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Abstract Permutation polynomials over finite fields are an important research area in which
significant progress has been made. Some special polynomials with fewer terms serve more
effective applications than a general permutation polynomial. We review the recent substantial
contributions to the development of permutation binomials over finite fields. Significant results
and unique methodologies are emphasized. The paper is divided into two parts: the existence
and nonexistence of permutation binomials.

1 Introduction

Let Fpn be the finite field with q = pn elements, where p is a prime number and n is a positive
integer. A polynomial f(x) ∈ Fq[x] is called a permutation polynomial over Fq if the associated
mapping x→ f(x) form Fq to Fq is a permutation of Fq. The study of permutation polynomials
on finite fields began with Hermite [1], Dickson [2], and Carlitz [3] and since then has been
carried out by many other researchers Since then many researchers [42, 5, 6, 7, 37, 9, 10, 11]. The
study of permutation polynomials over finite fields have attracted people’s interest for many years
due to their wide applications in cryptography [12, 13, 14, 15, 16], coding theory [17, 18, 19]
and combinatorial designs [20].

By the Lagrange interpolation formula, it is not difficult to construct random permutation
polynomials for a given finite field. However, it is difficult to find permutation polynomials with
simple or nice algebraic appearance. Permutation polynomials with fewer terms are particularly
interesting due to their nice algebraic structure over the finite field. As an illustration, the study
of almost perfect nonlinear mappings is important because of their applications in encryption.
The monomial xr is a permutation polynomial over Fq if and only if gcd(r, q − 1) = 1. To the
same extent as it is difficult to determine the conditions on a, b, n,m and q such that binomials
axn + bxm are permutations on Fq. And so are the cases for trinomials and quadrinomials. So
far, only a few classes of permutation binomials and trinomials are known in the literature. In
2015 Hou [21] briefly surveyed the known classes of permutation binomials but very few classes
of permutation binomials were known at that time. Lately, one can observe increasing interest in
the permutation binomials in the last ten years. We follow this development, and survey recent
results on these classes of permutation binomials.

The purpose of the present paper is to review some of the recent contributions to the area
with more details and background. Our primary focus is on the results of permutation binomials
that have appeared in the last ten years. We will also present to the reader a selection process
of new approaches and novel methods that have emerged recently. There have been some recent
publications on quadrinomials, although there are few classes of permutation quadrinomials that
are well-known in the literature. For more information on quadrinomials one can refer [22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

A very important class of polynomials whose permutation behavior is well understood in the
class of Dickson polynomials, which is defined as let k be a positive integer such that 0 ≤ k ≤
p− 1 and a ∈ Fpn . The Dickson polynomial of (k + 1)th kind is,

Dn,k(x, a) =

⌊n
2 ⌋∑

i=0

n

n− k

(
n− k

k

)
(−a)kxn−2k. (1.1)

The Dickson polynomial Dn(x, a) ∈ Fq[x] is a permutation polynomial over Fq if and only if
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either a = 0 and (n, q− 1) = 1 or a ̸= 0 and (n, q2 − 1) = 1. The reversed Dickson polynomials
Dn(a, x) are reversing the parameter a and variable n in the Dickson polynomial Dn(x, a). In
the case of reversed Dickson polynomials Dn(a, x)(a ̸= 0) are permutation polynomials over
Fq if and only if Dn(1, x) does. But the big open problem with reversed Dickson polynomial
Dn(a, x)(a ̸= 0) is finding (q, n) such that Dn(1, x) is a permutation over Fq. The following re-
sults provide some basic ideas commonly used to prove that a given polynomial is a permutation
polynomial.

Hermite-Dickson criteria [1] is one of the familiar methods to construct any kind of per-
mutation polynomials. Hermite first introduced this criterion for a prime field and it was later
improved to a general finite field by Dickson.

Lemma 1.1. (Hermite-Dickson criterion)[1] Let Fq be a finite field of characteristic p. Then
f(x) ∈ Fq[x] is a permutation polynomial of Fq if and only if the following two conditions hold:

(i) f(x) has exactly one root in Fq,

(ii) for each integer t with 1 ≤ t ≤ q−2 and t ̸≡ 0 (mod p), the reduction of f(xt) (mod xq −
x) has degree ≤ q − 2.

Reduction to a given binomial f(x) = xm + axn ∈ Fq[x], where 0 ≤ n ≤ m ≤ q and a ∈ F ∗
q

using the Hermite’s criterion is there exist integers r, t, d > 0 with gcd(t, q − 1) = 1 and d|q − 1
such that f(xt) ≡ xr(xq−1/d + a) (mod xq − x).

The permutation polynomials of the form xrh(x(q−1)/d) over Fq are interesting and have a
connection between permutation polynomials of this type with permutations of the subgroup of
order d of F ∗

q . The following lemma was first stated by Wan and Lidl [35] and later modified by
Wang [36] and Zieve [37].

Lemma 1.2. [35, 36, 37] Let d, r > 0 with d|(q−1) and h(x) ∈ Fq[x]. Then f(x) = xrh(x(q−1)/d)
permutes Fq if and only if

(i) gcd(r, (q − 1)/d) = 1 and,

(ii) xrh(x)(q−1)/d permutes µd.

While applying Hermite-Dickson criteria one should deal with the binomial coefficients in the
expression of a given polynomial. The following famous theorem was first described by Lucas in
his Theorie des Nombreis is very useful to solve binomial coefficients of the polynomials during
the expansion.

Theorem 1.3. [38] Let p be a prime and n, r1, r2, . . . , rt be non-negative integers such that

n = d0 + d1p+ d2p
2 + · · ·+ dsps(0 ≤ di ≤ p− 1),∀ 0 ≤ i ≤ s,

rj = dj0 + dj1p+ dj2p
2 + · · ·+ djsps(0 ≤ dji ≤ p− 1),∀ 0 ≤ j ≤ t, ∀ 0 ≤ i ≤ s.

Then

( n
r1,r2,...,rt

) = ( d0
d10,d20,...,dt0

) . . . ( ds

d1s,d2s,...,dts
) (mod p).

Further, it follows that ( n
r1,r2,...,rt

) ̸= 0 (mod p) if and only if
∑t

i=1 dij = dj , ∀ 0 ≤ j ≤ s.

Definition 1.4. [71] Two permutation polynomials f(x) and g(x) in Fq[x] are called multi-
plicative equivalent if there exists an integer 1 ≤ d < q − 1 such that gcd(d, q − 1) = 1 and
f(x) = g(xd).

To prove any given polynomial is a permutation binomial or trinomial there are several meth-
ods. A commonly know method is Hermite-Dickson criteria [1] this is one of the familiar meth-
ods to construct any kind of permutation polynomials and while applying this criterion one can
make use of Lucas sequence [38] to compute binomial coefficients in the expressions of the poly-
nomial. However, in this method computing the

∑
x∈Fq

f(x)s goes a little lengthy and toughest
one. To overcome this difficulty recent discoveries include Lemma (1.2). The next method is
an elementary approach which involves, letting f(x) = d and u = cx + d then computing u
and x and plugging in f(x) = d leads to an equation of u with a lower degree. This method is
used often as it would be easy to find solutions to lower-degree equations. Recently, two more
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methods came into existence to compute permutation binomials and trinomials which are com-
puting fractional polynomial and multivariate methods. Computation of fractional polynomial
was initiated in [39] and the multivariate method was introduced by Dobbertin [40]. AGW Crite-
rion is another significant technique to determine a polynomial’s permutation property (Akbary,
Ghioca, Wang)[see, [42]]. By using a subfield of the finite field and a known polynomial that
permutes the subfield, it is possible to test the permutation property of any given polynomial
over the finite field.

In addition to the above methods, there is one more method based on the algebraic curves.
To investigate the solution of a system of polynomial equations one can use the resultant of
two polynomials. To identify the common factor of two polynomials we typically utilize the
gcd approach, but in higher-order fields, this may be difficult to find a common divisor for
all degree polynomials. Hence, the resultant of those two polynomials can be used for this
purpose. From the linear algebra, we know that there is a non-zero solution if and only if the
coefficient matrix has zero determinant, for more information one can refer [83]. Concerning
the connection between the resultant of two polynomials and deciding whether a polynomial
is a permutation polynomial over any field is based on the investigation of the plane algebraic
curve Cf = f(x)−f(y)

x−y = 0 has no Fq2 - rational point (a, b) with a ̸= b. So, by first factorizing
the plane curve in terms of two polynomials F (x, y) and G(x, y) and then finding its resultant
Res(F,G, y) we can prove those points do not belong to the curve using the resultant.

The paper is organized as follows, After the introduction, in Section 2 we list all the permuta-
tion binomials followed by non-existing results of permutation binomials in Section 3. A review
of recent conjectures and open problems is included in Section 2 and Section 3.

2 Existence of permutation binomials and criteria

In this section, we survey all the types of permutation binomial existence results together with
some of the proposed conjectures in the recent articles and the methods employed.

Carlitz and Wells [43] studied permutation binomials of the form xc(x(q−1)/e + a) using
the bound on Weil sum of a multiplicative character of Fq. In the following theorem, they let
d = e/q − 1 and specified sufficiency condition on permutation binomial existence for a large q.

Theorem 2.1. [43] Let e be a fixed divisor of q − 1, e > 1. Then for sufficiently large q there
exists a ∈ Fq for which x(xd + a) is a permutation polynomial.

Lidl and Niederreiter [44] determined an explicit proof for the construction of permutation
binomials using the fact that, for the odd prime and positive integers m and k such that m

gcd(m,k)

is odd, then xp
k

+ x is a permutation polynomial over Fpm . Using this tool Wan and Lidl [35]
constructed permutation polynomial of the form xrf(x(q−1)/d) which is stated in the following
lemma.

Lemma 2.2. [35] If n ≥ 2 is an integer such that q ≡ 1 (mod n), then x(q+n−1)/n + bx ∈ Fq[x]
is a permutation polynomial of Fq if and only if following hold:

(i) (−b)n ̸= 1,

(ii) ψn((b+ ωi)(b+ ωj)−1) ̸= ωj−i for all 0 ≤ i < j < n, where ω is fixed primitive nth root
of unity in Fq.

From the following corollary, one can extract permutation binomials and trinomials for k = 1
and k = 2 respectively.

Corollary 2.3. [35] Let d be a positive integer to satisfy that d/q − 1. Let f(x) ∈ Fq[x] be a
polynomial. For sufficiently large q, there is an element a ∈ Fq such that the polynomial g(x) =
xr(f(x(q−1)/d) + a)k is a permutation polynomial of Fq for all k ≥ 1 and gcd(r, q − 1) = 1.

As of now, we have read that having exactly one root in Fq is a necessary but not sufficient
condition for permutation polynomials. We can take example of cyclotomic polynomials ϕ3 =
x2 +x+1 over F3 to contradict this thought. Mollin and Small [81] characterized one particular
class of permutation binomial i.e., cyclotomic polynomial ϕm(x) over Fq which is permutation
polynomial over Fq if and only if either m = 2 or both q and m are power of 2. They defined
permutation binomials in terms of their coefficients in the subsequent theorem.
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Theorem 2.4. [81] Suppose k and j are positive integers such that q > k > j ≥ 1 and gcd(k −
j, q−1) = 1. Then axk+bxj+c with a ̸= 0 is a permutation of Fq if and only if gcd(k, q−1) = 1
and b = 0.

This theorem was proved using the fact that axk + bxj + c is a permutation polynomial if
and only if xk + a−1bxj is a permutation polynomial. They have considered two cases α = 0
and α ̸= 0 for α = −a−1b. Consequently, this leads to the fact that ax2 + bx + c(a ̸= 0) is a
permutation polynomial over Fq if and only if b = 0 and the characteristic of Fq is 2.

Followed by the element o ̸= α = −a−1b ∈ Fq chosen in [81], Small [82] considered
binomial f(x) = xi−αxj , i > j > 1 and proved that polynomial f(x) = xi−αxj of the degree
i, where 1 < i|q − 1 doesn’t permute Fq. Based on the results proved in his paper he made
observations that polynomials of the form f(x) = axi + bxj + c is a permutation polynomial in
the following cases,

(i) f permutes Fq if and only if xi − αxj does, where α = −a−1b ̸= 0, i > j > 1 with
assumption that i < q − 1 and α is not an (i− j)th power.

(ii) If gcd(i, j) = 1 and i ̸ |q − 1.

(iii) For k = i − j with assumptions that d = gcd(k, q − 1) > 1 and α(q−1)/d ̸= 1 and either
i ̸ |q − 1 + k or p| gcd(k − 1, (q − 1 + k)/i).

By using the Lucas sequence to calculate the sum of the coefficients of the polynomials and
the following criteria, Akbary and Wang [45] considered the binomials of the type xr + xu and
demonstrated that they are permutation binomials over Fq. Let p be an odd prime, q = pm and l
is a odd positive integer with p ≡ −1 (mod 1) or p ≡ 1 (mod l) and l|m,

(*) (r, s) = 1, (e, l) = 1, l odd.

Theorem 2.5. [45] Let p be an odd prime and q = pm. Let l be an odd positive integer. Let
p ≡ −1 (mod 1) or p ≡ 1 (mod 1) and l|m. Under the conditions (*) on r, e, l and s the
binomial P (x) = xr(1 + xes) is a permutation binomial of Fq if and only if (2r + es, l) = 1.

They established the existence of ϕ(l)ϕ(q−1)
2 number of permutation binomials of the form

P (x) = xr(1 + xes) over Fq under the same assumptions as Theorem (2.5) on q and l .
Charpin and Kyureghyan [46] constructed permutation binomials of the form x2k+2+νx over

F2t and determined all the parameters 0 ≤ k ≤ n− 1 and ν ̸= 0 in the following theorem.

Theorem 2.6. [46] Let 0 ≤ k ≤ n − 1 and ν ̸= 0. Then f(x) = x2k+2 + νx in F2t [x] is a
permutation polynomial of F2t if and only if t is even and

(i) either k = 1 and ν is not a third power in F2t , or

(ii) t = 2r, r ≥ 3 with r odd, k = r, and ν ∈ ωF2r , where ω ∈ F22\F2.

In the following lemma, they considered t to be even, t
gcd(t,k) is even and k is odd.

Lemma 2.7. [46] Let ν ∈ F2t , 2 ≤ k ≤ t− 1 and f(x) = x2k+2 + νx be the given polynomial in
F2t [x]. Take c = gcd(t, k − 1). Then f(x) is a permutation polynomial of F2t if and only if t

c is
odd and T t

c (γ
2k

ν) ̸= 1 for every γ in F2t .

Lemma (1.2) has been used to generate the majority of permutation polynomials; it enhances
the construction of permutation polynomials over extension fields by well-known permutation
polynomials over sub-fields like Fp or µ(q+1). Zieves [47] created various binomials and trino-
mials based on this idea, and he also provided an answer to a conjecture put out by Wu and Lin
[48]. In the subsequent corollary, he constructed a (q + 2) degree permutation polynomial over
Fq2 using a degree 3 permutation polynomial over Fq.

Corollary 2.8. [47] Pick α ∈ F ∗
q2 and write fα(x) = xq+2 +αx. Then fα(x) permutes Fq2 if and

only if one of the following occurs:

(i) q ≡ 5 (mod 6) and αq−1 has order 6,
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(ii) q ≡ 2 (mod 6) and αq−1 has order 3, or

(iii) q ≡ 0 (mod 3) and αq−1 = −1.

He provided (q2 + q + 2) degree permutation polynomials over Fq3 by using a degree 4
permutation polynomial over Fq in the next corollary.

Corollary 2.9. [47] Let q be a prime power. For α ∈ F ∗
q3 , the f(x) = xq

2+q+2 + αx permutes
Fq3 if and only if one of the following occurs:

(i) q is even and αq2
+ αq + α = 0,

(ii) q = 7 and α18 + 4α12 + 2 = 0,

(iii) q = 3 and α12 + α10 + α4 + 1 = 0,

(iv) q = 2 and α ̸= 1.

By Lemma (1.2), f(x) = xq
2+q+2 + αx permutes Fq3 if and only if gα(x) = x(x + α)(x +

αq)(x + αq2
) permutes Fq, remaining conditions never occurs if q is odd except 3 and 7. In

the following corollary, he considered binomial f(x) = x2q+3 + αx over Fq2 and determined its
permutation behavior for all the possible values of q. Sharma and Gupta [49] came up with the
same set of conditions on q and α but with different techniques to prove the binomial f(x) =
x2q+3 + αx is a permutation binomial over Fq2 .

Corollary 2.10. [47] Pick α ∈ F ∗
q2 and write f(x) = x2q+3 +αx. Then f(x) permutes Fq2 if and

only if one of the following holds:

(i) q = ±2 (mod 5) and α2q−2 − 3αq−1 + 1 = 0,

(ii) q = 5n and either αq−1 = −1 or α(q−1)/2 = −1,

(iii) q = 13 and α12 − 3α6 + 1 = 0,

(iv) q = 5 and α4 − α2 + 1 = 0, or

(v) q = 3 and either α = 1 or α2 = −1.

Remark 2.11. Using the Lemma (2.2) Bassalygo and Zinoviev [50] came out with different
conditions for the permutation binomials of the form xq+2 + αx over Fq2 and polynomial of the
form xq

2+q+2 + αx over Fq3 which were constructed by Zieve [47]. Using Lemma (2.2) they
have proved xq+2 + αx permutes Fq2 and f(x) = xq

2+q+2 + αx permutes Fq3 for all values of q
when α ∈ Fq2\Fq.

Further, they have obtained another proof of the results mentioned in[46, 51] and strength-
ened the results obtained in [52, 53]. In the Lemma (2.2) by replacing x = ωi, y = ωj for
the n = q − 1 the condition (−α)n ̸= 1 implies α ∈ Fq2\Fq. Substituting these assumptions
in (2) case of Lemma (2.2) they have obtained x(αq + x)(α + x) − y(αq + y)(α + y) = 0,
so by showing that this equation does not have any solution in Fq for all x, y ∈ Fq such that
x ̸= 0, y ̸= 0, x ̸= y they have constructed permutation binomials of the form xq+2 + αx over
Fq2 . Similarly, in the case of Fq3 for the polynomial xq

2+q+2 + αx in the Lemma (2.2) if we
replace x = ωi, y = ωj for the n = q − 1 the condition (−α)n ̸= 1 implies α ∈ Fq2\Fq. Then
x(αq2

+x)(αq+x)(α+x)−y(αq2
+y)(αq+y)(α+y) = 0 has no solution in Fq for all x, y ∈ Fq

such that x ̸= 0, y ̸= 0, x ̸= y.

Proposition 2.12. [50] The polynomial xq+2 + αx is a permutation over Fq2 if and only if α ∈
Fq2\Fq and the equation (x+ y)2 + (x+ y)(α+ αq) + αq+1 − xy = 0 has no solution in Fq for
all x, y ∈ Fq such that x ̸= 0, y ̸= 0, x ̸= y.

Also, the author described the same field with even and odd scenarios and offered a different
strategy for the results found in [46, 51].

Using the computation of permutation polynomials of the form xlg(x
pn−1
pk−1

+1
) proposed in

[47](Theorem 1.1) Wu et al. [54] stated the following lemma to determine permutation binomial
xd + ax over Fpn .
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Lemma 2.13. [54] Let n, r, k be integers such that n = rk, d = prk−1
pk−1 + 1 and a ∈ Fpn . Then

xd+ax ∈ Fpn [x] is a permutation polynomial over Fpn if and only if hα(x) = x
∑r

i=0(x+a
pik

) ∈
Fpk is a permutation over Fpk .

Following the work of Akbhary and Wang [45] on the generalized Lucas sequence, Wang
[36] characterized a class of permutation binomials in terms of the generalized Lucas sequence
and established a strong relationship between permutation binomials and the generalized Lucas
sequence.

In the following theorem Wang [36] proved binomials of the form xr(xes+1) are permutation
polynomials over Fq.

Theorem 2.14. [36] Let p be an odd prime and q = pm. Assume that l, s, r, e are positive
integers such that l is odd, q − 1 = ls and (e, l) = 1. Then p(x) = xr(xes + 1) is a permutation
polynomial over Fq if and only if

(i) (r, s) = 1,

(ii) 2s ≡ 1 (mod p),

(iii) 2r + es ̸≡ 0 (mod 1),

(iv)
∑cj/2

k=0
cj

cj−k (
cj−k
k )(−1)kacs+cj−2k = −1 ∈ Fp for all c = 1, . . . , l−1, where {an}∞n=0 is the

generalized Lucas sequence of order (l − 1)/2 and 2eϕ(l)−1r + s ≡ j (mod 21).

Later, Zieve [37] came up with a fresh approach to the Lucas sequence an, but he didn’t
change any of the prerequisites; rather, he demonstrated that when Akbary and Wang’s [45]
requirements for an were met, Zieve’s general assumptions were also met. In the consecutive
theorem, he provided adequate conditions for permutation binomials.

Theorem 2.15. [37] Pick u > r > 0 and a ∈ F ∗
q . Write s = gcd(u− r, q−1) and d = (q−1)/s.

Suppose that (η + a/η) ∈ µs for every η ∈ µ2d. Then xu + axr permutes Fq if and only if
−a ̸∈ µd, gcd(r, s) = 1 and gcd(2d, u+ r) ≤ 2.

Masuda and Zieve [56] considered binomials of the form xm+axn over Fp, where m > n >
0, a ∈ F ∗

p and characterized bound on p based on Carlitz–Well’s existence result (with k = 1).

Theorem 2.16. [56] f(x) = xm + axn over Fp, where m > n > 0, a ∈ F ∗
p is a permutation

binomial over Fp then

(i) either q ≤ (m− 2)4 + 4m− 4 or m = npi,

(ii) p− 1 ≤ (m− 1) ·max(n, gcd(m− n, p− 1)),

(iii) gcd(m− n, p− 1) ≥
√
p− ( 3

4)− ( 1
2) >

√
p− 1.

For the 3rd condition of the above theorem was improvised and verified through the computer
for p < 105 it gives gcd(m− n, p− 1) ≥ p/(2 log p).

But there doesn’t exist any permutation binomial f(x) = xm+axn over Fq, where m > n >
0, a ∈ F ∗

q such that gcd(m− n, p− 1) ≤ q/(2 log q) for at least sufficiently large q. Later author
found number T is a values of a ∈ Fq for which f(x) = xm + axn is a permutation binomial as
follows,

q − 2√q + 1
rr−1 − (r − 3)

√
q − 2 ≤ T

(r − 1)!
≤
q + 2√q + 1

rr−1 + (r − 3)
√
q

Ayad et al. [55] considered permutation binomials of the form f(x) = axn + xm and com-
puted the bound on p by taking condition gcd(n−m, p−1), which was improved case of Zieve’s
theorems [56]

Theorem 2.17. [55] If f(x) = axn + xm permutes Fp, where n > m > 0 and a ∈ F ∗
p . Let

d = gcd(n−m, q − 1) then (p− 1) ≤ (d− 1) · d
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When m = 1 and n − 1|p − 1 implies p − 1 ≤ (n − 1)(n − 3) which improves 2nd case of
Theorem (2.16). The author obtained the following corollary to generate permutation binomials,
similar to that of Hermite’s criterion for prime fields and Dickson’s for general cases were used
to obtain permutation polynomials.

Corollary 2.18. [55] Let f(x) = axn + xm ∈ Fq[x] such that a ̸= 0 and gcd(m,n) = 1. Let
d = gcd(n−m, q− 1). Suppose that d ≥ 2. Then f(x) is a permutation polynomial of Fq if and
only if

(i) f(x) = 0 has a unique solution in Fq,

(ii) for every l ∈ {1, . . . , q − 2} such that d|l, where deg ¯f l(x) ≤ (q − 2).

Based on the criterion stated by Wan and Lidl [35] for the construction of permutation poly-
nomials of the form xrh(xq−1/n), Sarkar et al. [51] determined the existence of permutation
binomials and the number of permutation binomials. Meanwhile, he also extended the work of
Carlitz [57]. In the following proposition, they characterized permutation polynomials of the
form x

2n−1
3 +1 + ax over the field of characteristic 2. Moreover, they concluded that for every

integer n = 2it, where t > 2 odd and integer n = 2i where i > 2, binomial of the form
f(x) = x(x

2n−1
3 + a) always exists.

Proposition 2.19. [51] Let n = 2k, k > 2 be any integer. Then f(x) = x(x
2n−1

3 + a) is a
permutation polynomial over F2n if and only if the elements (1+a)

2n−1
3 , ω(ω+a)

2n−1
3 , ω2(ω2 +

a)
2n−1

3 are all distinct.

Applying the criteria for construction permutation polynomials in terms of the additive char-
acteristics of the underlining finite field as described in [38], as well as based the computa-
tions on the Walsh spectrum of any Boolean function on F2n , binomial permutation polyno-
mials were created by Tu et al. [58]. They made use of the lemma in [see Lemma, [38]]
which explains how additive exponent sum and permutation polynomials are related. The au-
thor made various assumptions, such as that for an even integer n, an integer t ≥ 2, the
polynomials of the form f(x) =

∑t
i=1 uix

di for each i, 1 ≤ i ≤ t, ui ∈ F2n and di ≡ e

(mod 2
n
2 − 1) for a positive integer e. With this assumption

∑
x∈F2n

(−1)Trni (γf(x)) reduces to∑
x∈F2n

(−1)Trni (x
d1++

∑t
i=2 uiδ

d1−dixdi ) for any non-zero γ ∈ F2n can be represented on δdi for a
unique non-zero δ ∈ F2n .

Now we recall unit circle of F22m , basically, it is a set

U = {λ ∈ F22m : λ2m+1 = 1}. (2.1)

LetN(w2, w3, . . . , wt) is a number of λ’s inU such that λd1+
∑t

i=2 wiλ
di+(λd1+

∑t
i=2 wiλ

di)2m

= 0, for w2, w3, . . . , wt ∈ F2n and remaining conditions on di and i are same as defined above.
In the next theorem, they proved binomial of the form xd1 + uxd2 is a permutation polynomial.

Theorem 2.20. [58] Let positive integers n,m, e, s, l, d1 and d2 satisfy n = 2m, d1 = s(2m −
1) + e, d2 = (s − l)(2m − 1) + e and gcd(d1, 2n − 1) = 1 then the polynomial xd1 + uxd2 is a
permutation polynomial over F2n if the following conditions are satisfied:

(i) r = gcd(l, 2m + 1) > 1,

(ii) gcd(e+ l − 2s, 2m + 1) = 1,

(iii) u ∈ U\Ur, where Ur = {vr : v ∈ U}.

The same binomials are permutation polynomials over F2n even if d2 = 1.
Similarly, author proved binomial xd1 + uxd2 for n = 2m, d1 = s(2m − 1) + e, d2 =

(s − l)(2m − 1) + e and gcd(d1, 2n − 1) = 1 is a permutation polynomial over F2n with three
non-negative integers k1, k2, k3 with certain conditions on e, s, l in [see proposition 1, [58]].
Further, the author put forward the following conjecture regarding two classes of trinomials. For
the case of q = 22m+1 it was later answered by Zieve [59].
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Conjecture 2.21. [58] For an odd integer m, n = 2m,

f(x) = x2m+4 + x2m+1+3 + x2m+2+1, (2.2)

g(x) = x2m

+ x2m+1−1 + x22m−2m+1, (2.3)

are permutation polynomials over F2n .

For a positive integer d and a ∈ F ∗
q , a monomial function axd is a complete permutation

polynomial over Fq if and only if gcd(d, q−1) = 1 and axd+x is a permutation polynomial over
Fq and such d is called as complete permutation polynomial exponent. Wu et al. [53] studied four
classes of complete permutation polynomials for four different complete permutation polynomial
exponents. Together with that they constructed binomial permutations over F2n of the form
xd+ax for a ̸∈ F ∗

2k and the exponents d = 2rk−1
2k−1 +1, where gcd(d−1, 2k−1) = gcd(r, 2k−1) =

1. Later Bhattacharya and Sarkar [60] observed that for a ∈ F ∗
22t , x

24t−1
2t−1

+1
+ ax is a permutation

binomial over F24t , but there is no such a ∈ F ∗
22t such that x

28t−1
2t−1

+1
+ax is a permutation binomial

over F28t . Later independently, Bassalygo and Zinoviev [61] proved that when t ≥ 4 and even

x
24t−1
2t−1

+1
+ ax is not a permutation binomial over F24t but it is when t ≥ 3 and odd.

After some time Bhattacharya and Sarkar [60] computed permutation binomials of the form

x
2n−1
2t−1

+1
+ ax ∈ F2n [x], n = 2st, a ∈ F ∗

22t which is generalization of the forms discussed in
[48, 61] as well they computed permutation trinomials of the form x2s+1+x2s−1+1+αx ∈ F2t [x],
where s, t are positive integers.

Theorem 2.22. [60] Let s, t be positive integers and n = 2st. Then the polynomial x
2n−1
2t−1

+1
+

ax ∈ F2n [x], where a ∈ F ∗
22t is a permutation polynomial of F2n if and only if

(i) t is odd,

(ii) s ∈ {1, 2} and

(iii) a ∈ ωF ∗
2t ∪ ω2F ∗

2t , where ω ∈ F22 is a root of the equation ω2 + ω + 1 = 0.

In addition to the aforementioned theorem, they discovered that there are 2(2t−1) a’s in F22t

for odd t such that x
2n−1
2t−1

+1
+ ax ∈ F2n [x] is a permutation binomial.

Using the concept of reversed Dickson polynomials of (k+1)th kind, Fernando [62] extracted
permutation binomials and trinomials when n = pl + 2, where l ∈ N . In the following theorem,
we state their permutation binomial of the form xn + x.

Theorem 2.23. [62] Let p = 3 and q = 3e, where e is a non-negative integer. Let f(x) =

x
pl−1

2 + x. Then f(x) is a permutation polynomial of Fq if and only if

(i) l = 0, or

(ii) l = me+ 1, where m is a non-negative even integer.

It is typically challenging to consider any binomials and trinomials of the form xrh(xq+1)
without making any additional assumptions about the coefficients. Sharma and Gupta [49] es-
tablished the requirements for the coefficients that are both necessary and sufficient for such
polynomials to be permutation polynomials. They have considered permutation binomials of the
form xrh(xq+1), where h(x) = x + a for r = 1, 2, 3, 4 and h(x) = x2 + a for r = 1, 2 and
trinomials with h(x) = x2 + bx + a for r = 1, 2. The trinomials with h(x) = x2 + bx + a for
r = 1, 2. By Lemma (1.2) f(x) = xr(xk(q+1)+a) permutes Fq2 if and only if gcd(r, q + 1) = 1
and g(x) = xr(xk + a)q+1 permutes µq+1 = F ∗

q if and only if g(x) permutes Fq. g(x) can be
further simply as, for α ∈ Fq we have αq = α, therefore g(α) = αr(α2k + (aq + a)αk + aq+1).
If a1 = aq + a, and a2 = aq+1 then G(x) = xr(x2k + a1x

k + a2). Using all these techniques
Sharma and Gupta stated the following theorems. In the following theorem they have considered
f(x) = xrh(xq+1), where h(x) = x+ a for r = 1, 2, 3, 4.
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Theorem 2.24. [49] The polynomial f(x) = xrh(xq+1), where h(x) = x + a permutes Fq2 if
and only if

(i) r = 2, q = 2 and a ̸= 1,

(ii) r = 3, either q = 2 and a ̸= 1 or q = 3 and a2 = −1,

(iii) r = 4, q = 2 and a ̸= 1.

In the next theorem, they have taken h(x) = a+ x2 and r = 2.

Theorem 2.25. [49] The polynomial f(x) = ax2 + x2q+4 permutes Fq if and only if q is even,
q ≡ 2 (mod 3) and a2(q−1) + aq−1 + 1 = 0.

Very recently, some of the results were listed on the permutation binomials of the form
fq,r,t,a = xr(a + xt(q−1)) over Fq2 , where 1 ≤ r ≤ q2 − 2, 1 ≤ t ≤ q and a ∈ F ∗

q2 . A nec-
essary condition for fq,r,t,a to be a permutation polynomial of Fq2 is that gcd(r, q − 1) = 1.
If p = charFq divides t then fq,r,t,a(x) = fq,r′ ,t,a(x

p) (mod xp − x), where 1 ≤ r
′ ≤

q2 − 2 is such that r
′
p ≡ r (mod q2 − 1), which implies fq,r,t,a(x) = fq,r′ ,t,a(x

d), where
d = gcd(r, t) and another necessary condition for fq,r,t,a to be a permutation polynomial of Fq2

is that (−a)(q+1)/ gcd(q+1,t) ̸= 1. Concerned with permutation binomials of the form f = axr +
xt(q−1)+r, the necessary and sufficient conditions on (q, r, t, a) for f to be a permutation polyno-
mial are not known completely. Many studies on permutation binomials [59, 63, 64, 65, 66] have
been conducted under these circumstances. More specifically, Hou [?] considered e = 2, Liu
[67] took e = 3 and odd q and both of them proved that f(x) = xr(xq−1 + a) is a permutation
polynomial over Fqe . In addition, Masuda et al. [68] described similar permutation binomials
over Fqe for e ∈ {2, 3, 4} and also over Fpe when e ∈ {5, 6}. Hou [64]confirmed that when r = 1
and t > 2 there are only finitely many (q, a) with conditions aq+1 ̸= 1 and gcd(rp, t(q− 1)) = 1
such that fq,r,t,a is a permutation polynomial of Fq2 . Firstly, Hou [63] studied binomials of the
form ax + x2q−1 its equivalent form was conjectured, that originated from certain permutation
polynomials over finite fields defined by functional equations. Moreover, Hou [?] determined
an infinite family of permutation binomials for r = 1, 3 and t = 2 over Fq2 . Together with that,
he proved, that if r > 3 and q is not too small relative to r then f is not a permutation of Fq2 .
In the following table, we list all the possible conditions on (q, r, t, a) for which the binomial
f = axr + xt(q−1)+r is a permutation polynomial over Fq2 .



114 Varsha Jarali, Prasanna Poojary and Vadiraja Bhatta G.R.∗

Table 1. conditions on (q, r, t, a) for which the f = axr+xt(q−1)+r is a permutation polynomial
over Fq2 .

q r t a fq,r,t,a ref
q + 1 ≡ 0
(mod t)
q odd

1
1

t > 2 fixed prime
t = 2

aq+1 ̸= 1
−aq+1 ̸= −1 or
3

fq,1,t,a
fq,1,2,a

[64]
[64]

q power of a
prime
q ≡ ±1
(mod 12)
q ≡ 1 (mod 4)
q ≡ −1
(mod 6)

1 2
a = −3
a = 1
a = 3

fq,1,2,a over Fq [63]

q is odd 1 2 (−a)(q+1)/2 =
−1 or 3 fq,1,2,a [69]

1 2 (−a)(q+1)/2 = 3 fq,1,2,a [?]

q = 2e, e odd 1 3
a

q+1
3 primitive

3rd root of unity
and aq+1 = 1

fq,1,3,a [66]

q ≥ 5, q =
24k+2

q ≥ 7
1 5

7 a(q+1)/5 ̸= 1

fq,1,5,a
Theorem(2.26),
fq,1,7,a
Theorem(2.27)

[65]

q odd, q ̸≡ 1
(mod 3) 3 2 (−a)(q+1)/2 =

−1 or 1/3 fq,3,2,a

3 2 (−a)(q+1)/2 =
1/3 fq,3,2,a [?]

q + 1|r − 1 r ≥ 1 and
gcd(r, q−1) = 1 1 aq+1 ̸= 1 fq,r,1,a [?]

q = 2m, m ≥ 4
even

gcd(r, q − 1) =
1 and r ≡ 3
(mod q + 1)

3 aq+1 ̸= 1 fq,r,3,a
Theorem(2.38) [70]

q = 2m, m ≥ 5
odd

gcd(r, 3(q −
1)) = gcd(r −
3, q + 1) = 1

3
a(q+1)/3 primi-
tive 3rd root of
unity

fq,r,3,a
Theorem(2.39) [70]

gcd(r, q−1) = 1 gcd(r − t, q +
1) = 1

(−a)(q+1) gcd(q+1,t)

̸= 1 fq,r,t,a [59]

gcd(r − t, q +
1) = 1 aq+1 = 1 fq,r,t,a [?]

Lappano [65] presented permutation binomials of the form ax+ x5q−4 and ax+ x7q−6 over
Fq2 and mentioned a conjecture regarding permutation behaviour of f(x) = ax+ xr(q−1)+1 for
odd primes r.

Theorem 2.26. [65] Assume q ≥ 5. Let f(x) = ax+x5q−4 ∈ Fq2 [x]. Then f(x) is a permutation
polynomial of Fq2 if and only if one of the following occurs;

(i) q = 24k+2 and a
q+1

5 ̸= 1 is a fifth root of unity,

(ii) q = 32 and a2 is a root of (1 + x)(1 + x2)(2 + x + x2)(1 + x + x2 + x4)(1 + x2 + x3 +
x4)(1 + 2x+ x2 + 2x3 + x4),
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(iii) q = 19 and a4 is a root of (1+x)(2+x)(3+x)(4+x)(5+x)(9+x)(10+x)(13+x)(17+
x)(16 + 3x+ x2)(1 + 4x+ x2)(6 + 18x+ x2),

(iv) q = 29 and a6 ∈ {15, 18, 22, 23},

(v) q = 72 and a10 is a root of (1 + 4x+ x2),

(vi) q = 59 and a12 is a root of (4 + x)(55 + x)(x2 + 36),

(vii) q = 26 and a13 is a root of (1 + x+ x2)(1 + x+ x3).

Theorem 2.27. [65] Assume q ≥ 7. Let f(x) = ax+x7q−6 ∈ Fq2 [x]. Then f(x) is a permutation
polynomial of Fq2 if and only if one of the following occurs;

(i) q = 13 and a2 is a root of (1 + x)(2 + x)(3 + x)(4 + x)(5 + x)(6 + x)(7 + x)(8 + x)(9 +
x)(10 + x)(11 + x)(12 + x+ x2)(9 + 2x+ x2)(10 + 3x+ x2)(9 + 4x+ x2)(12 + 4x+
x2)(10x + 5x + x2)(3 + 6x + x2)(1 + 7x + x2)(4 + 7x + x2)(1 + 8x + x2)(12 + 9x +
x2)(1 + 10x+ x2)(3 + 12x+ x2)(4 + 12x+ x2)(12 + 12x+ x2),

(ii) q = 33 and a4 is a root of (2+x+x2 +x3)(1+ 2x+x2 +x3)(1+x+ 2x2 +x3)(2+ 2x+
2x2 + x3)(1 + 2x+ x2 + 2x3 + x4 + 2x5 + x6),

(iii) q = 41 and a6 is a root of (9+x)(10+x)(26+x)(30+x)(32+x)(34+x)(35+x)(37+
x)(39 + 2x+ x2)(1 + 14x+ x2)(20 + 40x+ x2).

Using the above theorem author proposed the following conjecture.

Conjecture 2.28. [65] Let t > 2 be a fixed prime. If both (q + 1) ≡ 0 (mod t) and a(q+1)/t are
not t−th roots of unity, then there are only finitely many values (q, a), where a ∈ F ∗

q2 , for which
f = ax+ xt(q−1)+1 ∈ Fq2 [x] is a permutation polynomial of Fq2 .

The same conjecture was individually proposed by Hou [69] and Lappano [65] when t > 2
be a fixed prime, under the assumption that aq+1 ̸= 1(a ∈ F ∗

q2) there are only finitely many (q, a)
for which f is a permutation polynomial of Fq2 . Recently, Hou [64] answered this conjecture by
using the following theorem.

Theorem 2.29. [64] Assume that f is a permutation polynomial of Fq2 . Then gcd(t, q + 1) >
1 and (−a)(q+1)/ gcd(t,q+1) ̸= 1. In particular, if t is a prime, then q + 1 ≡ 0 (mod t) and
(−a)(q+1)/t ̸= 1.

Together with this he also proved that when r ≥ 3 and p = {2, 3, 5} with certain conditions
on power τ of p then f is not a permutation polynomial of Fq2 .

After the determination of permutation binomials [63] of the form ax+ x2q−1(a ∈ F ∗
q2) Hou

and Lappano [66] presented another permutation binomial of the form ax + x3q−2 over Fq2 . In
the following theorem, they mentioned certain conditions on q and a ∈ F ∗

q2 .

Theorem 2.30. [66] Let f(x) = ax+x3q−2 ∈ Fq2 [x], where a ∈ F ∗
q2 . Then f(x) is a permutation

polynomial of Fq2 if and only if one of the following occurs;

(i) q = 22k+1 and aq+1/3 is a primitive 3rd root of unity,

(ii) q = 5 and a2 is a root of (x+ 1)(x+ 2)(x− 2)(x2 − x+ 1),

(iii) q = 23 and a3 is a root of x3 + x+ 1,

(iv) q = 11 and a4 is a root (x− 5)(x+ 2)(x2 − x+ 1),

(v) q = 17 and a6 = 4, 5,

(vi) q = 23 and a8 = −1,

(vii) q = 29 and a10 = −3.

Moreover, Hou [?] determined an infinite family of permutation binomials for r = 1, 3 and
t = 2 over Fq2 . Together with that, he proved, that if r > 3 and q is not too small relative to r
then f is not a permutation of Fq2 . In the following theorem, he determined the necessary and
sufficient conditions on (q, r, a) for fq,r,1,a to be a permutation polynomial of Fq2 .
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Theorem 2.31. [?] For r ≥ 1 and a ∈ F ∗
q2 , fq,r,1,a is a permutation polynomial of Fq2 if and only

if gcd(r, q − 1) = 1, q + 1|r − 1, and aq+1 ̸= 1.

Using the Hermite criterion, Li et al. [71] determined permutation binomials over Fq2 . They
used well know the concept that, f(x) = g(h(x)) is a permutation polynomial over Fq if and
only if both g(x) and h(x) permutes Fq. If h(x) = xd, then f(x) = ag(xd) permutes Fq if
and only if gcd(d, q − 1) = 1 and g(x) does for any a ∈ F ∗

q and 1 ≤ d ≤ q − 1. Later
author defined that if any such polynomials f(x) and g(x) satisfy these properties then they are
multiplicatively equivalent. So far, we are familiar with the fact that any two polynomials f(x)
and g(x) equivalent if f(x) = cg(ax + b) + d, where a, c ∈ F ∗

q and b, d ∈ Fq. They proved
the binomial f(x) = xr(xq−1 + a) permutes Fq2 if and only if r = 1 and aq+1 ̸= 1, where
1 ≤ r ≤ q + 1.

Later Masuda et al. [68] characterized permutation binomials of the form f(x) = xr(xq−1 +
a) ∈ Fqe [x] over Fqe for e ∈ {2, 3, 4} and over Fpe where e ∈ {5, 6} for odd prime p. The
existing results are listed below.

Theorem 2.32. [68] Let f(x) = xr(xq−1 + a) ∈ Fqe [x] with 2 ≤ e ≤ 6 and a ̸= 0 and let
l = qe−1 + · · ·+ q + 1,

(i) when e = 2, 3, 4, f(x) permutes Fqe if and only if (−a)l ̸= 1, gcd(r, q − 1) = 1 and r
(mod 1) ∈ {1, l − q}.

(ii) when e = 5 and q is an odd prime, f(x) permutes Fqe if and only if (−a)l ̸= 1, gcd(r, q −
1) = 1 and r (mod 1) ∈ {1, l − q, q3 + 1, q4 + q2 + 1}.

(iii) when e = 5 and q is an odd prime, f(x) permutes Fqe if and only if (−a)l ̸= 1, gcd(r, q −
1) = 1 and r (mod 1) ∈ {1, l − q}.

In the following theorem, they have characterized the existence of the permutation binomials
f(x) = xr(xq−1 + a) ∈ Fqe [x] over Fqe for arbitrary e.

Theorem 2.33. [68] Let f(x) = xr(xq−1 + a) ∈ Fqe [x] with e ≥ 2 and a ̸= 0 and let l =
qe−1 + · · ·+ q+ 1. Then f(x) permutes Fqe and is the composition of a linearized binomial and
a monomial if and only if (−a)l ̸= 1 and r = sl+

∑k−1
i=0 q

hi (mod qe−1), where gcd(h, e) = 1,
k (mod e) = h−1, s is a positive integer and gcd(r, q − 1) = 1.

In addition to these investigations, they also proved that there do not exist permutation bino-
mials of the form f(x) = xr(xq−1 + a) ∈ Fqe [x] over Fqe for e ≥ 2 and q ̸= 2. When q = 2, the
binomial take the form f(x) = xr(x+ a) which does not permutes F2e if a ̸= 0. Based on these
observations they did a computer run for qe < 108 and proposed the following conjecture for a
more generalized value of e and t = 1.

Conjecture 2.34. [68] Let f(x) = xr(xq−1 + a) ∈ Fqe [x] with e ≥ 2 and a ̸= 0 and let
l = qe−1+· · ·+q+1. Then f(x) permutes Fqe if and only if f(x) is congruent to the composition
of a linearized binomial L(x) = xq

h

+ ax and a monomial xr modulo xq
e − x, where (−a)l ̸= 1

and gcd(r, q − 1) = 1.

Using the relationship between the polynomials and the number of rational points on alge-
braic curves, Oliveira and Martinez [72] determined the exact number of elements a ∈ Fq for
which the binomial xn(x

q−1
r +a) is a permutation polynomial in the cases r = 2 and r = 3. In the

following theorem, they estimated the number of permutation binomials of the form xn(x
q−1

2 +a)
related to points on an algebraic curve of degree 2.

Theorem 2.35. [72] Let n be an integer such that gcd(n, q−1
2 ) = 1. The number of elements

a ∈ Fq for which the binomial xn(x
q−1

2 + a) permutes Fq is given by the formula q−2+(−1)n

2 .

Using the criteria determined by Wan and Lidl [35] (Theorem 1.2), Oliveira and Martinez
[72] stated the following lemma to determine the number of permutation binomials of the form
xn(x

q−1
3 + a).
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Lemma 2.36. [72] Let n be a positive integer. The polynomial f(x) = xn(x
q−1

3 + a) is a
permutation polynomial over Fq if and only if the following conditions are satisfied

(i) gcd(n, q−1
3 ) = 1,

(ii) a ̸∈ {−1,−ζ, ζ2},

(iii) η
(

ζ+a
1+a

)
̸= δ2n,

(iv) η
(

1+a
ζ2+a

)
̸= δ2n,

(v) η
(

ζ2+a
ζ+a

)
̸= δ2n.

In the following theorem, they estimated the number of permutation binomials of the form
f(x) = xn(x

q−1
3 + a) related to rational points on an elliptic curve.

Theorem 2.37. [72] Let q = pk. Assume q ≡ 1 (mod 3). Let n be a positive integer such that
gcd(n, q−1

3 ) = 1. The number of elements a ∈ Fq for which the binomial f(x) = xn(x
q−1

3 + a)

permutes Fq is given by 2q−3(ϵ1+ϵ2)−10−2(πk
p+π̄p

k)

9 , where πp = −kp

2 + i

√
p− −k2

p

4 ,

ϵ1 =

{
−2, if q − 3n ≡ 1 (mod 9)
1, if q − 3n ̸≡ 1 (mod 9)

and ϵ2 =

{
−2, if n ≡ 0 (mod 3)
1, if n ̸≡ 0 (mod 3)

By generalizing the form which was discussed in [66], Tu et at. [70] determined the all the
values of r and a such that the binomial f(x) = xr(a+ x3(q−1)) is a permutation over Fq2 with
q = 2m. Characterization was based on the case of even m and odd m with 3|m, which further
shows that the characterization is necessary and sufficient for almost all r values. They defined
permutation binomials in the following theorem where m is an even positive integer with m ≥ 4.

Theorem 2.38. [70] Let q = 2m with an even positive integer m ≥ 4. Then for a ∈ F ∗
q2 ,

f(x) = xr(x3(q−1) + a) permutes Fq2 if and only if gcd(r, q − 1) = 1, r ≡ 3 (mod q + 1) and
aq+1 ̸= 1.

In the next theorem, they characterized permutation binomials when m is odd.

Theorem 2.39. [70] Let q = 2m with an odd positive integer m ≥ 5. if gcd(r, 3(q − 1)) =

gcd(r − 3, q + 1) = 1 and a ∈ F ∗
q2 such that a

q+1
3 is a primitive 3rd root of unity, then f(x) =

xr(x3(q−1) + a) permutes Fq2 .

When r is a positive integer they also concluded that the conditions mentioned above are
necessary in one of the cases (i) 3 ̸ |m; (ii) 3|m and r (mod (q + 1)) satisfies either r = k q+1

9 +

3, k ∈ {0, 1, . . . , 8} or r = k q+1
9 + r2 + 3, k ∈ {0, 1, . . . , 8}, 0 < r2 <

q+1
9 and (k, r2) ̸∈ S1 ∪ S2,

where S1 and S2 are defined in [70].

3 Non-existence of permutation binomials

Several findings demonstrate that permutation polynomials do not exist. Cavior [73] investigated
octic form of permutation polynomials of the form f(x) = x8 + axt with 1 ≤ t ≤ 7 where t is
odd. Chou [74] answered Cavior’s [73] questions on existence of permutation binomials of the
form f(x) = x8 + ax5 ∈ Fq if n = 1 and a = 3 or a = 4 and q = 7n. In addition to that he
proved f(x) = x8 +ax5 is a permutation polynomial of F11n if and only if n = 1 and a = 2, 4, 7
or a = 9. Finally he proved that f(x) = x8 + ax5 is not a permutation polynomial over F13n for
a ∈ F13n . Later Dickson [2] proved that x4 + 3x over F7 is a permutation polynomial but not
over F7n for n > 1, this was further generalized by Carlitz [57] as, when q = 2m+1 and a ∈ F ∗

q

is suitably chosen then f(x) = xm+1 + ax is a permutation polynomial over Fq when q ≥ 7 but
not on Fqr with r > 1 and he raised the same question for q = 3m+ 1. The same statement can
be generalized as for fixed integer k ≥ 2 and q = km+ 1 there exist a constant Nk and a ∈ Fq

such that f(x) = xm+1 + ax is a permutation polynomial for Fq provided q > Nk. Using the
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following theorems stated by Niederreiter and Robinson [75] for non-existence of permutation
binomials when q ≥ (k2 − 4k+ 6)2, Wan [76, 77] answered Carlitz [57] question for the case of
q = 3m+ 1 when p ̸= 2.

Theorem 3.1. [75] Let k > 2. Then

(i) if k is not a prime power, then for all finite fields Fq with q ≥ (k2 − 4k + 6)2 there is no
permutation polynomial of Fq of the form axk + bx ∈ Fq[x] with ab ̸= 0;

(ii) if k is power of the prime p, then for all finite fields Fq with q ≥ (k2 − 4k + 6)2 and
characteristic̸= p there is no permutation polynomial of Fq of the form axk + bx ∈ Fq[x]
with ab ̸= 0.

Remark 3.2. In general for m ≥ 2 and a ̸= 0 it is not clear that the polynomial of the form
f(x) = x1+ q−1

m + ax where q ≡ 1 (mod m), is a permutation polynomial or not over Fq. But
when m = q−1

pi−1 where, Fpi ⊂ Fq then f(x) is a permutation polynomial of Fqr if and only if

(−a)(qr−1)/(pi−1) ̸= 1.

Chou [74] considered a specific kind of permutation binomial which was a general form of
the polynomial considered in [73] and Chou adopted the same method as considered in [73] to
prove the following theorem.

Theorem 3.3. [74] Let q = pn with p is an odd prime and n is a positive integer. Let k, j be
integers with 1 ≤ j < k such that k|(p2 − 1) and (k− j)|(p− 1). Write (p2 − 1)/k = lp+ r with
1 ≤ r ≤ p − 1. If (p − 1)/(k − j) ≤ l + r + p then for all n ≥ 2, f(x) = bxk + axj is not a
permutation polynomial of Fq for any a, b ∈ F ∗

q .

Ayad et al. [78] proved non-existence of permutation binomials of the form f(x) = axn+xm

over Fq based on the certain congruence condition on d, where d = gcd(n−m, q− 1) which are
mentioned below.

Theorem 3.4. [78] Let f(x) be a binomial such that d > 1. If p ≡ 1 (mod d2) then f(x) is not
a permutation polynomial of Fq.

Theorem 3.5. [78] Let f(x) be a binomial such that d > 1. Suppose that there exists an inte-
ger δ > d

2 such that n ≡ 0 (mod 2δ) and q ≡ 1 (mod 2δ). Then f(x) is not a permutation
polynomial of Fq.

Theorem 3.6. [78] Let f(x) = axn + xm be a binomial. Suppose that n is even, p ̸= 2, n ≡ m
(mod 9) and gcd(n−m, q − 1) = 3. Then the following assertions hold:

(i) If p ≡ −1 (mod 3) then f(x) is not a permutation polynomial of Fq.

(ii) If p ≡ 1 (mod 3) and for every primitive cube root of ζ ∈ Fp the polynomial g(x) =
ζaxn−m + 1 has no root in Fq then f(x) is not a permutation polynomial of Fq.

Theorem 3.7. [78] Let k and d be positive integers such that d ≥ 2, 1 ≤ k ≤ d− 1, d|q − 1 and
d2 < q − 1. Then, for any a ∈ Fq, the polynomial f(x) = axm+d + xm does not permute Fq if
m satisfies one of the following conditions;

(i) m = k(q − 1)/d,

(ii) m = u+ k(q − 1)/d with q−1
d − d ≤ u ≤ q−1

d − 1 and ( d
q−1
d −u) ̸= 0 (mod p).

In the next theorem they considered that, 2 ≤ d|q + 1, for sufficiently large q and aq+1 ̸= 1.
If n = 1 then the following theorem covers the result of [79].

Theorem 3.8. [78] Let n ≥ 1, d ≥ 2 and a ∈ F ∗
q2 be such that d|q + 1, q ≥ (2max{n, 2d− n})4

and aq+1 ̸= 1. Then f(x) = xn(a + xd(q−1)) is not a permutation binomial of Fq2 if one of the
following conditions is satisfied;

(i) d− n > 1 and gcd(d, n+ 1) is a power of 2,
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(ii) d+ 2 ≤ n < 2d and gcd(d, n− 1) is a power of 2,

(iii) n ≥ 2d, gcd(d, n− 1) is a power of 2, and gcd(n− d, q − 1) = 1.

Based on their observations, they also questioned that, when d− n = ±1 and e > 2 are there
infinite classes of permutation binomials of the form f(x) = xn(a+ xd(q−1)) of Fqe?

Together with construction of permutation binomials of the form fq,r,t,a over Fq2 Hou [?]
investigated that if r > 3 and q is not too small relative to r, then f is not a permutation of Fq2 .
More precisely, the result has been stated in the following theorem.

Theorem 3.9. [?] Let f = fq,r,2,a = xr(a + x2(q−1)), where r and q are both odd, r > 3, and
a ∈ F ∗

q2 is such that aq+1 ̸= 1. Then f is not a permutation polynomial of Fq2 if

q ≥


r2 − 4r + 5 if r ≡ 3 (mod p),
8r − 15 if r ̸≡ 3 (mod p) and either p = 3 or r ≡ 7/4 (mod p),
6r − 11 if p > 3 and r ̸≡ 3, 7/4 (mod p).

The permutation binomials of the form xr(xq−1 + a) over Fq2 which was considered by Li et
al. [71] was further studied by Liu [67] over Fq3 and Fqe where e is a large value using different
method. In the following theorem he proved that f(x) = xr(xq−1 + a) is almost always not a
permutation polynomial over Fq3 except for the case that r = 1.

Theorem 3.10. [67] Let f(x) = xr(xq−1 + a) ∈ Fq3 [x], 1 ≤ r ≤ q2 + q + 1. Then f(x) is a
permutation binomial over Fq3 if and only if r = 1, here aq

2+q+1 ̸= −1 and q is a power of an
odd prime.

Later in the following theorem he proved that f(x) = xr(xq−1 + a) ∈ Fqe [x] for large value
of e is not a permutation binomial over Fqe .

Theorem 3.11. [67] Let 1 < r < q
e
4 − q + 3 be an integer, and a ∈ F ∗

qe , q ≥ 6. Then
f(x) = xr(xq−1 + a) is not a permutation polynomial over Fqe .

Hou and Lavorante [80] investigated the non-existence of permutation binomials of the form
xn(a + xd(q−1)) where n, d are positive integers and a ∈ F ∗

q2 . In the following theorem, they
proved the non-existence of binomials of the form xn(a+xd(q−1)) when q is even and sufficiently
large and aq+1 ̸= 1. This theorem partially confirms the conjecture proposed by Tu et al. [70].

Theorem 3.12. [80] Let q = 2m, n ≥ 1 and a ∈ F ∗
q2 be such that q ≥ (2max{n, 6 − n})4 and

aq+1 ̸= 1. Then f(x) = xn(a+ x3(q−1)) is not a permutation binomial of Fq2 .

Hou [79] investigated the binomials of the form f(x) = x(xr(q−1) + a) for large q and
concluded that, these binomials can not permute Fq2 when r > 2, q ≥ 28(r − 1)4, a ∈ F ∗

q2 and
aq+1 ̸= 1 using Hasse–Weil bound.

On the bases of observations made in Table 2, we come to know that, the binomials of the
form fq,r,t,a = xr(a + xt(q−1)) over Fq2 , where 1 ≤ r ≤ q2 − 2, 1 ≤ t ≤ q, a ∈ F ∗

q2 are
not know completely. Finding the necessary and sufficient condition on (q, r, t, a) for fq,r,t,a =
xr(a+ xt(q−1)) to be a permutation polynomial is itself a difficult task. Based on these insights,
the following open problem is suggested for the readers’ future work.

Open problem 1. Find the necessary and sufficient conditions on (q, r, t, a) such that fq,r,t,a =
xr(a+xt(q−1)) is a permutation binomial over Fq2 , where 1 ≤ r ≤ q2 −2, 1 ≤ t ≤ q and a ∈ F ∗

q2

when t > 3 and r > 4 for large q.

4 Conclusion

The richness of finite fields is enhanced due to the ability of polynomials that permute the ele-
ments. Over many decades, various classes of permutation polynomials have been investigated.
In recent years, the topic of generating these polynomials has taken the limelight. In this paper,
we surveyed all existing and nonexisting classes of permutation binomials with all mentioned
methodologies. Furthermore, using similar methods, many new permutation binomials can be
obtained.
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