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Abstract In this paper we take a first look at hyper near-vector spaces. We define a hyper
near-vector space having similar properties to Johannes André’s near-vector space. We define
important concepts including independence, the notion of a basis, regularity, subhyperspaces and
as a highlight prove that there is a Decomposition Theorem for these spaces.

1 Introduction

Near-vector spaces are a generalisation of vector spaces, as near-rings are a generalisation of
rings. A number of authors have defined the notion of a near-vector space in different ways,
including Beidleman [5], Karzel [11] and André [2]. We will focus on André’s near-vector
spaces in this paper. These have a geometric origin, see for example [3], [4], and more recently
[10].

Hyperstructures are algebraic structures with a multi-values operator. Such structures have
mathematical applications in areas such as fuzzy set theory, hypergraphs, and latices, and further
applications in chemistry and physics (see [7] for a historical development of the theory of hy-
perstructures and their link to other fields). Hyper nearrings and hyper vector spaces have been
defined and studied (see [8] and [13], for example). A natural question would therefore be to
determine whether such a generalisation is possible for near-vector spaces.

In this paper we define and study hyper near-vector spaces that have similar properties to
André’s near-vector spaces. Important algebraic concepts including independence, the notion of
a basis, regularity and subhyperspaces are defined. We give some interesting first examples of
hyper near-vector spaces. Most notably, we prove that there is a Decomposition Theorem for
these spaces into maximal regular subhyperspaces.

In Section 2 we give the required preliminary material for this paper, while in Section 3 we
define our hyper near-vector space, give some examples and prove our main results. For any set
S, we will write S∗ for S \ {0} throughout this paper.

2 Preliminary Material

We begin with the preliminary material on near-vector spaces, hypergroups and hyper vector
spaces we will need in the paper.

Definition 2.1. [2, Definition 4.1] A near-vector space is a pair (V,A) which satisfies the fol-



lowing conditions.

(i) (V,+) is a group and A is a set of endomorphisms of V .

(ii) A contains the endomorphisms 0, id and −id (hereafter simply 0, 1,−1).

(iii) A∗ is a subgroup of the group Aut(V ).

(iv) If αx = βx with x ∈ V and α, β ∈ A, then α = β or x = 0, i.e. A acts fixed point free on
V .

(v) The quasi-kernel Q(V ) of V , generates V as a group. Here,

Q(V ) = {x ∈ V | ∀α, β ∈ A, ∃γ ∈ A such that αx+ βx = γx} .

If there is no room for confusion we will write Q for Q(V ).

André defined independence in [2] in terms of a dependence relation.

Definition 2.2. Let X be a set and let P(X) be the set of all subsets of X . A relation between X
and P(X), denoted by v ◁M , with v ∈ X and M ⊆ X , is a dependence relation if the following
conditions are satisfied (where u, v, w ∈ X and M,N ⊆ X).
(D1) v ∈ M implies that v ◁ M .
(D2) w ◁M and v ◁ N for each v ∈ M , implies that w ◁ N .
(D3) v ◁ M and the falsehood of v ◁ M \ {u} (denoted v ̸◁M \ {u}), implies that
u ◁ (M \ {u}) ∪ {v} .

Now let (V,A) be a near-vector space and Q its quasi-kernel. André (in [2, p.302]) defines a
relation between Q and 2Q as follows.

(i) v ◁ ∅ if v = 0.

(ii) v ◁ M , ∅ ≠ M ⊆ Q, if and only if there exists ui ∈ M and λi ∈ A (i = 1, 2, . . . , n) such
that

v =
n∑

i=1

λiui. (2.1)

This relation is a dependence relation.

Theorem 2.3. [2, Definition 3.1] Let Q be the quasi-kernel of the near-vector space (V,A). Then
the relation defined in (2.1) is a dependence relation between Q and P(Q).

Definition 2.4. [2, p.302] A subset E of Q is independent if there is no v ∈ E such that v◁E\{v}.

The dimension of the near-vector space, dim(V ), is uniquely determined by the cardinality
of an independent generating set for Q(V ), called a basis of V (see [2] for further details).

Next we give all the hyperstructure definitions we will need. For further reference, we refer
the reader to [7].

Definition 2.5. Let J be a nonempty set. A mapping ◦ : J × J → P∗(J), where P∗(J) is the set
of all nonempty subsets of J, is called a hyperoperation on J .

From the above definition, if A and B are two nonempty subsets of J and x ∈ J, then
A ◦B = ∪a∈Ab∈Ba ◦ b, x ◦A = {x} ◦A, A ◦ x = A ◦ {x} . From now on we will write {x} and
x interchangeably, when there is no room for confusion.



Definition 2.6. [7] A quasicanonical hypergroup is a pair (H,+), where + is a hyperoperation
on H satisfying the following.

(i) (H,+) is a hypergroup, i.e.

a. a+ (b+ c) = (a+ b) + c for all a, b, c ∈ H ((H,+) is a semihypergroup)

b. a+H = H + a = H for all a ∈ H ((H,+) is a quasihypergroup)

(ii) H has a scalar identity, i.e. there exists 0 ∈ H such that, for all x ∈ H , x+ 0 = {x}.

(iii) Every element has a unique inverse, i.e. for all x ∈ H , there exists a unique −x ∈ H such
that 0 ∈ x+ (−x).

(iv) H is reversible, i.e. if x ∈ y + z, then z ∈ (−y) + x.

If H is commutative, (i.e. a + b = b + a for all a, b ∈ H), then H is called a canonical
hypergroup.

Definition 2.7. A non-empty subset K of a canonical hypergroup H is a canonical subhyper-
group if K is also a quasi-canonical hypergroup.

We note that it is well-known that canonical subhypergroups are closed under intersection.

Definition 2.8. Let (H,+) and (K, ◦) be canonical hypergroups with scalar identities 0 and e
respectively. Let f : H → K.

• f is a homomorphism if for all x, y ∈ H , f(x+ y) ⊆ f(x) ◦ f(y) and f(0) = e.

• f is a good homomorphism if for all x, y ∈ H , we have f(x + y) = f(x) ◦ f(y) and
f(0) = e.

• f is an isomorphism if it is a homomorphism and its inverse f−1 is a homomorphism.

• f is an endomorphism if (K, ◦) = (H,+) and f is a homomorphism.

• f is an automorphism if it is an isomorphism and an endomorphism.

As with any algebraic structure, the automorphisms of a canonical hypergroup form a group,
which, for a hypergroup H we will denote Aut(H).

A proof in [7] is presented that shows a homomorphism is an isomorphism if and only if it is
bijective and good.

In 1990 [8], Dašić introduced the concept of hypernear-rings.

Definition 2.9. [8, Definition 1] A triple (R,+, ·) is called a hypernear-ring if the following
axioms hold.

• (R,+) is a quasicanonical hypergroup.

• (R, ·) is a semigroup having 0 as a left absorbing element, i.e. x · 0 = 0 for all x ∈ R.

• The multiplication · is distributive with respect to the hyperoperation + on the left side, i.e.
a · (b+ c) = a · b+ a · c for all a, b, c ∈ R.

If in addition, (R∗, ·) is a quasicanonical hypergroup, (R,+, ·) is called a hypernear-field.



In 1990, Tallini [13] introduced the notion of a hyper vector space over a field, while Vou-
giouklis [15] introduced weak hyper vector spaces. Recently, Al Tahan and Davvaz [1] intro-
duced a hyper vector space over a Krasner hyperfield. This is the definition of a hyper vector
space. We will see that it is most fitting since we will show that every hyper vector space is a
hyper near-vector space.

Definition 2.10. [12] A Krasner hyperring is an algebraic structure (R,+, ·) which satisfies the
following axioms for all x, y, z ∈ R.

(i) (R,+) is a canonical hypergroup.

(ii) (R, ·) is a semigroup having zero as bilaterally absorbing element, i.e. x · 0 = 0 · x = 0.

(iii) x · (y + z) = x · y + x · z
(iv) (x+ y) · z = x · y + x · z

A commutative Krasner hyperring (R,+, ·) with identity 1 is a Krasner hyperfield if (R∗, ·) is a
group.

It is clear that a (R,+, ·) is a Krasner hyperring if it is a hypernear-ring with commutative +
and ·.

Definition 2.11. [1, Definition 3.1] Let F be a Krasner hyperfield. A canonical hypergroup
(V,+) together with a map · : F × V → V is called a hyper vector space over F if for all
a, b ∈ F and x, y ∈ V the following conditions hold.

(i) a · (x+ y) = a · x+ a · y
(ii) (a+ b) · x = a · x+ b · x

(iii) a · (b · x) = (ab) · x
(iv) a · (−x) = (−a) · x = −(a · x)
(v) x = 1 · x

We will also need the definition of a weak hyper vector space.

Definition 2.12. [1, Definition 3.2] Let F be a Krasner hyperfield. A canonical hypergroup
(V,+) together with a map · : F × V → V is called a weak hyper vector space over F if for all
a, b ∈ F and x, y ∈ V the following conditions hold.

(i) a · (x+ y) ⊆ a · x+ a · y
(ii) (a+ b) · x ⊆ a · x+ b · x

(iii) a · (b · x) = (ab) · x
(iv) a · (−x) = (−a) · x = −(a · x)
(v) x = 1 · x

Note that, given a weak hyper vector space V over a Krasner hyper field F , one may construct
for each a ∈ F a map a : V → V such that a(v) = a · v, which by the first property of a weak
hyper vector space is a homomorphism of V . Now, if a ̸= 0, then it has an inverse a−1, since

a(a−1(v)) = a(a−1 · v) = a · (a−1 · v) = (aa−1) · v = 1 · v = v

for all v ∈ V . It follows that each nonzero a is an isomorphism, and is therefore a good ho-
momorphism. Hence a · (x + y) = a(x + y) = a(x) + a(y) = a · x + a · y. Furthermore,
0 · (x + y) = 0 = 0 + 0 = 0 · x + 0 · y. It follows that, for all a ∈ F and all x, y ∈ V ,
a · (x+ y) = a · x+ a · y.



3 Hyper near-vector spaces

In this section we define our hyper near-vector space, give some examples and prove our main
results. In order to do this we begin by replacing the additive group of vectors in Theorem 2.1
with a canonical hypergroup and define the scalar multiplication as a group of endomorphisms as
before. This is similar to how Theorem 2.11 generalizes a vector space. The notion of the quasi-
kernel is generalized in a suitable way so that its elements maintain the structural properties of
André’s near-vector space.

3.1 Definition and preliminary results

We now give our hyper analogue for André’s near-vector space.

Definition 3.1. A hyper near-vector space is a pair (V,A) which satisfies the following condi-
tions.

(i) (V,+) is a canonical hypergroup and A is a set of endomorphisms of V .

(ii) A contains the endomorphisms 0, 1 and −1.

(iii) A∗ = A \ {0} is a subgroup of the group Aut(V ).

(iv) If αx = βx with x ∈ V and α, β ∈ A, then α = β or x = 0, i.e. A acts fixed point free on
V .

(v) V = ⟨Q(V )⟩, i.e. V is generated additively by the quasi-kernel, Q(V ), where

Q(V ) = {x ∈ V | ∀α, β ∈ A, αx+ βx ⊆ Ax} .

Because A∗ is a set of isomorphisms, and 0 ∈ A is itself good, it follows each endomorphism
in A is good. We view A as the set of scalars of V .

In order to compare hyper near-vector spaces, we need the following definition.

Definition 3.2. Let (V,A1) and (W,A2) be hyper near-vector spaces over A. Then maps ϕ : V →
W and η : A1 → A2 form a homomorphism if η is a semigroup isomorphism, ϕ(0) = 0 and for
any x, y ∈ V and α ∈ A1 we have ϕ(x+ y) ⊆ ϕ(x) + ϕ(y) and ϕ(αx) = η(α)ϕ(x), and a good
homomorphism if in addition ϕ(x) + ϕ(y) ⊆ ϕ(x+ y).

We say that two hyper near-vector spaces (V,A) and (W,A) are isomorphic (written (V,A) ∼=
(W,A)) if there is a bijective good homomorphism ϕ : V → W .

If, in the definition above, we have that A1 = A2, often η is implicitly taken to be the identity
map on A, unless expressly otherwise stated.

It is known that every vector space is a near-vector space with the quasi-kernel the entire
space. We now prove the analogous result for hyper vector spaces.

Lemma 3.3. Every hyper vector space is a hyper near-vector space.

Proof. Let V be a hyper vector space over F .

(i) By definition (V,+) is a canonical hypergroup and F is a set of endomorphisms of V.

(ii) F contains the endomorphisms 0, 1 and −1 by definition.



(iii) F ∗ is a subgroup of the group Aut(V ) since for any α, β−1 ∈ F ∗, αβ−1 ∈ F ∗ and it is not
difficult to check that every α ∈ F ∗ is a bijection of (V,+).

(iv) Suppose that αx = βx with x ̸= 0. Then 0 ∈ αx− βx = (α− β)x so that 0 ∈ α− β. Thus
−β = −α, so by the uniqueness of inverses, α = β. Thus F acts fixed point free on V, as
explained under Theorem 2.12.

(v) V = ⟨Q(V )⟩, where Q(V ) = V by Definition 2.11 (2).

Below we give a first example of a hyper near-vector space.

Example 3.4. Let V = {0, a, b, c} be a set with the hyperoperation ⊕ defined as follows:

⊕ 0 a b c

0 0 a b c

a a {0, a} c {b, c}
b b c {0, b} {a, c}
c c {b, c} {a, c} V

Then (V,⊕) is a canonical hypergroup (See Example 12 in [6]). If we now take A = {0, 1} ,
then since −1 = 1, we have that (V,A) is a hyper near-vector space. A quick check shows that
Q(V ) = {0, a, b} . We note that (V,A) is also a weak hyper vector space.

We now prove some useful properties of the quasi-kernel.

Lemma 3.5. Let (V,A) be a hyper near-vector space. The quasi-kernel Q has the following
properties.

(a) 0 ∈ Q.

(b) For u ∈ Q∗, if αu+ βu = A′u ⊆ Au, then A′ is uniquely determined by α and β.

(c) If u ∈ Q and λ ∈ A, then λu ∈ Q, i.e. Au ⊆ Q.

(d) If u ∈ Q and λi ∈ A, i = 1, 2, . . . , n, then
∑n

i=1 λiu = A′u ⊆ Q for some A′ ⊆ A.

Proof.

(a) Let α, β ∈ A. Then α0 + β0 = 0 + 0 = {0} = A0. Thus 0 ∈ Q.

(b) Suppose that for all α, β ∈ A we have that αu + βu = A′u and αu + βu = A′′u, where
A′, A′′ ⊆ A. If α ∈ A′, then αu ∈ A′u and αu ∈ A′′u. Thus αu = α′u for some α′ ∈ A′′.
Since u ̸= 0, by the fixed point free property, we have that α = α′. Thus A′ ⊆ A′′. Similarly,
it can be shown that A′′ ⊆ A′, so that A′ = A′′.

(c) Suppose u ∈ Q and λ ∈ A. There are two cases to consider:
Case 1: λ = 0
Then λu = 0u = 0 ∈ Q by (a).
Case 2: λ ̸= 0
Let α, β be elements of A. Then

α(λu) + β(λu) = (αλ)u+ (βλ)u

= λ′u for some λ′ ∈ A since u ∈ Q.



Since λ ̸= 0, λ′u = (λ′λ−1)λu. Thus λu ∈ Q, so Au ⊆ Q.

(d) We prove the result using induction on n. From (c), if u ∈ Q,λu ∈ Q for λ ∈ A. Now
suppose that

∑k
i=1 λiu ⊆ Au, say

∑k
i=1 λiu = A′u. Then

k∑
i=1

λiu = A′u+ λk+1u

=
⋃

λ∈A′

(λu+ λk+1u) ⊆ Au.

Lemma 3.6. Let (V,A) and (W,A) be hyper near-vector spaces over A and ϕ : V → W be a
good homomorphism. Then ϕ(Q(V )) ⊆ Q(W ).

Proof. Let u ∈ Q(V ) and α, β ∈ A. Then αu+βu ⊆ Au, so that αϕ(u)+βϕ(u) = ϕ(αu+βu) ⊆
ϕ(Au) = Aϕ(u). It follows ϕ(u) ∈ Q(W ).

3.2 An addition on A

In [2], a special addition on the group of scalars is introduced. We do the same below.

Definition 3.7. Let (V,A) be a hyper near-vector space. For u ∈ Q∗, we define an operation +u

on A as follows. For all α, β ∈ A,
α+u β = A′,

where αu+ βu = A′u.

Example 3.8. Returning to Example 3.4 we have that for all α, β ∈ A,

α+a β = α+b β.

We now prove that the addition on A results in it having the structure of a canonical hyper-
group.

Lemma 3.9. Let (V,A) be a hyper near-vector space. Then (A,+u) is a canonical hypergroup
for each u ∈ Q∗.

Proof. By the uniqueness of A′ in Theorem 3.5, we have that +u is well-defined. Let α, β, γ ∈
A. We verify each of the axioms for a canonical hypergroup.

(i) (a) Let u ∈ Q∗. Then

(α+u (β +u γ))u = αu+ (β +u γ)u

= αu+ (βu+ γu)

= (αu+ βu) + γu (since V is a semihypergroup)

= ((α+u β) +u γ)u.

Since u ̸= 0, by the fixed point free property, we have that

α+u (β +u γ) = (α+u β) +u γ.



(b)

(α+u A)u = αu+Au

=
⋃
β∈A

(αu+ βu).

We want to show that α+u A = A. Since for all β ∈ A, we have that αu+ βu ⊆ Au,
we have that (α +u A)u =

⋃
β∈A(αu + βu) ⊆ Au. Thus by the fixed point free

property, α+u A ⊆ A. Now let λ ∈ A. Then

λu ∈ αu− αu+ λu = αu+ (−α+u λ)u

= (α+u A′)u where A′ = −α+u λ.

Now we have that λu ∈ (α+u A′)u where α+u A′ ⊆ α+u A. Thus λu ∈ (α+u A)u
and by using the fixed point free property we have that λ ∈ α+u A.

(ii)

(α+u β)u = αu+ βu

= βu+ αu (since (V,+) is commutative)

= (β +u α)u.

Hence, by the fixed point free property, α+u β = β +u α.

(iii) We claim 0 is the scalar identity of (A,+u).

(α+u 0)u = αu+ 0u

= αu+ 0

= {αu}
= {α}u

Hence, by the fixed point free property, α+u 0 = {α}.

(iv) We claim −α := (−1) ◦ α is the unique inverse of α in (A,+u).

(α+u (−α))u = αu+ (−1)(αu)

= αu− αu

Now, since −αu is the unique inverse of αu in (V,+), we have that 0u = 0 ∈ αu −
αu = (α +u (−α))u. It follows that 0 ∈ α +u (−α) by the fixed point free property. For
uniqueness, suppose 0 ∈ α+u λ for some λ ∈ A. Then 0 = 0u ∈ (α+u λ)u = αu+ λu,
hence, from the uniqueness of the inverse of αu in (V,+), it follows that λu = −αu. By
the fixed point free property, it follows that λ = −α.

(v) Suppose α ∈ β+uγ. Then αu ∈ (β+uγ)u = βu+γu. Since (V,+) is reversible, it follows
γu ∈ −βu+ αu = (−β +u α)u, and so γ ∈ −β +u α by the fixed point free property.

In fact, we can show more, i.e. we have a hyper-nearfield.

Lemma 3.10. Let u ∈ Q∗. Then (A,+u, ◦) is a hyper-nearfield.

Proof. Since (A,+u) is a canonical hypergroup, and (A∗, ◦) is a group by definition, it remains
to be shown that the left distributive law holds and that 0 ∈ A is bilaterally absorbing. Let
α, β, γ ∈ A, then



α ◦ (β +u γ)u = α(βu+ γu)

= (α ◦ β)u+ (α ◦ γ)u
= (α ◦ β +u α ◦ γ)u.

By the fixed point free property it follows that α ◦ (β +u γ) = α ◦ β +u α ◦ γ. Furthermore
(0 ◦ α)u = 0(αu) = 0 = 0u and (α ◦ 0)u = α(0u) = α0 = 0 = 0u, hence by the fixed point
free property, 0α = α0 = 0 for all α ∈ A.

Next we show that for any nonzero element of the quasi-kernel, the hyper near-field from
the previous lemma is isomorphic to all of those where the addition is defined in terms of scalar
multiples of it.

Lemma 3.11. For every u ∈ Q∗ and λ ∈ A∗, (A,+u, ◦) ∼= (A,+λu, ◦).

Proof. Let u ∈ Q∗ and λ ∈ A∗. Define θ : (A,+λu, ◦) → (A,+u, ◦) so that θ(α) = λ−1αλ. Let
α, β ∈ A, then

θ(α+λu β)u = λ−1(α+λu β)λu

= λ−1(αλu+ βλu)

= λ−1αλu+ λ−1βλu

= θ(α)u+ θ(β)u

= (θ(α) +u θ(β))u.

Therefore θ(α+λu β) = θ(α) +u θ(β) by the fixed point free property. Furthermore,

θ(αβ) = λ−1αβλ

= λ−1α(λλ−1)βλ

= θ(α)θ(β).

Hence θ is a homomorphism. But λ(θ(α))λ−1 = λλ−1αλλ−1 = α, and θ(λαλ−1) = λ−1(λαλ−1)λ =
α, so that θ is invertible, with θ−1 : α 7→ λαλ−1. Hence θ is an isomorphism.

3.3 Independence and a basis for Q(V )

[2] defined independence in terms of a dependence relation. We follow the same route to defining
independence.

Definition 3.12. Let (V,A) be a hyper near-vector space. We define a relation between Q and
P(Q) as follows:
v ◁ M ⊆ Q if there exists n ∈ N, ui ∈ M for i ∈ {1, . . . , n}, and λ1, . . . , λn ∈ A such that

v ∈
n∑

i=1

λiui.

Theorem 3.13. The relation defined in Definition 3.12 is a dependence relation.

Proof. (D1) Let v ∈ M. Then since v ∈ {v} = v + 0v, we have that v ◁ M.



(D2) Suppose that w ◁ M and v ◁ N for all v ∈ M, where M and N are subsets of Q. Then
w ∈

∑ni

i=1 λivi for some vi ∈ M and λi ∈ A, i ∈ {1, . . . , n}, and so, for each i ∈
{1, . . . , n}, vi ∈

∑n
j=1 ηjiuji, where uij ∈ N and ηij ∈ A for all j ∈ {1, . . . , ni}. Now

λivi ∈ λi

∑ni

j=1 ηjiuji and thus
∑ni

i=1 λivi ⊆
∑n

i=1 λi(
∑ni

j=1 ηjiuji).

Thus w ∈
∑n

i=1 λi(
∑ni

j=1 ηjiuji) =
∑n

i=1
∑ni

j=1 λiηjiuji, so that w ◁ N .

(D3) Let v ◁M and v ⋪ M \ {u} . Then v ∈
∑n

i=1 λiui where ui ∈ M for i ∈ {1, . . . , n} . Since
v ⋪ M \ {u} , we must have that u is equal to one of the ui. To see this, suppose it is not
the case, then {u1, . . . , un} ⊆ M \ {u} and v ∈

∑n
i=1 λiui, so v ◁M \ {u} , a contradiction.

Suppose then, without loss of generality, that u = u1. Then v ∈ λ1u+
∑n

i=2 λiui. So there
exists x ∈

∑n
i=2 λiui such that v ∈ λ1u + x = x + λ1u. Thus λ1u ∈ (−x) + v by the

reversibility property. This implies that u ∈ λ−1
1 (−x + v) ⊆ λ−1(−

∑n
i=2 λiui + v) =∑n

i=2 −λ−1
1 λiui + λ−1

1 v. Thus {u2, . . . , un} ⊆ M \ {u} , so that {u2, . . . , un} ∪ {v} ⊆
(M \ {u}) ∪ {v} .

We can now use André’s notion of independence, (see [2]) i.e. we say that a subset M of Q
is independent if and only if for all x ∈ M we have that x ⋪ M \ {x} .

The next result will be useful.

Lemma 3.14. A subset M of Q is independent if and only if for all n ∈ N and u1, . . . , un ∈ M
with ui ̸= uj when i ̸= j and λi ∈ A for i ∈ {1, . . . , n} if

0 ∈
n∑

i=1

λiui,

then λi = 0 for i ∈ {1, . . . , n} .

Proof. Suppose that M ⊆ Q is independent and that 0 ∈
∑n

i=1 λiui where ui ∈ M and
λi ∈ A for i ∈ {1, . . . , n} . Assume, without loss of generality, that λ1 ̸= 0. Then 0 ∈
λ1u1 +

∑n
i=2 λiui. Thus −λ1u1 ∈

∑n
i=2 λiui, otherwise 0 /∈

∑n
i=1 λiui. Then we have that

u1 ∈ (−λ1)−1 ∑n
i=2 λiui. Thus u1 ∈

∑n
i=2(−λ1)−1λiui, so that u1 ◁M \ {u1} , a contradiction.

Conversely, suppose that M ⊆ Q such that for any u1, . . . , uj ∈ M with ui ̸= uj when i ̸= j we
have that 0 ∈

∑n
i=1 λiui implies that λi = 0 for i ∈ {1, . . . , n} . Let x ∈ M and suppose that

x ◁ M \ {x} , then there exist u1, . . . , un ∈ M \ {x} and λi ∈ A such that x ∈
∑n

i=1 λiui. Then
0 ∈

∑n
i=1 λiui − x =

∑n
i=1 λiui + (−1)x, a contradiction since −1 ̸= 0.

We define a basis for a hyper near-vector space in the standard way, as in [2], from the
above dependence relation, i.e. it is an independent generating set for the quasi-kernel. As
for near-vector spaces, we show that every vector in the hyper near-vector space has a unique
representation in terms of the basis elements.

Lemma 3.15. Let (V,A) be a hyper near-vector space, and let B = {ui | i ∈ I} be a basis of Q.
Then each u ∈ V is an element of a unique linear combination of elements of B, i.e. there exists
λi ∈ F , with λi ̸= 0 for at most a finite number of i ∈ I , which are uniquely determined by u
and B, such that

u ∈
∑
i∈I

λiui.

Proof. Since ⟨Q(V )⟩ = V , we know that there exists x1, . . . , xn ∈ Q(V ) such that u ∈
∑n

j=1 xj .
Since B is a basis for Q(V ), it follows for all j ∈ {1, . . . , n}, xj ◁ B, so that xj ∈

∑
i∈I λijui,

where λij ∈ A for all i ∈ I . It follows



u ∈
n∑

j=1

xj

u ∈
n∑

j=1

∑
i∈I

λijui

u ∈
∑
i∈I

(λi1ui + . . .+ λinui)

u ∈
∑
i∈I

(λi1 +ui
. . .+ui

λin)ui

It follows there exists ηi ∈ λi1 +ui . . .+ui λin such that u ∈
∑

i∈I ηiui.

For uniqueness, suppose that u ∈
∑

i∈I λiui =
∑

i∈I λ
′
iui for the index set I . Then 0 ∈

u+ (−u) ⊆
∑

i∈I λiui −
∑

i∈I λ
′
iui =

∑
i∈I Aiui where Ai = λi +ui

(−λ′
i) ⊆ A.

Thus there exists ηi ∈ Ai such that 0 ∈
∑

i∈I ηiui. This implies that ηi = 0 for all i ∈ I.
It follows for each i ∈ I , 0 ∈ λi +ui (−λ′

i), i.e. −λ′
i is the unique inverse of λi. Thus for each

i ∈ I, λi = λ′
i.

The unique linear combination above is referred to as the decomposition of u in terms of a
basis B of Q. A basis B of Q is referred to as a basis of V , as B generates V . The following
result is an analogue of Lemma 3.2 in [2].

Lemma 3.16. Let (V,A) be a hyper near-vector space with basis B = {bi | i ∈ I}, and let λi ∈
A∗ for all i ∈ I . Then B′ = {λibi | i ∈ I} is a basis of V .

Proof. Suppose there exists ηi ∈ A such that 0 ∈
∑

i∈I ηi(λibi) =
∑

i∈I(ηiλi)bi. Then, since
B is independent, ηiλi = 0 for all i ∈ I , and thus ηi = ηiλiλ

−1
i = 0λ−1

i = 0 for all i ∈ I .
Hence B′ is independent. Furthermore, if x ∈ Q has decomposition x ∈

∑
i∈I αibi, then x ∈∑

i∈I αi(λ
−1
i λi)bi =

∑
i∈I(αiλ

−1
i )λibi, so that x ◁ B′, hence B′ generates Q (and therefore V ).

It follows B′ is a basis for Q.

André showed that every near-vector space (V,A) with basis B = {bi | i ∈ I} is isomorphic
to the set of families (xi)i∈I where xi is in A for each i ∈ I and xi = 0 for some cofinite subset
of I . We prove the analogue in the next result.

Theorem 3.17. Let (V,A) be a hyper–near-vector space with basis B = {bi | i ∈ I}. Let

A(I) = {(λi)i∈I |0 ̸= λi ∈ A for at most finitely many i ∈ I} .

For (αi)i∈I , (βi)i∈I ∈ A(I), define (αi)i∈I+(βi)i∈I = {(γi)i∈I | γi ∈ αi +bi βi} and λ(αi)i∈I =
(λαi)i∈I . Then V ∼= A(I).

Proof. Define ϕ : V → A(I) so that, if v ∈
∑

i∈I λibi, with at most finitely many λi’s nonzero,
then ϕ(v) = (λi)i∈I . Take v, w ∈ V with decompositions v ∈

∑
i∈I λibi and w ∈

∑
i∈I ηibi.

Let u ∈ v + w. Then u ∈
∑

i∈I λibi +
∑

i∈I ηibi =
∑

i∈I(λi +bi ηi)bi, so that u ∈
∑

i∈I γibi,
for some γi ∈ λi +bi ηi. It follows ϕ(u) = (γi)i∈I ∈ (λi)i∈I + (ηi)i∈I = ϕ(v) + ϕ(w), so that
ϕ(v+w) ⊆ ϕ(v)+ϕ(w). Conversely, suppose (γi)i∈I ∈ (λi)i∈I +(ηi)i∈I = ϕ(v)+ϕ(w). Then



γi ∈ λi+biηi, so that
∑

i∈I γibi ⊆
∑

i∈I(λi+biηi)bi = v+w. Let u ∈
∑

i∈I γibi. Then u ∈ v+w
and ϕ(u) = (γi)i∈I . It follows (γi)i∈I = ϕ(u) ∈ ϕ(v + w), so that ϕ(v) + ϕ(w) = ϕ(v + w).

Next, note that λw ∈ λ
∑

i∈I ηibi =
∑

i∈I ληibi, so that ϕ(λw) = (ληi)i∈I = λ(ηi)i∈I =
λϕ(w).

Finally, to show ϕ is surjective, for any (αi)i∈I ∈ A(I), let u ∈
∑

i∈I αibi, then ϕ(u) =
(αi)i∈I . For injectivity, suppose ϕ(v) = ϕ(w). Then (0)i∈I ∈ ϕ(v) − ϕ(w) = ϕ(v − w). Let
x ∈ V \ {0}, then x =

∑
i∈I λibi such that λj ̸= 0 for some j ∈ I . It follows ϕ(x) = (λi)i∈I ̸=

(0)i∈I , since λj ̸= 0. Therefore kerϕ = {0}, so that 0 ∈ v − w, hence v = w.

Corollary 3.18. Let (V,A) be a hyper–near-vector space with basis B = {bi | i ∈ I}. Suppose
x, y ∈ V such that x and y have the same decomposition in terms of B, i.e. x, y ∈

∑
i∈I λibi for

some λi ∈ A for each i ∈ I . Then x = y.

Proof. Take ϕ : V → A(I) from the previous theorem. Then ϕ(x) = ϕ(y) = (λi)i∈I . Since ϕ is
injective, this implies x = y.

The above result reveals more: suppose U = {u1, . . . , un} is independent, and consider the
sum

∑n
i=1 λiui. Since U is independent, it is contained in a basis B of Q, and hence

∑n
i=1 λiui

is the decomposition of some unique element by the corollary above, i.e.
∑n

i=1 λiui = {x}. It
therefore is clear that any independent sum (a linear combination of independent elements of
Q(V )) contains exactly one element.

3.4 Compatibility and regularity

Regularity and compatibility are central to the study of near-vector spaces. We define these
below and develop the theory as André does in [2].

Definition 3.19. Let (V,A) be a hyper near-vector space. The elements u, v of Q∗ are called
compatible (u cp v) if there exists a λ ∈ A∗ such that +u = +λv.

We note that for a near-vector space (V,A), two vectors u, v ∈ Q∗ are said to be compatible if
there exists a λ ∈ A∗ such that u+λv ∈ Q and it is shown that this is equivalent to there existing
a λ ∈ A∗ such that +u = +λv. This is not the case for hyper near-vector spaces. Referring back
to Example 3.4, a cp b, but a ⊕ b = c /∈ Q∗, so we do not have the second statement. We will
motivate our choice of definition a bit later in the paper.

Next we show that compatibility induces an equivalence relation on Q∗, a fact that becomes
central to the proof of the Decomposition Theorem, as we will see.

Lemma 3.20. The compatibility relation cp is an equivalence relation on Q∗.

Proof. (i) Reflexivity
It is clear that for all u ∈ Q∗, we have that +u = +1u.

(ii) Symmetry
Suppose that +u = +λv for λ ∈ A∗. Now let α, β ∈ A, then

(α+λ−1u β)λ−1u = αλ−1u+ βλ−1u

= (αλ−1 +u βλ−1)u

= (αλ−1 +λv βλ
−1)u.



Thus, since u ̸= 0, we have that (α+λ−1u β)λ−1 = αλ−1 +λv βλ
−1. Next we have,

(αλ−1 +λv βλ
−1)λv = αλ−1λv + βλ−1λv

= αv + βv

= (α+v β)v.

Thus by the fixed point free property, (αλ−1 +λv βλ
−1)λ = α+v β. Hence we finally have

that α+λ−1u β = [(α+λ−1u β)λ−1]λ = (αλ−1 +λv βλ
−1)λ = α+v β.

(iii) Transitivity
Suppose that +v = +λu and +u = +λ′w for λ, λ′ ∈ A∗. Then since +v = +λu, we have
that +λ−1v = +u = +λ′w, so that +v = +λλ′w.

We give a second example of a hyper near-vector space.

Example 3.21. Let X = {0, 1} with the hyperoperation +X defined as follows:

+X 0 1
0 0 1
1 1 X

It is not difficult to verify that (X,+X) is a canonical hypergroup.
Take V = X × Z2, with ⊕ defined for all (a, b), (a′, b′) ∈ V, by

(a, b)⊕ (a′, b′) = {(x, y)|x ∈ a+X a′ and y ∈ b+Z2 b
′} .

We then have the following table for (V,⊕) :

⊕ (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) {(0, 0), (1, 0)} {(0, 1), (1, 1)}
(1, 1) (1, 1) (1, 0) {(0, 1), (1, 1)} {(1, 0), (0, 0)}

(V,⊕) is a canonical hypergroup and if we take A = {0, 1} , then since −1 = 1, we have that
(V,A) is a hyper near-vector space. A quick check shows that Q(V ) = {(0, 0), (0, 1), (1, 0)} . In
addition, +(0,1) ̸= +(1,0), since +(0,1) = +Z2 , while +(1,0) = +X . Thus (0, 1) is not compatible
with (1, 0). We note that (V,A) is not a weak hyper vector space, and therefore also not a hyper
vector space.

Lemma 3.22. Let (V,A), (W,A) be hyper near-vector spaces and ϕ : V → W a good homo-
morphism. Let u, v ∈ Q(V )∗. Then the following properties hold.

(i) If W = V , then ϕ(u) cp u if and only if ϕ(u) ̸= 0.

(ii) ϕ(u) cp ϕ(v) if and only if ϕ(u) ̸= 0 ̸= ϕ(v) and u cp v.

Proof. By Theorem 3.6 we know ϕ(u), ϕ(v) ∈ Q(W ).



(i) Suppose V = W , and suppose u cp ϕ(u). Then ϕ(u) ̸= 0, since cp is an equivalence
relation on Q(V )∗. Conversely, suppose ϕ(u) ̸= 0 and let α, β ∈ A. Then the following
holds.

αu+ βu = (α+u β)u

ϕ(αu+ βu) = ϕ((α+u β)u)

αϕ(u) + βϕ(u) = (α+u β)ϕ(u)

(α+ϕ(u) β)ϕ(u) = (α+u β)ϕ(u)

Since ϕ(u) ̸= 0, it follows by the fixed-point-free property that α+ϕ(u) β = α+u β. Hence
+ϕ(u) = +u, so that ϕ(u) cp u.

(ii) Suppose ϕ(u) cp ϕ(v). Then ϕ(u) ̸= 0 ̸= ϕ(v), since cp is an equivalence relation on
Q(W )∗. Let λ ∈ A∗ such that +ϕ(u) = +λϕ(v). Then by the same argument as above we
have +u = +ϕ(u) and +λv = +ϕ(λv) = +λϕ(v), hence +u = +λv so that u cp v.

Conversely, if u cp v and ϕ(u) ̸= 0 ̸= ϕ(v), let λ ∈ A∗ such that +u = +λv. Then once
again we have +ϕ(u) = +u and +λϕ(v) = +ϕ(λv) = +λv, hence +ϕ(u) = +λϕ(v). It follows
that ϕ(u) cp ϕ(v).

The next result shows that each vector in the quasi-kernel is compatible with each basis vector
in its decomposition.

Lemma 3.23. Let (V,A) be a hyper near-vector space and let u1, . . . , un be independent ele-
ments in Q. Let u ∈

∑n
i=1 λiui such that u ∈ Q for some λ1, . . . , λn ∈ A∗. Then u cp ui for all

i ∈ {1, . . . , n}.

Proof. Let α, β ∈ A. Since u ∈ Q we know that there exists A′ ⊆ A such that αu+ βu = A′u.
We know that, since λ1, . . . , λn are nonzero and u1, . . . , un are independent, u is nonzero, so
A′ = α+u β is uniquely defined by α and β. Now, let γ ∈ A′, then:

γu ∈ αu+ βu

0 ∈ αu+ βu− γu

0 ∈ α

n∑
i=1

λiui + β

n∑
i=1

λiui − γ

n∑
i=1

λiui

0 ∈
n∑

i=1

(αλiui + βλiui − γλiui)

0 ∈
n∑

i=1

(α+λiui
β +λiui

(−γ))λiui

It follows that there exists η1, . . . , ηn ∈ A such that ηi ∈ (α +λiui β +λiui (−γ)) and 0 ∈∑n
i=1 ηiλiui. But then ηiλi = 0 for each i ∈ {1, . . . , n} by Theorem 3.14, and hence ηi = 0 for

each i ∈ {1, . . . , n}. Now, since 0 ∈ (α +λiui β +λiui (−γ)), it follows that γ ∈ α +λiui β for
each i. Hence A′ ⊆ α+λiui

β.



Conversely, suppose without loss of generality α+λ1u1 β ̸⊆ A′. We know that u ∈
∑n

i=1 λiui,
so λ1u1 ∈

∑n
i=2 λiui−u. If {u2, . . . , un, u} is independent, it follows that α+λ1u1 β ⊆ α+uβ =

A′, contradicting the assumption. Let η, η2 . . . , ηn ∈ A such that 0 ∈ ηu+
∑n

i=2 ηiui. Then

0 ∈ ηu+
n∑

i=2

ηiui

0 ∈ η

n∑
i=1

λiui +
n∑

i=2

ηiui

0 ∈ ηλ1u1 +
n∑

i=2

(ηλiui + ηiui)

0 ∈ ηλ1u1 +
n∑

i=2

(ηλi +ui
ηi)ui

It follows there exist ξ2, . . . ξn ∈ A such that ξi ∈ ηλi +ui ηi for all i ∈ {2, . . . n} and
0 ∈ ηλ1u1 +

∑n
i=2 ξiui. But since u1 . . . , un are independent, it follows ηλ1 = ξi = 0 for

all i ∈ {2, . . . , n}, so that η = 0 and 0 ∈ ηλi +ui ηi = 0 +ui ηi = {ηi}, hence ηi = 0 for
all i ∈ {2, . . . , n}. It follows u, u2, . . . , un are independent, so α +λ1u1 β ⊆ α +u β = A′,
a contradiction. Hence α +u β = α +λiui β for all α, β ∈ A, and so +u = +λiui for all
i ∈ {1, . . . , n}, hence u cp ui for all i ∈ {1 . . . , n}.

We now define regularity.

Definition 3.24. Let (V,A) be a hyper near-vector space. V is said to be regular if every pair of
nonzero elements of the quasi-kernel are compatible.

Example 3.25. Referring back to Examples 3.4 and 3.21, Theorem 3.4 is regular and Theo-
rem 3.21 is non-regular.

As with near-vector spaces, we can prove that regularity is determined by the regularity of
the basis elements.

Theorem 3.26. A near vector space V is regular if and only if there exists a basis which consists
of mutually pairwise compatible vectors.

Proof. Suppose V is regular. Then, by definition, any two vectors of Q∗ are compatible. There-
fore, every basis of Q consists of mutually pairwise compatible vectors.
Conversely, suppose there exists a basis B = {ui|i ∈ I} of mutually pairwise compatible vec-
tors. Let u, v ∈ Q∗, then u ∈

∑n
i=1 λiui with ui ∈ B for some λ1, . . . , λn ∈ A and v ∈

∑n
i=1 ηiui

with ui ∈ B for some η1, . . . , ηn ∈ A. Since the ui for i ∈ {1, . . . , n} are independent, we can
apply Lemma 3.23. Thus u is compatible to each ui for i ∈ {1, . . . , n} . Similarly, v is compati-
ble to each ui for i ∈ {1, . . . , n} . Thus by the transitivity of the compatibility relation, we have
that u is compatible to v.

The following result is an analogue of Theorem 4.2 in [2].

Theorem 3.27. Let (V,A) be a near-vector space and u ∈ Q∗. Let F be the nearfield defined by
(F,+, ·) = (A,+u, ◦). Then V is regular if and only if V ∼= F (I), as defined in Theorem 3.17,
with (αi)i∈I + (βi)i∈I = {(γi)i∈I | γi ∈ αi +u βi} and λ(αi)i∈I = (λαi)i∈I .



Proof. Suppose V is regular, then there exists a basis B = {bi | i ∈ I} of V such that u ∈ B.
Since V is regular, u cp bi for all i ∈ I , therefore there exists λi ∈ A∗ such that +u = +λibi for
all i ∈ I . Therefore by Theorem 3.17, V ∼= A(I) with (αi)i∈I+(βi)i∈I = {(γi)i∈I | γi ∈ αi +λibi βi}
for all (αi)i∈I + (βi)i∈I ∈ A(I). But since +u = +λibi , it follows (αi)i∈I + (βi)i∈I =
{(γi)i∈I | γi ∈ αi +u βi} for all (αi)i∈I + (βi)i∈I ∈ A(I), so that A(I) = F (I), and so V ∼= F (I).

Conversely, suppose V ∼= F (I). Let ϕ : V 7→ F (I) be an isomorphism and let bj =
ϕ−1((δij)i∈I) for all j ∈ I , where δij is the Kronecker delta symbol. Then bj ∈ Q(V ) and
+bj = +u for all j ∈ I:

αbj + βbj = αϕ−1((δij)i∈I) + βϕ−1((δij)i∈I)

= ϕ−1(α(δij)i∈I) + ϕ−1(β(δij)i∈I)

= ϕ−1((αδij)i∈I + (βδij)i∈I)

= ϕ−1(αδij +u βδij)i∈I)

= ϕ−1(((α+u β)δij)i∈I) (Since δij ∈ {0, 1}, it satisfies the right distributive law.)

= ϕ−1((α+u β)(δij)i∈I)

= (α+u β)ϕ−1((δij)i∈I)

= (α+u β)bj .

Moreover, B = {bi | i ∈ I} is a basis for V . To see this, if 0 ∈
∑

j∈I λjbj , then (0)j∈I =

ϕ(0) ∈ ϕ(
∑

j∈I λjbj) =
∑

j∈I λjϕ(bj) =
∑

j∈I λj(δij)i∈I) = {(λi)i∈I}, hence λj = 0 for
all j ∈ I and B is independent. Furthermore, if x ∈ Q and ϕ(x) = (ηi)i∈I , then ϕ(x) ∈∑

j∈I ηj(δij)i∈I = ϕ(
∑

i∈I ηibi), and so x ∈
∑

i∈I ηibi, since ϕ is injective. It follows x ◁ B
and thus B generates Q (and therefore V ). Hence B is a basis consisting of mutually pairwise
compatible vectors, so that V is regular by Theorem 3.26.

The above result motivates our choice of definition for compatibility. Referring back to Ex-
ample 3.4, we have a basis of mutually compatible vectors, namely B = {a, b} . Should we have
chosen the alternative definition, these two would not be compatible and so the hyper near-vector
space would not be regular. This would not correspond to the above result, as V ∼= X2 where X
is defined as in Theorem 3.21.

3.5 Subhyperspaces of V and the Decomposition Theorem

Next we define the notion of a subhyperspace, the final missing requirement to prove an analogue
of the Decomposition Theorem.

Definition 3.28. If (V,A) is a hyper near-vector space and ∅ ≠ V ′ ⊆ V is such that V ′ is the
canonical subhypergroup of (V,+) generated additively by AX = {ax |x ∈ X, a ∈ A}, where
X is an independent subset of Q(V ), then we say that (V ′, A) is a subhyperspace of (V,A), or
simply V ′ is a subhyperspace of V if A is clear from the context.

If (V,+) is generated additively by AX, we will write V = ⟨AX⟩.

Lemma 3.29. Let (V,A) be a hyper near-vector space and V ′ be a subhyperspace of V . Then
Q(V ′) = V ′ ∩Q(V ).

Proof. Suppose v ∈ V ′ ∩ Q(V ), then v ∈ V ′ and v ∈ Q(V ), so that for all α, β ∈ Q(V ),
αv + βv ⊆ Av. It follows v ∈ Q(V ′).



Conversely, suppose v ∈ Q(V ′). Then v ∈ V ′ and for all α, β ∈ A, αv+βv ⊆ Av. It follows
v ∈ Q(V ) and so v ∈ Q(V ) ∩ V ′.

Corollary 3.30. Let (V,A) be a hyper near-vector space, and suppose U and W are subhyper-
spaces of V . Then U ⊆ W if and only if Q(U) ⊆ Q(W ).

Proof. Suppose U ⊆ W , then Q(V ) ∩ U ⊆ Q(V ) ∩W , hence Q(U) ⊆ Q(W ). Conversely, if
Q(U) ⊆ Q(W ), let X ⊆ Q(V ) such that U = ⟨AX⟩. Then X ⊆ Q(V ) ∩ U = Q(U) ⊆ Q(W ),
so that X is an independent subset of Q(W ). It follows there exists a basis X ′ for Q(W ) such
that X ⊆ X ′. Therefor AX ⊆ AX ′, and hence U = ⟨AX⟩ ⊆ ⟨AX ′⟩ = W .

In the next proposition we prove when the union of two subhyperspaces will be a subhyper-
space.

Proposition 3.31. Let (V,A) be a hyper near-vector space and W1,W2 subhyperspaces of V.
Then W1 ∪W2 is a subhyperspace of V if and only if W1 ⊆ W2 or W1 ⊆ W2.

Proof. Suppose without loss of generality that W1 ⊆ W2, where W2 = ⟨AX⟩ with X an inde-
pendent subset of Q(V ). Then W1 ∪W2 = W2 so we are done.
Conversely, suppose that W1 ̸⊆ W2 and W2 ̸⊆ W1. Then there exist x, y ∈ V such that
x ∈ W1, y ∈ W2, x /∈ W2, y /∈ W1. Since W1 ∪ W2 is assumed to be a subhyperspace, hav-
ing x + y ⊆ W1 ∪ W2 implies that for all z ∈ x + y, we have z ∈ W1 ∪ W2. Without loss of
generality, suppose that z ∈ W1. Then z ∈ x+ y implies that y ∈ z − x ⊆ W1, a contradiction.

We end off with the analogue of the Decomposition Theorem for hyper-near vector spaces.
André proves in [2] that every near-vector space is isomorphic to the direct sum of its maximal
regular subspaces. However, this result does not generalize to hyper near-vector spaces; in fact,
the direct sum of hyper near-vector spaces is not defined in the category theoretical sense. In-
stead, we show that any finite-dimensional hyper near-vector space can be expressed as the direct
product of its maximal regular subhyperspaces. This result does not generalize to arbitrary hyper
near-vector spaces as arbitrary direct products are not defined even for near-vector spaces. First,
we show that finite direct products are defined for hypersubspaces of hyper near-vector spaces.

Theorem 3.32. Let (V,A) be a near-vector space, I = {1, . . . , n} and suppose {Vi | i ∈ I} is a
set of subhyperspaces of V . Define

n∏
i=1

Vi = {(vi)i∈I | ∀i ∈ I [vi ∈ Vi]} ,

with addition defined as (vi)i∈I+(wi)i∈I = {(ui)i∈I | ∀i ∈ I[ui ∈ vi + wi]} and scalar multipli-
cation defined componentwise. Then (

∏n
i=1 Vi, A) is a hyper near-vector space, and it is a direct

product of {Vi | i ∈ I}, with projection maps πj :
∏n

i=1 Vi → Vj defined by πj((vi)i∈I) = vj for
all j ∈ I .

Proof. It is routine to show
∏n

i=1 Vi is a hyper near-vector space with neutral element (0)i∈I , and
that πi is a good homomorphism for each i ∈ I. To show that

∏n
i=1 Vi is indeed the direct product

of {V1, . . . , Vn}, let W be a hyper near-vector space, and let fi : W → Vi be homomorphisms.
Define f : W →

∏n
i=1 Vi such that f(w) = (fi(w))i∈I . Suppose for some x + y ∈ W that

(ui)i∈I ∈ f(x + y). Then there exists some w ∈ x + y such that f(w) = (ui)i∈I . It follows
that ui = fi(w) ∈ fi(x + y) ⊆ fi(x) + fi(y), so that (ui)i∈I ∈ f(x) + f(y). Furthermore,
f(αw) = (fi(αw))i∈I = (αfi(w))i∈I = α(fi(w))i∈I = αf(w) for all α ∈ A and w ∈ W .
Hence f is a homomorphism. Furthermore, (πj ◦ f)(w) = πj((fi(w))i∈I) = fj(w), so that
πj ◦ f = fj for all j ∈ I . Finally, to show uniqueness, suppose g : W →

∏n
i=1 Vi such

thatπj ◦ g = fj for all j ∈ I . Then, for w ∈ W , g(w) = (fi(w))i∈I = f(w), so that g = f .



Theorem 3.33. Let (V,A) be a finite-dimensional hyper–near-vector space. Then V is isomor-
phic to the direct product of maximal regular subhyperspaces, with each u ∈ Q∗ being in exactly
one of these maximal regular subhyperspaces.

Proof. Let {Qi | i ∈ I} be the partition of Q∗ into its compatible elements, and define Bi =
B ∩ Qi, where B is a basis of V. Define Vi = ⟨ABi⟩. By definition Vi is a subhyperspace of V
with basis Bi. Since Bi ⊆ Qi, it follows that Bi consists of mutally pairwise compatible vectors,
so that Vi is a regular subhyperspace for all i ∈ I . Furthermore, if Vi ⊂ W ⊆ V , where W is
a regular subhyperspace of V , then W has a basis of mutually pairwise compatible vectors (by
Theorem 3.26) properly containing Bi and properly contained in B, a contradiction, since Bi

contains all vectors of B that lie in the partition Qi. Hence the Vi subhyperspaces are maximal.

Let u ∈ Q∗. Then, since Q∗ is partitioned by Qi’s, i ∈ I , it follows that u ∈ Qj for
exactly one j ∈ I . We wish to show that u ∈ Vj . Let u ∈

∑n
i=1 λibi for some b1, . . . , bn ∈ B

and λ1, . . . , λn ∈ A∗. Then by Lemma 3.23, u cp bi for each i ∈ {1, . . . , n}. It follows that
bi ∈ Qj for each i ∈ {1, . . . , n}, so bi ∈ B ∩ Qj = Bj for all i ∈ {1, . . . , n}. It follows
u ∈

∑n
i=1 λibi ⊆ ⟨ABj⟩ = Vj .

Now, suppose u ∈ Vk for some k ∈ I such that j ̸= k. Then, because the unique expression
(by Lemma 3.15) for u in terms of the basis B is u ∈

∑n
i=1 λibi, b1, . . . , bn ∈ Bk, we have that

b1, . . . , bn ∈ Qk — a contradiction, since b1, . . . , bn ∈ Qj and Qj ∩ Qk = ∅. Hence u lies in
exactly one Vi, i ∈ I .

Define now f :
∏n

i=1 Vi → V such that f((ui)i∈I) ∈
∑

i∈I ui. Since V is finite-dimensional,
I is finite, so that the sum

∑
i∈I ui is defined. To show that f is well-defined, note that, for each

i ∈ I , ui is the unique element such that ui ∈
∑

bij∈Bi
λijbij for some distinct bij ∈ Bi and

λij ∈ A (see paragraph below Theorem 3.18). It follows that
∑

i∈I ui =
∑

i∈I

∑
bij∈Bi

λijbij .
But Bi ∩Bk = ∅ for all i, k ∈ I where i ̸= k, so

∑
i∈I

∑
bij∈Bi

λijbij is a linear combination of
distinct basis elements and so contains only one element.

Now suppose x ∈ f((ui)i∈I+(vi)i∈I). It follows there exist xi ∈ ui+vi for all i ∈ I such that
x = f((xi)i∈I) ∈

∑
i∈I xi ⊆

∑
i∈I(ui + vi) =

∑
i∈I ui +

∑
i∈I vi = f((ui)i∈I) + f((vi)i∈I).

Conversely, if x ∈ f((ui)i∈I) + f((vi)i∈I), then x ∈
∑

i∈I ui +
∑

i∈I vi =
∑

i∈I(ui + vi),
therefore for all i ∈ I there exists xi ∈ ui+vi such that x ∈

∑
i∈I xi. But then x = f((xi)i∈I) ∈

f((ui)i∈I + (vi)i∈I). Finally, f(α(ui)i∈I) = f((αui)i∈I) ∈
∑

i∈I αui = α
∑

i∈I ui. But
αf((ui)i∈I) ∈ α

∑
i∈I ui, so f(α(ui)i∈I) = αf((ui)i∈I), and so f is a good homomorphism.

Furthermore, f is bijective: if u ∈ V , suppose it has decomposition
∑

i∈I

∑
bij∈Bi

λijbij .
Define ui to be the unique element with decomposition

∑
bij∈Bi

λijbij . Then ui ∈ Vi, and
f((ui)i∈I) ∈

∑
i∈I ui ⊆

∑
i∈I

∑
bij∈Bi

λijbij . But u ∈
∑

i∈I

∑
bij∈Bi

λijbij , so u = f((ui)i∈I)

and f is surjective. Furthermore, if f((ui)i∈I) = f((vi)i∈I), then
∑

i∈I ui =
∑

i∈I vi, so that
0 ∈

∑
i∈I ui −

∑
i∈I vi =

∑
i∈I(ui − vi). It follows there exists wi ∈ ui − vi such that 0 ∈∑

i∈I wi. Let wi have decomposition
∑

bij∈Bi
λijbij . Then 0 ∈

∑
i∈I wi ⊆

∑
i∈I

∑
bij∈Bi

λijbij .
It follows λij = 0 for all i ∈ I and bij ∈ Bi. But then wi ∈

∑
bij∈Bi

= {0}, so wi = 0 for all
i ∈ I . Hence 0 ∈ ui − vi, and so ui = vi for all i ∈ I . It follows (ui)i∈I = (vi)i∈I and hence f
is injective.

It follows f is bijective and a good homomorphism, so that f is an isomorphism. Hence
V ∼=

∏n
i=1 Vi.

The above decomposition is unique up to the order of the subhyperspaces, as will be shown
in the next result.



Theorem 3.34. Let V be a hyper near-vector space, and suppose

n∏
i=1

Vi
∼= V ∼=

m∏
j=1

V ′
j

where Vi and V ′
j are maximal regular subspaces for all i ∈ {1, . . . , n} and j ∈ {1 . . . ,m}. Then

m = n and there exists σ ∈ Sn such that Vi = V ′
σ(i).

Proof. Let I = {1, . . . , n} and J = {1, . . . ,m}, and let Qi = Q(Vi)∗ for some i ∈ I . Then Qi is
a maximal set of compatible vectors of Q(V ). If not, there exists u ∈ Q(V )∗\Qi such that u cp v
for all v ∈ Qi. But then u /∈ Q(Vi) = Vi ∩ Q(V ), so it follows u /∈ Vi. But then Vi = ⟨Qi⟩ ⊊
⟨Qi∪{u}⟩, contradicting its maximality. It follows Qi ∈ Q∗/cp. To show {Qi | i ∈ I} = Q∗/cp,
suppose u ∈ Q∗ such that u /∈ Qi for any i ∈ {1, . . . , n}. Since V ∼=

∏n
i=1 Vi, it follows that

there exists an isomorphism ϕ : V →
∏n

i=1 Vi. Let ϕ(u) = (u1, . . . , un), then πi(ϕ(u)) = ui for
all i ∈ I .

Consider the sum
∑

i∈I vi for some vi ∈ Vi for each i ∈ {i . . . , n}. Suppose vi has decom-
position

∑mi

j=1 λijbij where Bi = {bi1, . . . , bimi
} is some independent subset of Q(Vi)∗ = Qi.

Then B = {bij | i ∈ I, 1 ≤ j ≤ mi} is independent. If not, then there is some minimal depen-
dent subset of B, say B′ = {bk | k ∈ K}, such that B′ is dependent. It follows that there exist
k′ ∈ K such that bk′ ◁ B′ \ {bk′}, i.e. there exist some K ′ ⊆ K \ {k′} and λk ∈ A∗ for each
k ∈ K ′ such that bk′ ∈

∑
k∈K′ λkbk. Since B′ is a minimally dependent set, {bk | k ∈ K ′} is

independent, so that bk′ cp bk for each k ∈ K ′ by Theorem 3.23. It follows there is some i ∈ I
such that {bk | k ∈ K ′} ∪ {bk′} ⊆ Bi — a contradiction, since Bi is independent and therefore
has no dependent subsets. Hence B is independent, and so

∑n
i=1

∑mi

j=1 λijbij contains a unique
element, say v. But

∑n
i=1 vi ⊆

∑n
i=1

∑mi

j=1 λijbij = {v}, so
∑n

i=1 vi = {v}.

Define then the map f : V → V such that, if πi(ϕ(v)) = vi, then f(v) is the unique element
in

∑n
i=1 vi.

We show f is a good homomorphism. Let x, y, z ∈ V such that x ∈ y + z and {f(x)} =∑n
i=1 xi, {f(y)} =

∑n
i=1 yi and {f(z)} =

∑n
i=1 zi, where xi, yi, zi ∈ Vi for each i ∈ {1, . . . , n}.

Since x ∈ y + z, it follows xi = πi(ϕ(x)) ∈ πi(ϕ(y + z)) = πi(ϕ(y)) + πi(ϕ(z)) = yi + zi. It
follows {f(x)} =

∑n
i=1 xi ⊆

∑n
i=1(yi + zi) =

∑n
i=1 yi +

∑n
i=1 zi = f(y) + f(z). It follows

f(x) ∈ f(y) + f(z), so that f(y + z) ⊆ f(y) + f(z).

Conversely, if x ∈ f(y) + f(z), with {f(y)} =
∑n

i=1 yi and {f(z)} =
∑n

i=1 zi, where
yi, zi ∈ Vi for each i ∈ {1, . . . , n}. Then x ∈

∑n
i=1 yi+

∑n
i=1 zi =

∑n
i=1(yi+zi). It follows there

exists xi ∈ yi+zi such that x ∈
∑n

i=1 xi. Since yi, zi ∈ Vi, it follows xi ∈ Vi. Moreover, yi+zi =
πi(ϕ(y)) + πi(ϕ(z)) = πi(ϕ(y + z)), since πi and ϕ are good homomorphisms. It follows xi ∈
πi(ϕ(y+z)), so that {x} =

∑n
i=1 xi ⊆

∑n
i=1 πi(ϕ(y+z)) =

⋃
{
∑n

i=1 πi(ϕ(x′)) |x′ ∈ y + z} =
{f(x′) |x′ ∈ y + z} = f(y + z). Hence x ∈ f(y + z), and so f is a good homomorphism.

Consider now f(u). Since f is a good homomorphism, f(u) ∈ Q(V ). Suppose f(u) ̸=
0. Then u cp f(u) by Theorem 3.22. Let ui have decomposition

∑mi

j=1 λijbij where each
bij ∈ Vi. Then f(u) ∈

∑n
i=1

∑mi

j=1 λijbij . Since f(u) ̸= 0, it follows λij ̸= 0 for at least
one i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}. Therefore f(u) cp bij by Theorem 3.23. But then
u cp f(u) cp bij ∈ Q(Vi)∗ = Qi, so that u ∈ Qi — a contradiction. Suppose then that f(u) = 0.
Then ui = 0 for each i ∈ {1, . . . , n}, so that ϕ(u) = (0, . . . , 0). It follows u = 0, since ϕ is
an isomorphism — a contradiction. Hence there is no element u ∈ Q(V )∗ such that u /∈ Qi for
each i ∈ {1, . . . , n}. It follows that {Qi |1 ≤ i ≤ n} = Q∗/cp.

By a symmetric argument,
{
Q′

j | j ∈ J
}
= Q∗/cp, so that {Qi | i ∈ I} =

{
Q′

j | j ∈ J
}

. It
follows n = m and for each i ∈ I there is some j ∈ I such that Qi = Q′

j , so that Vi = ⟨Qi⟩ =



⟨Q′
j⟩ = V ′

j .

Example 3.35. Returning to Example 3.4 we have that V ∼= V (because V is regular) while for
Example 3.21, we have that V ∼= Z2 ×X .

4 Conclusion

In this paper we took a first look at hyper near-vector spaces and their properties. We defined
a hyper near-vector space that is similar to André’s near-vector space for a particular hyper
generalisation of a vector space defined as in [1]. As a highlight, we prove that there is a Decom-
position Theorem for finite dimensional spaces of this type into maximal regular subhyperspaces.

An interesting avenue for future work would be to study the geometric structure of these
spaces. André’s near vector spaces have a geometric origin in the so-called nearaffine spaces.
It remains to be investigated whether this geometry can be generalized to the hyper near-vector
spaces. Furthermore, since there is more than one way to define the notion of a hyper vector
space, one further avenue for future exploration, would be to look at what the corresponding
near-vector spaces should be.
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