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Abstract The main objective of this paper is to investigate the commutativity of ∗-prime rings
with second kind involution ∗, which requires a pair of derivations that satisfy certain differential
identities. Lastly, we give few examples to show that the assumptions made for our findings are
not superfluous.

1 INTRODUCTION

All through this paper, R will be used to describe an associative ring, and JZ is the centre of
R. For any t1, t2 ∈ R, the notation [t1, t2] illustrates the commutator t1t2 − t2t1, and t1 ◦ t2
illustrates the anti-commutator t1t2 + t2t1. R is called 2-torsion free if 2t1 = 0 =⇒ t1 = 0. We
use the basic identities [t1t2, t3] = t1[t2, t3] + [t1, t3]t2 and [t1, t2t3] = [t1, t2]t3 + t2[t1, t3] for all
t1, t2, t3 ∈ R very frequent. Recall that an involution is an order 2 anti-automorphism. A ring R
is called ∗-prime if aRb = aRb∗ = (0) or a∗Rb = aRb = (0) implies a = 0 or b = 0. Every
prime ring is a ∗-prime ring but converse is not true in general; for instance let S = R × R0,
where R0 is the opposite ring of R. The mapping ∗ on S as (t1, t2)∗ = (t2, t1). Thus S is a
∗-prime ring but S is not a prime ring. We define “ an element t1 in R is said to be hermitian if
t∗1 = t1 and skew-hermitian if t∗1 = −t1." Where JH denotes the set of hermitian elements and
JS denotes the set of skew-hermitian elements of R. If char(R) ̸= 2 then every t1 ∈ R can be
uniquely expressed as 2t1 = h+ k where h ∈ JH and k ∈ JS . If JZ ⊆ JH , then ∗ is said to be
of first kind otherwise, it is called second kind and in this case JS ∩ JZ ̸= (0) . Any t1 ∈ R is
called normal, if its commutes with its image under involution ∗, and R is called normal if every
elements of R is normal. See in[5].
A mapping ψ on R is termed as derivation on R if ψ(t1 + t2) = ψ(t1) + ψ(t2) and ψ(t1t2) =
ψ(t1)t2 + t1ψ(t2) forall t1, t2 ∈ R. Let b ∈ R be a fixed element of R, then the mapping
ψ on R defined by ψ(t1) = [b, t1] = bt1 − t1b for all t1 ∈ R is called inner derivation induced
by b. A map f : R → R is called centralizing on R if [f(t1), t1] ∈ JZ holds for all t1 ∈ R.
In particular, if [f(t1), t1] = 0 holds for all t1 ∈ R, then it is called commuting. Stimulated
by the description of centralizing map, a map f from R into itself is called ∗-centralizing if
[f(t1), t∗1 ] ∈ JZ for all t1 ∈ R and is called ∗-commuting if [f(t1), t∗1 ] = 0 for all t1 ∈ R.
The narrative of centralising and commuting maps dates back to 1955, when Divinsky proved
that if a simple artinian ring has commuting non-trivial automorphisms, then it is commutative.
After few years, Posner [14] established that the presence of a nonzero centralizing derivation
on a prime ring implies commutativity of rings. The study of centralizing (resp. commuting)
derivations and various generalizations of concept of a centralizing (resp. commuting) maps are
the main concepts emerging directly from Posner’s result, with many applications in various ar-
eas. Recently, a number of algebraists demonstrated the commutativity theorem for prime and
semi-prime rings with or without involution, accepting identities on automorphism, derivations,
left centralizers and generalized derivations (for example)[1, 2, 4, 7, 8, 10].
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Very Recently, Ali and Dar, [2] starts the study of ∗-centralizing derivation in prime rings with
involution and proved ∗-version of classical results of Posner [14], and they proved that “Let R
be a prime ring with involution ∗ such that char(R) ̸= 2. Let ψ be a nonzero derivation of R such
that [ψ(t1), t∗1 ] ∈ JZ for all t1 ∈ R and ψ(JS ∩ JZ) ̸= {0}. Then R is commutative". Further,
this result was extended by Najjar et al. [9] for the second kind involution instead of condition
ψ(JS ∩JZ) ̸= {0}. Recently Alahmadi et al. [1] generalized above result for generalized deriva-
tion and they prove that “Let R be a prime ring with involution ∗ of the second kind such that
char(R) ̸= 2, if R admits a nonzero generalized derivation F associated with a derivation d such
that [F (t), t∗] ∈ JZ for all t ∈ R. then R is commutative". In this direction a lots of work have
been done in the recent years (See for reference [3, 6, 11] where further references can be found).

The main target of our paper is to investigate the commutativity of ∗-prime rings that satisfy
some central identities involving pair of derivation. Our motivation for this manuscript comes
from the types of identities studied by Mamouni et al. in [9] and motivated by these types of
identities. To prove our main results, we need some lemmas as well as some facts, so we start
with the proof of these lemmas and facts.

2 MAIN RESULTS

Lemma 2.1. Let R be a ∗-prime ring of char(R) ̸= 2, then R is 2-torsion free.

Proof. Let, u ∈ R and 2u = 0 suggests, 2u(vw) = 0 for all v, w ∈ R and uR(2w) = 0 for
all w ∈ R. Since char(R) ̸= 2 and R ̸= (0) then there exist 0 ̸= p ∈ R such that 2p ̸= 0, forces
uR(2p) = (0) = uR(2p)∗, by the definition of ∗-prime rings we have, either u = 0 or 2p = 0
second case is not possible by the assumption and first case implies R is 2-torsion free.

Lemma 2.2. In ∗-prime ring, JZ ∩ JH and JZ ∩ JS are free from zero-divisor.

Proof. Let a, b ∈ JZ ∩ JH , such that ab = 0, implies abu = 0 for all u ∈ R provide us
aRb = (0) = aRb∗. So by definition of ∗-prime ring, we have either a = 0 or b = 0.

Lemma 2.3. Let R be a 2-torsion free ∗-prime ring with involution ∗ which is of the second kind.
If t21 ∈ JZ for all t1 ∈ R, then R is commutative.

Proof. t21 ∈ JZ for all t1 ∈ R, after linearizing we get, t1t2 + t2t1 ∈ JZ for all t1, t2 ∈ R. Since
∗ is of the second kind, there exist 0 ̸= c ∈ JZ ∩ JS . Replacing t2 by c, we have t1c ∈ JZ for
all t1 ∈ R, since R is 2-torsion free. [t1c, r] = 0 for all r ∈ R, implies [t1, r]c = 0. Now by
using Lemma 2.4, we get [t1, r] = 0 for all t1, r ∈ R, implies R is commutative.

Fact 2.4. Let R be a 2-torsion free ∗-prime rings with involution ∗ which is of the second kind,
if R is normal, then R is commutative.

Proof. Since R is normal, i. e., hk = kh where h ∈ JH and k ∈ JS respectively. Take any
t1 ∈ R, then t1 − t∗1 ∈ JS .

h(t1 − t∗1) = (t1 − t∗1)h, for all t1 ∈ R and h ∈ JH . (2.1)

Take s ∈ JS ∩ JZ , then s(t1 + t∗1) ∈ JS for all t1 ∈ R, so by normality of R, we have
hs(t1 + t∗1) = s(t1 + t∗1)h for all t1 ∈ R and h ∈ JH

s{h(t1 + t∗1)− (t1 + t∗1)h} = 0, for all t1 ∈ R and for all h ∈ JH . (2.2)

So by Lemma 2.2, we have either s = 0 or h(t1 + t∗1) = (t1 + t∗1)h. First case is not possible,
since ∗ is of the second kind and latter case together with (2.1), gives ht1 = t1h for all t1 ∈ R
and h ∈ JH . Replacing t1 by t2 gives

ht2 = t2h, for all t2 ∈ R and h ∈ JH . (2.3)

Replacing h by t1 + t∗1 in (2.3), we get

{t1 + t∗1}t2 = t2{t1 + t∗1} for all t1, t2 ∈ R. (2.4)
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Now we take s ∈ JS ∩ JZ , then s(t1 − t∗1) ∈ JH and using (2.3), we have s{(t1 − t∗1)t2 − t2(t1 −
t∗1)} = 0 for all t1, t2 ∈ R. By Lemma 2.2, we have either s = 0 or (t1 − t∗1)t2 = t2(t1 − t∗1) but
first case is not possible, since ∗ is of the second kind and latter case implies

(t1 − t∗1)t2 = t2(t1 − t∗1) for all t1, t2 ∈ R. (2.5)

Using (2.4), together with (2.5), we get, t1t2 = t2t1 for all t1, t2 ∈ R.

Fact 2.5. Let R be a ∗-prime rings with involution ∗ which is of the second kind, then ∗ is
centralizing iff R is commutative.

Proof. Let
[t1, t

∗
1 ] ∈ JZ for all t1 ∈ R. (2.6)

Linearizing (2.6)
[t1, t

∗
2 ] + [t2, t

∗
1 ] ∈ JZ for all t1, t2 ∈ R. (2.7)

Replacing t2 by t∗2 , we get

[[t1, t2], t1] + [[t∗2 , t
∗
1 ], t1] = 0 for all t1, t2 ∈ R. (2.8)

Displacing t2 by t2t1 in (2.8), we get

[[t1, t2], t1]t1 + t∗1 [[t
∗
2 , t

∗
1 ], t1]+

[t∗1 , t1][t
∗
2 , t

∗
1 ] = 0 for all t1, t2 ∈ R. (2.9)

Using (2.8) in (2.9), we receive

[[t1, t2], t1]t1 − t∗1 [[t2, t1], t1]+

[t∗1 , t1][t
∗
2 , t

∗
1 ] = 0 for all t1, t2 ∈ R. (2.10)

Taking t2t1 for t2 in above equation, we attain

[[t1, t2], t1]t
2
1 − t∗1 [[t2, t1], t1]t1

+ [t∗1 , t1]t
∗
1 [t

∗
2 , t

∗
1 ] = 0 for all t1, t2 ∈ R. (2.11)

Using (2.10) in (2.11), and replacing t1 by t∗1 and t2 by t∗2 , we have

[t1, t
∗
1 ]{t1[t2, t1]− [t2, t1]t

∗
1} = 0 for all t1, t2 ∈ R. (2.12)

Exchanging t2 by t2t1 in (2.12), we capture

[t1, t
∗
1 ]{t1[t2, t1]t1 − [t2, t1]t1t

∗
1} = 0 for all t1, t2 ∈ R. (2.13)

Invoking (2.12) in (2.13), we obtain

[t1, t
∗
1 ][t2, t1]{−t1t∗1 + t∗1t1} = 0 for all t1, t2 ∈ R. (2.14)

Last relation further implies

[t1, t
∗
1 ]

2R[t2, t1] = (0) for all t1, t2 ∈ R. (2.15)

Replacing t1 by t∗1 and t2 by t∗2 in (2.15), we find

[t1, t
∗
1 ]

2R[t2, t1] = (0) = [t1, t
∗
1 ]

2R [t2, t1]
∗, for all t1, t2 ∈ R. (2.16)

By definition of ∗-prime ring, we get

[t1, t
∗
1 ]

2 = 0 or [t1, t2] = 0 for all t1, t2 ∈ R. (2.17)

Later case suggests that R is commutative, by first case we have

[t1, t
∗
1 ]

2 = 0 for all t1 ∈ R. (2.18)

Since [t1, t∗1 ] ∈ JZ ∩ JH and by Lemma 2.2, we get

[t1, t
∗
1 ] = 0 for all t1 ∈ R. (2.19)

Using Fact 2.4, R is commutative.
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Fact 2.6. Let R be a 2-torsion free ∗-prime ring with involution ∗ of the second kind, with
char(R) ̸= 2. Then t1 ◦ t∗1 ∈ JZ for all t1 ∈ R iff R is commutative.

Proof. By the given condition

t1 ◦ t∗1 ∈ JZ for all t1 ∈ R. (2.20)

Linearizing above
t1 ◦ t∗2 + t2 ◦ t∗1 ∈ JZ for all t1, t2 ∈ R. (2.21)

Last relation further implies

[t1 ◦ t∗2 , r] + [t2 ◦ t∗1 , r] = 0 for all t1, t2, r ∈ R. (2.22)

Replacing t2 by t∗2 in (2.22), we found

[t1 ◦ t2, r] + [t∗2 ◦ t∗1 , r] = 0 for all t1, t2, r ∈ R. (2.23)

Taking t1 in place of t2 in (2.23), we grasp

[t21, r] + [(t∗1)
2, r] = 0 for all t1, r ∈ R. (2.24)

Assuming t2 ∈ JZ \ {0} and t1 = t21 in (2.22), we have

[t21, r]t2 + [(t∗1)
2, r]t∗2 = 0 for all t1, r ∈ R. (2.25)

Making use of (2.24) in (2.25), we obtain

[t21, r]{t2 − t∗2} = 0 for all t1, t2, r ∈ R. (2.26)

{t2 − t∗2} ∈ JS ∩JZ , by using Lemma 2.4, we have either [t21, r] = 0 or {t2 − t∗2} = 0, latter case
is not possible since ∗ is of the second kind, first case implies

[t21, r] = 0 for all t1, r ∈ R. (2.27)

So, t21 ∈ Z(R) for all t1 ∈ R. Using Lemma 2.3, R is commutative.

Fact 2.7. Let R be a 2-torsion free ∗-prime ring and ψ ̸= 0 is centralizing derivation on R
commutes with ∗, then R is commutative.

Proof. By the given condition

[t1, ψ(t1)] ∈ JZ for all t1 ∈ R. (2.28)

Replacing t1 by t1 + t2, we get

[t1, ψ(t2)] + [t2, ψ(t1)] ∈ JZ for all t1, t2 ∈ R. (2.29)

Substituting t21 in place of t2 in above equation, we obtain

[t1, ψ(t
2
1)] + [t21, ψ(t1)] ∈ JZ for all t1 ∈ R. (2.30)

And from definition of derivation, we have

[t1, ψ(t
2
1)] = [t21, ψ(t1)] for all t1 ∈ R. (2.31)

Invoking (2.30) in (2.31) and using char(R) ̸= 2, we obtain

[t21, ψ(t1)] ∈ JZ for all t1 ∈ R. (2.32)

[[t21, ψ(t1)], r] = 0 for all t1, r ∈ R. (2.33)

Using (2.28) and char(R) ̸= 2, we obtain

[t1, ψ(t1)][t1, r] = 0 for all t1, r ∈ R. (2.34)
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Replacing r by ru; where u ∈ R and using (2.34), we get

[t1, ψ(t1)] R [t1, u] = (0) for all t1, u ∈ R. (2.35)

Since u is an arbitrary elements of R, then we take ψ(t1) in place of u

[t1, ψ(t1)] R [t1, ψ(t1)] = (0) for all t1 ∈ R. (2.36)

Every ∗-prime ring is semiprime, hence we have [t1, ψ(t1)] = 0, for all t1 ∈ R. On Linearizing
we found

[t1, ψ(t2)] + [t2, ψ(t1)] = 0 for all t1, t2 ∈ R. (2.37)

Further implies
[t1, ψ(t2)] = [ψ(t1), t2] for all t1, t2 ∈ R. (2.38)

Now define ψc(t1) = [t1, c] for all t1 ∈ R is called inner derivation. (2.38), implies

ψψ(t2) = ψt2 ◦ ψ, where ψ is derivation and ψt2 is inner derivation. (2.39)

Posner’s first theorem for ∗-prime rings states that iterate of derivation is a derivation if atleast
one of them is 0, see [3, Theorem 3.1], so we have either ψt2 = 0 or ψ = 0, latter case is not
possible by our assumption, hence the first case implies t2 ∈ JZ for all t2 ∈ R. Hence R is
commutative.

Theorem 2.8. Let R be a noncommutative ∗-prime rings with involution ∗ which is of the second
kind, with char(R) ̸= 2, if ψ1, ψ2 are derivations of R such that ψ1∗ = ∗ψ1, or (ψ2∗ = ∗ψ2)
satisfying ψ1(t1)t∗1 − t∗1ψ2(t1) ∈ JZ for all t1 ∈ R, then ψ1 = ψ2 = 0.

Proof. Let on contrary there exist nonzero derivation ψ1 and ψ2 satisfying

ψ1(t1)t
∗
1 − t∗1ψ2(t1) ∈ JZ for all t1 ∈ R. (2.40)

Linearizing above, we achieve

ψ1(t1)t
∗
2 + ψ1(t2)t

∗
1 − t∗1ψ2(t2)

− t∗2ψ2(t1) ∈ JZ for all t1, t2 ∈ R. (2.41)

Replacing t2 by t∗2 in (2.41), we have

ψ1(t1)t2 + ψ1(t
∗
2)t

∗
1 − t∗1ψ2(t

∗
2)

− t2ψ2(t1) ∈ JZ for all t1, t2 ∈ R. (2.42)

Replacing t2 by t2h, where 0 ̸= h ∈ JZ ∩ JH , we receive

ψ1(t1)t2h+ ψ1(t
∗
2)t

∗
1h+ t∗2t

∗
1ψ1(h)− t∗1ψ2(t

∗
2)h

− t∗1t
∗
2ψ2(h)− t2ψ2(t1)h ∈ JZ for all t1, t2 ∈ R. (2.43)

Invoking (2.42) in (2.43) and using Lemma 2.2, we have

t∗2t
∗
1ψ1(h)− t∗1t

∗
2ψ2(h) ∈ JZ for all t1, t2 ∈ R. (2.44)

Substituting t2 by h, where 0 ̸= h ∈ JZ ∩ JH , we get

h t∗1ψ1(h)− t∗1 h ψ2(h) ∈ JZ for all t1, t2 ∈ R. (2.45)

Last relation further implies

h{t∗1ψ1(h)− t∗1ψ2(h)} ∈ JZ for all t1, t2 ∈ R. (2.46)

Replacing t1 by t∗1 in (2.46) and using Lemma 2.2, we obtain

t1{ψ1(h)− ψ2(h)} ∈ JZ for all t1 ∈ R. (2.47)
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Last relation further implies

[t1, r]{ψ1(h)− ψ2(h)} = 0 for all t1, r ∈ R. (2.48)

Replacing r by ru, where u ∈ R and using (2.48), we have

[t1, r] u {ψ1(h)− ψ2(h)} = 0 for all t1, r, u ∈ R. (2.49)

Last relation further implies

[t1, r] R {ψ1(h)− ψ2(h)} = (0)

= [t1, r]
∗ R {ψ1(h)− ψ2(h)} for all t1, r, u ∈ R. (2.50)

By definition of ∗-prime ring we have either [t1, r] = 0 or {ψ1(h)−ψ2(h)} = 0, first case implies
commutative of R which is not possible by our assumption. Latter case implies ψ1(h) = ψ2(h)
and by (2.44), we have

{t∗2t∗1 − t∗1t
∗
2}ψ2(h) ∈ JZ for all t1, t2 ∈ R. (2.51)

Last relation further implies

[t∗2 , t
∗
1 ] ψ2(h) ∈ JZ for all t1, t2 ∈ R. (2.52)

Last relation further implies

[[t2, t1], r] ψ2(h) = 0 for all t1, t2, r ∈ R. (2.53)

Since ∗ commutes with ψ2, then ψ2(h) ∈ JZ ∩ JH , so by Lemma 2.2, we have either ψ2(h) = 0
or [t2, t1], r] = 0. First case is not possible because ∗ is of second kind, latter case implies

[t2, t1] ∈ JZ for all t1, t2, r ∈ R. (2.54)

In particular substituting t2 by t∗1 , we achieve

[t∗1 , t1] ∈ JZ for all t1 ∈ R. (2.55)

By Fact 2.5, R is commutative, which is a contradiction to our assumption. So, we have either
ψ1 = 0 or ψ2 = 0.
Let on contrary assume ψ1 = 0 and ψ2 ̸= 0 then by equation (2.40), we have

t∗1ψ2(t1) ∈ JZ for all t1 ∈ R. (2.56)

Linearizing above, we have

t∗1ψ2(t2) + t∗2ψ2(t1) ∈ JZ for all t1, t2 ∈ R. (2.57)

Replacing t2 by t2h, where 0 ̸= h ∈ JZ ∩ JH in (2.57) and using (2.57), we have

t∗1t2ψ2(h) ∈ JZ for all t1, t2 ∈ R. (2.58)

Last relation further implies

[t∗1t2, r]ψ2(h) = 0 for all t1, t2, r ∈ R. (2.59)

Since ∗ commutes with ψ2, then ψ2(h) ∈ JZ ∩ JH , so by Lemma 2.2, we have either ψ2(h) = 0
or [t∗1t2, r] = 0. First case is not possible because ∗ is of second kind, latter case implies

t∗1t2 ∈ JZ for all t1, t2 ∈ R. (2.60)

Inparticular taking t2 = t1, in the last equation, we get

t∗1t1 ∈ JZ for all t1 ∈ R. (2.61)
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Replacing t1 by t∗1 , in the last relation, we get

t1t
∗
1 ∈ JZ for all t1 ∈ R. (2.62)

Using (2.61) and (2.62), we get

[t1, t
∗
1 ] ∈ JZ for all t1 ∈ R. (2.63)

By Fact 2.5, we have R is commutative, which is a contradiction. Hence ψ1 = 0 implies ψ2 = 0.

Theorem 2.9. Let R be a noncommutative ∗-prime rings with involution ∗ which is of the second
kind with char(R) ̸= 2, if ψ1, ψ2 are derivations of R such that ψ1∗ = ∗ψ1, or (ψ2∗ = ∗ψ2)
satisfying ψ1(t∗1)t1 − t∗1ψ2(t1) ∈ JZ for all t1 ∈ R, then ψ1 = ψ2 = 0.

Proof. Let on contrary there exist nonzero derivation ψ1 and ψ2 satisfying

ψ1(t
∗
1)t1 − t∗1ψ2(t1) ∈ JZ for all t1, t2 ∈ R. (2.64)

Linearizing above, we achieve

ψ1(t
∗
1)t2 + ψ1(t

∗
2)t1 − t∗1ψ2(t2)

− t∗2ψ2(t1) ∈ JZ for all t1, t2 ∈ R. (2.65)

Replacing t2 by t2h, where 0 ̸= h ∈ JZ ∩ JH , we receive

ψ1(t
∗
1)t2h− t∗1ψ2(t2)h− t∗1t2ψ2(h) + ψ1(t

∗
2)t1h+

t∗2t1ψ1(h) + t∗2ψ2(t1)h ∈ JZ for all t1, t2 ∈ R. (2.66)

Using (2.65) in (2.66), we obtain

t∗2t1ψ1(h)− t∗1t2ψ2(h) ∈ JZ for all t1, t2 ∈ R. (2.67)

Taking t2 = t1 in (2.67), we gain

t∗1t1 {ψ1(h)− ψ2(h)} ∈ JZ for all t1, t2 ∈ R. (2.68)

Last relation further implies,

[t∗1t1, r] {ψ1(h)− ψ2(h)} = 0 for all t1, t2 ∈ R. (2.69)

Replacing r by ru, where u ∈ R and using (2.69), we have

[t∗1t1, r] R {ψ1(h)− ψ2(h)} = 0

= [t∗1t1, r]
∗ R {ψ1(h)− ψ2(h)} for all t1, t2 ∈ R. (2.70)

By the definition of ∗-prime rings we have, either [t∗1t1, r] = 0 or {ψ1(h) − ψ2(h)} = 0, later
case together with (2.67), gives us

{t∗2t1 − t∗1t2} ψ1(h) ∈ JZ for all t1, t2 ∈ R. (2.71)

Last relation further implies,

[t∗2t1 − t∗1t2, r] ψ1(h) = 0 for all t1, t2 ∈ R. (2.72)

Since ∗ commutes with ψ1, then ψ1(h) ∈ JZ ∩ JH , so by Lemma 2.2, we have either ψ1(h) = 0
or [t∗2t1 − t∗1t2, r] = 0. First case is not possible because ∗ is of second kind, later case implies

t∗2t1 − t∗1t2 ∈ JZ for all t1, t2 ∈ R. (2.73)

Taking t1s in place of t1, where 0 ̸= s ∈ JZ ∩ JS , so by using Lemma 2.2, we obtain

t∗2t1 + t∗1t2 ∈ JZ for all t1, t2 ∈ R. (2.74)
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Combining (2.73) and (2.74) and using char(R) ̸= 2, we have

t∗2t1 ∈ JZ for all t1, t2 ∈ R. (2.75)

Replacing t∗2 by t1, we achieve

t21 ∈ JZ for all t1 ∈ R. (2.76)

By Lemma 2.3, R is commutative, which is not true by our assumptition. First case implies

t1t
∗
1 ∈ JZ for all t1 ∈ R. (2.77)

Replacing t1 by t∗1 , we get
t∗1t1 ∈ JZ for all t1 ∈ R. (2.78)

Taking together (2.77) and (2.78), we obtain

[t1, t
∗
1 ] ∈ JZ for all t1 ∈ R. (2.79)

By Fact 2.5, R is commutative, which is not true by our assumption. So we have either ψ1 = 0
or ψ2 = 0.
Let on contrary assume ψ1 = 0 and ψ2 ̸= 0 then by equation (2.64), we have

t∗1ψ2(t1) ∈ JZ for all t1 ∈ R. (2.80)

Linearizing above, we have

t∗1ψ2(t2) + t∗2ψ2(t1) ∈ JZ for all t1, t2 ∈ R. (2.81)

Replacing t2 by t2h, where 0 ̸= h ∈ JZ ∩ JH in (2.81) and using (2.81), we have

t∗1t2ψ2(h) ∈ JZ for all t1, t2 ∈ R. (2.82)

Last relation further implies

[t∗1t2, r]ψ2(h) = 0 for all t1, t2, r ∈ R. (2.83)

Since ∗ commutes with ψ2, then ψ2(h) ∈ JZ ∩ JH , so by Lemma 2.2, we have either ψ2(h) = 0
or [t∗1t2, r] = 0. First case is not possible because ∗ is of second kind, latter case implies

t∗1t2 ∈ JZ for all t1, t2 ∈ R. (2.84)

Inparticular taking t2 = t1, in the last equation, we get

t∗1t1 ∈ JZ for all t1 ∈ R. (2.85)

Replacing t1 by t∗1 , in the last relation, we get

t1t
∗
1 ∈ JZ for all t1 ∈ R. (2.86)

Using (2.85) and (2.86), we get

[t1, t
∗
1 ] ∈ JZ for all t1 ∈ R. (2.87)

By Fact 2.5, we have R is commutative, which is a contradiction. Hence ψ1 = 0 implies ψ2 = 0.

Corollary 2.10. Let R be a ∗-prime rings with involution ∗ which is of the second kind with
char(R) ̸= 2, if ψ1, ψ2 are derivations on R such that ψ1∗ = ∗ψ1, or (ψ2∗ = ∗ψ2) satisfying
ψ1(t∗1)t1 − t∗1ψ2(t1) ∈ JZ for all t1 ∈ R, then R is commutative
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Theorem 2.11. Let R be a ∗-prime rings with involution ∗ which is of the second kind with
char(R) ̸= 2, if ψ1, ψ2 are derivations on R such that ψ1∗ = ∗ψ1, or (ψ2∗ = ∗ψ2), then
following assertions are equivalent.
(1) ψ1(t1) ◦ ψ2(t∗1)− t1 ◦ t∗1 ∈ JZ for all t1 ∈ R.
(2) ψ1(t1) ◦ ψ2(t∗1) + t1 ◦ t∗1 ∈ JZ for all t1 ∈ R.
(3) [ψ1(t1), ψ2(t∗1)]− t1 ◦ t∗1 ∈ JZ for all t1 ∈ R.
(4) [ψ1(t1), ψ2(t∗1)] + t1 ◦ t∗1 ∈ JZ for all t1 ∈ R.
(5) R is commutative.

Proof. Clearly; (5) =⇒ (1 − 4).
If ψ1 = 0 or ψ2 = 0 then then above relation reduces to t1 ◦ t∗1 ∈ JZ for all t1 ∈ R. Then R is
commutative by Fact 2.6.
Now we assuming ψ1 ̸= 0 and ψ2 ̸= 0.
(1) =⇒ (5) Given that

ψ1(t1) ◦ ψ2(t
∗
1)− t1 ◦ t∗1 ∈ JZ for all t1 ∈ R. (2.88)

Linearizing above, we receive

ψ1(t1) ◦ ψ2(t
∗
2) + ψ1(t2) ◦ ψ2(t

∗
1)− t1 ◦ t∗2

− t2 ◦ t∗1 ∈ JZ for all t1, t2 ∈ R. (2.89)

Replacing t2 by t2h; where 0 ̸= h ∈ JZ ∩ JH , so by using (2.89), we get

{ψ1(t1) ◦ t∗2}ψ2(h) + {t2 ◦ ψ2(t
∗
1)}ψ1(h)

∈ JZ for all t1, t2 ∈ R. (2.90)

Putting h in place of t2 where; 0 ̸= h ∈ JZ ∩ JH , so by using Lemma 2.2, we get

ψ1(t1)ψ2(h) + ψ2(t
∗
1)ψ1(h) ∈ JZ for all t1 ∈ R. (2.91)

Putting s in place of t2 in (2.90), where, 0 ̸= s ∈ JZ ∩ JS , so by using Lemma 2.2, we get

−ψ1(t1)ψ2(h) + ψ2(t
∗
1)ψ1(h) ∈ JZ for all t1 ∈ R. (2.92)

Combining (2.91) and (2.92) and using char(R) ̸= 2, we obtain

ψ2(t1)ψ1(h) ∈ JZ for all t1 ∈ R. (2.93)

Last relation further implies,

{[ψ2(t1), r]} ψ1(h) = 0 for all t1, r ∈ R. (2.94)

Since ∗ commutes with ψ1, then ψ1(h) ∈ JZ ∩ JH , so by Lemma 2.2, we have either ψ1(h) = 0
or [ψ2(t1), r] = 0. First case is not possible because ∗ is of second kind, later case implies

[ψ2(t1), r] = 0 for all t1, r ∈ R. (2.95)

In particular taking r = t1, we have

[ψ2(t1), t1] = 0 for all t1 ∈ R. (2.96)

By Fact 2.7, R is commutative.
(2) =⇒ (5) Given that

ψ1(t1) ◦ ψ2(t
∗
1) + t1 ◦ t∗1 ∈ JZ for all t1 ∈ R. (2.97)

Linearizing above, we receive

ψ1(t1) ◦ ψ2(t
∗
2) + ψ1(t2) ◦ ψ2(t

∗
1) + t1 ◦ t∗2

+ t2 ◦ t∗1 ∈ JZ for all t1, t2 ∈ R. (2.98)
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Replacing t2 by t2h; where 0 ̸= h ∈ JZ ∩ JH and using (2.98), we get

{ψ1(t1) ◦ t∗2}ψ2(h) + {t2 ◦ ψ2(t
∗
1)}ψ1(h)

∈ JZ for all t1, t2 ∈ R. (2.99)

Above equation is same as (2.90), so by the same argument R is commutative.
(3) =⇒ (5) Given that

[ψ1(t1), ψ2(t
∗
1)]− t1 ◦ t∗1 ∈ JZ for all t1 ∈ R. (2.100)

Taking t1 = t1 + t2 in above, we obtain

[ψ1(t1), ψ2(t
∗
2)] + [ψ1(t2), ψ2(t

∗
1)]− t1 ◦ t∗2

− t2 ◦ t∗1 ∈ JZ for all t1, t2 ∈ R. (2.101)

Replacing t2 by t2h in (2.101) where 0 ̸= h ∈ JZ ∩ JH , so by using last equation, we gain

[ψ1(t1), t
∗
2 ] ψ2(h) + [t2, ψ2(t

∗
1)]ψ1(h) ∈ JZ for all t1, t2 ∈ R. (2.102)

Replacing t2 by t2s in (2.102), where 0 ̸= s ∈ JZ ∩ JS , we obtain

−[ψ1(t1), t
∗
2 ] ψ2(h) + [t2, ψ2(t

∗
1)]ψ1(h) ∈ JZ for all t1, t2 ∈ R. (2.103)

By using (2.102) and (2.103), we achieve

[ψ1(t1), t
∗
2 ] ψ2(h) ∈ JZ for all t1, t2 ∈ R. (2.104)

Last relation further implies,

[[ψ1(t1), t
∗
2 ], r] ψ2(h) = 0 for all t1, t2, r ∈ R. (2.105)

Since ∗ commutes with ψ2, then ψ2(h) ∈ JZ ∩ JH , so by Lemma 2.2, we have either ψ2(h) = 0
or [[ψ1(t1), t∗2 ], r] = 0. First case is not possible because ∗ is of the second kind, latter case
implies

[ψ1(t1), t
∗
2 ] ∈ JZ for all t1, t2 ∈ R. (2.106)

In particular taking t2 = t∗1 , we have

[ψ1(t1), t1] ∈ JZ for all t1 ∈ R. (2.107)

By Fact 2.7, R is commutative.
(4) =⇒ (5) Given that

[ψ1(t1), ψ2(t
∗
1)] + t1 ◦ t∗1 ∈ JZ for all t1 ∈ R. (2.108)

Taking t1 = t1 + t2 in above, we obtain

[ψ1(t1), ψ2(t
∗
2)] + [ψ1(t2), ψ2(t

∗
1)] + t1 ◦ t∗2

+ t2 ◦ t∗1 ∈ JZ for all t1, t2 ∈ R. (2.109)

Replacing t2 by t2h; where 0 ̸= h ∈ JZ ∩ JH , so by using (2.109), we get

{ψ1(t1) ◦ t∗2}ψ2(h) + {t2 ◦ ψ2(t
∗
1)}ψ1(h)

∈ JZ for all t1, t2 ∈ R. (2.110)

Above equation is same as (2.102), so by the same argument R is commutative.

Corollary 2.12. Let R be a ∗-prime rings with involution ∗ which is of the second kind, with
char(R) ̸= 2, if ψ1, ψ2 are derivations on R such that ψ1∗ = ∗ψ1, or (ψ2∗ = ∗ψ2), then
following assertions are equivalent.
(1) ψ1(t1) ◦ ψ2(t2)− t1 ◦ t2 ∈ JZ for all t1, t2 ∈ R.
(2) ψ1(t1) ◦ ψ2(t1) + t1 ◦ t2 ∈ JZ for all t1, t2 ∈ R.
(3) [ψ1(t1), ψ2(t2)]− t1 ◦ t2 ∈ JZ for all t1, t2 ∈ R.
(4) [ψ1(t1), ψ2(t2)] + t1 ◦ (t2) ∈ JZ for all t1, t2 ∈ R.
(5) R is commutative.
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As it is well-known that the zero-divisor is impossible in the center of a prime ring, but in
∗-prime rings centre is not free from zero divisor. The follwing example explain that the above
fact.

Example 2.13. Consider R =

{[
a 0
0 b

] ∣∣∣a, b ∈ Z
}

, define ∗ in such away, ∗

([
a 0
0 b

])
=[

b 0
0 a

]
. It is easy to verify that R is ∗ -prime ring with involution ∗. For any non zero a,[

a 0
0 0

]
∈ JZ , and for any nonzero b,

[
0 0
0 b

]
∈ R and

[
a 0
0 0

][
0 0
0 b

]
=

[
0 0
0 0

]
.

This shows the fact.

The following examples shows second kind is necessary in Theorem 2.11.

Example 2.14. Consider R =

{[
a b

c d

] ∣∣∣a, b, c, d ∈ Z
}

, define ∗ in such away, ∗

([
a b

c d

])
=[

d −b
−c a

]
. It is easy to verify that R is ∗ -prime ring with involution ∗ of the first kind.

Moreover, we define ψ1 and ψ2 as ψ1

([
a b

c d

])
=

[
0 b

−c 0

]
and ψ2

([
a b

c d

])
=[

0 −b
c 0

]
, here ψ1 and ψ2 satisfy the condition ψ1(t1) ◦ ψ2(t∗1)− t1 ◦ t∗1 ∈ JZ for all t1 ∈ R.

However, R is noncommutative.
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