⊕ J2E2 ⊕ J3E3 ⊕ J4E4 ⊕ J5E5 ⊕ J6E6 be a cyclic code of length
n over S. Then, there exists a polynomial h(s) ∈ S[s] such that E = ⟨h(s)⟩ and h(s) divides
(sn − 1).
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Proof. Here E = ⟨J1h1(s), J2h2(s), J3h3(s),J4h4(s), J5h5(s), J6h6(s)⟩, where hi(s) is the
generator polynomial of Ei and 1 ≤ i ≤ 6. Let h(s) = J1h1(s)+J2h2(s)+J3h3(s)+J4h4(s)+
J5h5(s)+J6h6(s). From here, ⟨h(s)⟩ ⊆ E. Now Jihi(s) = Jih(s) and 1 ≤ i ≤ 6, so E ⊆ ⟨h(s)⟩,
hence E = ⟨h(s)⟩. Since hi(s) is the right divisor of (sn − 1), pi(s) ∈ Tq[s]/⟨sn − 1⟩, where
1 ≤ i ≤ 6, such that sn − 1 = p1h1(s) = p2h2(s) = p3h3(s) = p4h4(s) = p5h5(s) = p6h6(s).
This shows that sn−1 = [J1p1(s)+J2p2(s)+J3p3(s)+J4p4(s)+J5p5(s)+J6p6(s)]h(s), i.e.,
h(s)|(sn − 1). Here, each hi(s) is unique, and hence h(s) is unique.

Theorem 3.4. Suppose E = J1E1 ⊕ J2E2 ⊕ J3E3 ⊕ J4E4 ⊕ J5E5 ⊕ J6E6 is a cyclic code having
length n over S. Then, E⊥ = J1E⊥

1 ⊕ J2E⊥
2 ⊕ J3E⊥

3 ⊕ J4E⊥
4 ⊕ J5E⊥

5 ⊕ J6E⊥
6 is also a cyclic

code having length n over S.

Proof. E⊥ is a cyclic codes of length n over S, because E is a cyclic code of length n over S.
Next, we have to prove that E⊥ = J1E⊥

1 ⊕ J2E⊥
2 ⊕ J3E⊥

3 ⊕ J4E⊥
4 ⊕ J5E⊥

5 ⊕ J6E⊥
6 . Here E

is a cyclic code over S. This shows that E is a linear code. Next, let us consider T1 = {t1 ∈

Tn
q | ∃ t2, t3, t4, t5, t6 such that

6∑
i=1

tiJi ∈ E⊥}. Hence, E⊥ is exclusively expressed as

E⊥ = ⊕6
i=1JiTi. This shows that, T1 ⊆ E⊥

1 . Conversely assume that q ∈ E⊥
1 . This means

q · s1 = 0 ∀ s1 ∈ E1. Consider y =
6∑

i=1
Jisi ∈ E. Now, J1q · y = J1s1 · q = 0. This

implies that J1q ∈ E⊥
1 . From the unique expression of E⊥, we get q ∈ T1. From here,

E⊥ ⊆ T1. Therefore, E⊥
1 = T1. In the same manner, E⊥

i = Ti for i = 1, 2, 3, 4, 5, 6. Hence,
E⊥ = J1E⊥

1 ⊕ J2E⊥
2 ⊕ J3E⊥

3 ⊕ J4E⊥
4 ⊕ J5E⊥

5 ⊕ J6E⊥
6 .

4 Quantum and LCD codes

In this section, we use the CSS(Calderbank-Shor-Steane) construction [14] to construct quantum
error correcting codes. We can construct better quantum codes than existing quantum codes in
recent references. Lemma 4.1 applies a condition over finite fields to study the necessity of cyclic
codes containing their duals. In [28], Massey introduced linear codes with complementary duals,
sometimes known as LCD codes. In this section, we also obtain LCD codes. The set of n-fold
tensor product (Kq)⊗n = Kq ⊗ Kq ⊗ ... ⊗ Kq (n- times), where Kq is the Hilbert space of
dimension q over the complex field K, is a Hilbert space having dimension qn. A quantum
code of length n and dimension qk is denoted by [[n, k, d]]q, where d is the minimum distance.
The singleton bound, n + 2 ≥ 2d + k, holds true for every quantum code. A quantum code
is considered to be MDS (maximum distance separable) if it satisfies the singleton bound. A
quantum code [[n, k, d]]q is superior to another quantum code [[n′, k′, d′]]q if either one or both
of the following conditions are met:

(i) k
n > k′

n′ and d = d′ (higher code rate with the same distance)

(ii) d > d′ and k
n = k′

n′ (higher distance with the same code rate).

Lemma 4.1. [14] [CSS Construction] Let E = ⟨h(s)⟩ be an [n, k, d] linear code with E⊥ ⊆ E
over the finite field Tq , then there exists a QEC code with parameters [[n, 2k − n, d]]q over Tq.

Lemma 4.2. [8] A cyclic code E of length n over Tq with generator polynomial h(s) contains
its dual if and only if

sn − 1 ≡ 0 mod(h(s)h∗(s)),

where h∗(s) is the reciprocal polynomial of h(s).

In view of Lemma 4.2, in the following theorem, we derive a condition for cyclic codes to
contain their duals.

Theorem 4.3. Let E = J1E1 ⊕ J2E2 ⊕ J3E3 ⊕ J4E4 ⊕ J5E5 ⊕ J6E6 be a cyclic code of length

n over S and E = ⟨h(s)⟩ =
6∑

i=1
Jihi(s), where hi(s) is the generator polynomial of Ei. Then

E⊥ ⊆ E if and only if
sn − 1 ≡ 0 mod(hi(s)h

∗
i (s)),
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where reciprocal polynomial of hi(s) is represented by h∗
i (s) for i = 1, 2, 3, 4, 5, 6.

Proof. Let sn−1 ≡ 0 mod(hi(s)h∗
i (s)) for 1 ≤ i ≤ 6. Then, by Lemma 4.2, we have E⊥

i ⊆ Ei.

Hence, this shows that JiE⊥
i ⊆ JiEi for 1 ≤ i ≤ 6. Similarly, E⊥ =

6∑
i=0

JiE⊥
i ⊆

6∑
i=0

JiEi = E.

Conversely, let E⊥ ⊆ E and
6∑

i=0
JiE⊥

i ⊆
6∑

i=0
JiEi, but each Ei is a cyclic code over Tq such that

JiEi ≡ E(modJi). This implies that E⊥
i ⊆ Ei, where 1 ≤ i ≤ 6. By Lemma 4.2, we get

sn − 1 ≡ 0 mod(hi(s)h
∗
i (s)),

where reciprocal polynomial of hi(s) is represented by h∗
i (s) for 1 ≤ i ≤ 6.

Corollary 4.4. Suppose E = J1E1 ⊕ J2E2 ⊕ J3E3 ⊕ J4E4 ⊕ J5E5 ⊕ J6E6 is a cyclic code of
length n over S. Then, E⊥ ⊆ E if and only if E⊥

i ⊆ Ei and 1 ≤ i ≤ 6.

Theorem 4.5. Suppose E = J1E1 ⊕ J2E2 ⊕ J3E3 ⊕ J4E4 ⊕ J5E5 ⊕ J6E6 is a cyclic code having
length n over the ring S and its Gray image is [6n, k, dH ]. If E⊥ ⊆ E, then there exists a QEC
code [[6n, 2k − 6n, dH ]]q.

Lemma 4.6. [28] Let E = ⟨h(s)⟩ be a cyclic code having length n over the finite field Tq.

(i) Suppose n = pλ1 · t and gcd(p, t) = 1. Then E is a linear complementary dual code
if and only if h(s) is self-reciprocal polynomial and all monic irreducible factors of that
polynomial, i.e., h(s) have the same multiplicity in h(s) and in (sn − 1).

(ii) For gcd(p, t) = 1, then E is a linear complementary dual code if and only if E is a
reversible code.

All proofs run parallel as in [16].

Theorem 4.7. Suppose E = J1E1 ⊕ J2E2 ⊕ J3E3 ⊕ J4E4 ⊕ J5E5 ⊕ J6E6 is a cyclic code having
length n over S.

(i) Then, E is a linear complementary dual code if E1, E2 ,E3,E4,E5 and E6 are linear
complementary dual codes over the finite field Tq.

(ii) For gcd(n, p) = 1, then E is a linear complementary dual code if and only if E1,E2,E3,E4,
E5, and E6 are reversible codes of length n over the finite field Tq.

Corollary 4.8. Let E = J1E1 ⊕ J2E2 ⊕ J3E3 ⊕ J4E4 ⊕ J5E5 ⊕ J6E6 be a cyclic code having
length n over S.

(i) For n = ptm, gcd(m, p) = 1 and Ei is generated by hi(s) such that hi(s) ∈ Tq and
hi(s)|(sn − 1) for i = 1, 2, 3, 4, 5, 6. Then, E is a linear complementary dual or in short
LCD code if and only if hi(s) is self-reciprocal polynomial and each monic irreducible
factor of hi(s) has the same multiplicity in hi(s) and in sn − 1 for i = 1, 2, 3, 4, 5, 6.

(ii) Suppose gcd(n, p) = 1. Then, E is a linear complementary dual code if and only if
hi(s) is a self-reciprocal polynomial in Tq for i = 1, 2, 3, 4, 5, 6.

Lemma 4.9. Let E be a linear code over S having length n.

(i) Then Γ(E ∩ E⊥) = Γ(E) ∩ Γ(E)⊥.

(ii) Then, E is a complementary dual code if and only if Γ(E) is a linear complementary
dual code having length 6n over Tq.
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5 Examples

In this section, we obtain many better quantum codes than existing quantum codes collected
from different references and we also obtain linear complementary dual codes from Gray images
of cyclic codes. In these examples, we use the Magma computation system [7] for all of the
calculations.

Example 5.1. Suppose S = T7[v,w]/⟨v2 −1, w3 −w, vw−wv⟩, n = 14 and α = β = 1. Then
s14 − 1 = (s+ 1)7(s+ 6)7 ∈ T7[s].
Take h1(s) = (s+ 1)3(s+ 6), h2(s) = h3(s) = h4(s) = h5(s) = s+ 1, h6(s) = 1

and

N =



1 3 3 3 3 3
3 1 3 3 3 3
3 3 1 3 3 3
3 3 3 1 3 3
3 3 3 3 1 3
3 3 3 3 3 1


and fulfil the condition that NNT = 4I6×6, where N ∈ GL6(T7) and I6×6 is an identity matrix.
Hence, E = J1E1 ⊕ J2E2 ⊕ J3E3 ⊕ J4E4 ⊕ J5E5 ⊕ J6E6 is a cyclic code having length 14 and
its Gray image Γ(E) is [84, 76, 4] over T7. But

s14 − 1 ≡ 0 mod(hi(s)h
∗
i (s)),

for 1 ≤ i ≤ 6. In view of Theorem 4.5, there exists a quantum code [[84, 68, 4]]7, which has
the greater code rate as well as greater minimum distance than the code [[84, 60, 3]]7 appeared in
[17].

Example 5.2. Suppose S = T5[v,w]/⟨v2 − 1, w3 − w, vw − wv⟩, n = 6 and α = 1, β = 1.
Then s6 − 1 = (s+ 1)(s+ 4)(s2 + s+ 1)(s2 + 4s+ 1) ∈ T5[s].
Take h1(s) = (s + 1)(s2 + s + 1)(s2 + 4s + 1), h2(s) = h3(s) = h4(s) = h5(s) = s + 1,
h6(s) = 1 and

N =



1 2 2 2 2 2
2 1 2 2 2 2
2 2 1 2 2 2
2 2 2 1 2 2
2 2 2 2 1 2
2 2 2 2 2 1


and fulfil the condition that NNT = I6×6, where N ∈ GL6(T5) and I6×6 is an identity matrix.
Since each hi(s) is self-reciprocal polynomial, then E is an LCD code by Corollary 4.8. By
Lemma 4.9, Γ(E) is an LCD code having the parameters [36, 27, 4]5.

Table 1. Quantum codes from cyclic code over S
n h1(s) h2(s) h3 h4(s) h5(s) h6 Γ(C ) [[n, k, d]]q [[n

′
, k

′
, d

′
]]q

10 11 1 1 1 1 1 [60, 59, 2] [[60, 58, 2]]5 [[60, 48, 2]]5[5]
11 124114 124114 124114 124114 124114 1 [66, 41, 5] [[66, 16, 5]]5 [[66, 6, 2]]5[5]
15 14041 14 14 14 14 1 [90, 82, 3] [[90, 74, 3]]5 [[90, 72, 2]]5[5]
22 124114 124114 124114 124114 124114 1 [132, 107, 4] [[132, 82, 4]]5 [[132, 72, 2]]5[5]
24 1344 12 12 12 12 1 [144, 137, 3] [[144, 130, 3]]5 [[144, 120, 3]]5[5]
30 13341 14 14 14 14 1 [180, 172, 3]5 [[180, 164, 3]]5 [[180, 156, 3]]5[5]
35 140000041 14 14 14 14 1 [210, 198, 3] [[210, 186, 3]]5 [[210, 150, 2]]5[5]
14 12056 11 11 11 11 1 [84, 76, 4]7 [[84, 68, 4]]7 [[84, 60, 3]]7[17]
38 1131 1026 1131 1026 1131 1 [228, 213, 4] [[228, 198, 4]]7 [[228, 198, 3]]7[3]
42 1104 11 11 11 11 1 [252, 245, 3] [[252, 238, 3]]7 [[252, 228, 3]]7[3]

In Table 1, we compare our QEC codes from existing QEC codes. With the help of Table 1,
we show that our QEC codes are better than the existing quantum codes that have appeared in
some references. In Table 2, by using Gray images of cyclic codes, we obtain LCD codes. Two
codes are optimal in Table 2 according to the database [15].
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Table 2. LCD codes of length n over S
n h1(s) h2(s) h3 h4(s) h5(s) h6 Γ(C ) Remarks

4 11 1 1 1 1 1 [24, 23, 2]5 optimal

6 111111 11 11 11 11 1 [36, 27, 4]5 ...

8 110011 11 11 11 11 1 [48, 39, 4]5 ...

12 11211 11 11 11 11 1 [72, 64, 4]5 ...

6 11 1 1 1 1 1 [36, 35, 2]7 optimal

18 111111 11 11 11 11 1 [108, 97, 4]7 ...

8 1551 11 11 11 11 1 [48, 41, 4]7 ...

12 11322 11 11 11 11 1 [72, 64, 4]7 ...

6 Conclusion

In this article, we studied some structural properties of cyclic codes over the defined ring S =
Tq[v,w]/⟨v2 −α2, w3 −β2w, vw−wv⟩, where α and β are the nonzero elements of finite field
Tq and obtained many QEC codes using their properties as well as we obtained optimal codes.
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