
Palestine Journal of Mathematics

Vol 13(Special Issue III)(2024) , 148–153 © Palestine Polytechnic University-PPU 2024

A CONSTRUCTION OF A LATTICE BY SUBSTITUTION
SUM OF A LATTICE AND BOOLEAN ALGEBRA

Ramananda H. S. and Salma Shabnam

Communicated by KUNCHAM S P

MSC 2010 Classifications: Primary 06B20, 06B10; Secondary 03G05, 03G10.

Keywords and phrases: Formal Concept Analysis; Substitution Sum; Graph theory.

Abstract Formal Concept Analysis (FCA) is an applied branch of lattice theory, widely used
in computer science that derives implicit relationships between objects described through a set
of attributes on the one hand and these attributes on the other. Any finite lattice can be generated
by a formal concept, which can be obtained from the formal context of objects and attributes.
In this paper, given a finite lattice L with |(L)| = |(L)| = n where n is the number of atoms in

the Boolean lattice Bn, we construct a formal context obtained by substitution sum
L L

∅ Bn

and study the structural properties of the lattice BS(L) generated by the above substitution sum.
Interestingly, the lattice L and the Boolean lattice Bn remain as separate entities in the lattice
BS(L). Further, we have proved that the lattice BS(L) is complemented.

1 Introduction

Formal Concept Analysis (FCA) is an important mathematical application of computer science
that is highly used in knowledge representation, knowledge acquisition, linguistics, and data
visualization [20], [13], [5]. It helps in processing a wide class of data types by providing a
framework in which various data analysis techniques can be formulated. The formal context
in FCA consists of a binary relation between the set of objects and the set of attributes. Every
formal context K is isomorphic to ⟨J(L),M(L), I⟩ and every formal context generates a unique
concept lattice [2].

The substitution sum and substitution product were introduced by Luksch and Wille for the
concept analytic evaluation of pair comparison tests [2] and further described in detail by Stephan
[8], [9]. Wille and Ganter further compiled all these various types of formal contexts and have
characterized the corresponding concept lattices, one of them being the substitution sum in which
a context of any lattice is placed in an empty cell of another context where there is no object
attribute relation [2]. Doubling constructions by replacing the interval in a lattice by its direct
product were first introduced by Alan Day to prove the Whitman’s structure theorem for free
lattices in a simpler manner [4]. It is also noted that, by deriving the decomposition algorithm,
W. Geyer has described all the contexts that corresponds to the doubling constructions using
convex sets [6]. Furthermore, he has given an algebraic characterization to these generated
lattices. In their paper, K Bertet et al. have characterized the tableau for the CN class and then
described an algorithm to recognize whether a lattice belongs to the class CNof all lattices [1].
Furthermore, they have characterized the tableau and provided the recognition algorithm for the
class of bounded lattices and distributive lattices.

Convex sublattice CS(L) of the lattice L was first introduced by K.M. Koh [3], [10]. A new
partial order ≤ on CS(L) was defined by S. Lavanya et al. and they proved that the lattice L
and the corresponding convex sublattice CS(L) of L is in the same equational class [11]. Fur-
thermore, corresponding to a congruence relation Θ on lattice L, Ramananda H.S. et al. defined
a congruence relation ψθ on CS(L) and proved that CS(L/θ) ∼= CS(L)/ψθ [12]. Also, they
interestingly proved that L/Θ and CS(L)/ψθ are in the same equational class. Additionally,
Ramananda H.S. has defined bounds on the cardinality of CS(L) in terms of join irreducible
elements [14]. By using the concept of substitution sum, the authors in their paper [16] have
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proved that the formal context obtained by substitution sum
L L

L X
generated the convex sub-

lattice CS(L) of a lattice L. Further, in the same paper, the authors have proved that the formal

context
L L

∅ L
generates the lattice TS(L) obtained by one-step doubling construction of the

lattice L and discussed the structural properties of this lattice.
The association of a graph with algebraic structures such as rings, modules, or lattices has gar-

nered significant attention in research. A graph known as the identity-filter graph is constructed
by Shahabaddin Ebrahimi Atani for any lattice L, offering a characterization of lattices based on
properties derived from these graphs [18]. Similarly, Vikas Kulal et al. have constructed the an-
nihilator ideal graph for any lattice L, where the vertices represent non-trivial annihilator ideals
of L. Two vertices, I and J, are connected if the annihilator of either I or J contains a non-zero
element of the other, establishing a comprehensive understanding of lattice properties through
graph theory [19]. Expanding upon this framework, the authors have constructed a graph of a lat-
tice L with respect to an ideal I of L and obtained some results based on the adjacency matrices
[15]. The authors have also obtained the determinant of the formal context of atomic amalgams
of two Boolean algebras. These results are then leveraged to analyze the properties of adjacency
matrices for complete graphs [17].

In this paper, notations and definitions of Lattice theory and Formal Concept Analysis used
in the paper are given in Section 2. In Section 3, the structural properties of the lattice BS(L) are
introduced and the characterization of the meet and join irreducible elements of BS(L) is given.
The properties of the lattice BS(L) are discussed in Section 4.

2 Notations and Definitions

A partially ordered relation P = (X,≤) or poset is an ordering which is reflexive, antisymmetric,
and transitive. A poset (L,≤) is a lattice if every pair of elements has a join ∨ and a meet ∧.
A distributive lattice in which every element x has a unique complement x′ is called a Boolean
Lattice.

We say that a ≺ b in L if an element a in L is covered by an element b. An element x that
has a unique upper cover is called a meet-irreducible element of L. In particular if x is covered
by x+, then we denote it by x ≺ x+ and the set consisting of all meet irreducible elements of a
lattice L is denoted by (L). Similarly, an element y that has a unique lower cover is called a join-
irreducible element in L. In particular, if y− is covered by y, then we denote it by y− ≺ y and
the set consisting of all join irreducible elements of a lattice L is denoted by (L). Every element
that covers the minimum element 0 in a lattice is called the atom and is denoted as A(L). Dually,
every element in L that is covered by the maximum element 1 is called the coatom and is denoted
as CoA(L).(For further reading, refer[7]).

We now introduce the reader to some definitions of formal concept analysis used in this
paper. For a better understanding of the definitions and examples, the reader may refer to Formal
Concept Analysis by B.Ganter and R. Wille[2]. The formal context K := ⟨G,M, I⟩ is a binary
relation I between two sets G, the object set and M , the attribute set. gIm or (g,m) ∈ I
denotes that the object g ∈ G has an attribute m ∈ M . Let K1 := ⟨G1,M1, I1⟩ and K2 :=
⟨G2,M2, I2⟩ be the formal contexts such that (g1,m1) /∈ I1 in K1. Suppose that G2 ̸= ∅ ̸= M2
and G1 \ g1 ∩ G2 = ∅ = (M1 \ m) ∩ M2. The substitution sum of K1 with K2 on (g1,m1)
is defined to be the context K1(g1,m1)K2 := ⟨G0,M0, I0⟩ with G0 = (G1 \ g1) ∪ G2),M0 =
(M1 \m1) ∪M2, I0 = (h1, n1) ∈ I1, h1 ̸= g1, n1 ̸= m1 ∪G2 × gI1

1 ∪mI1
1 ×M2 ∪ I2 (For further

reading, see page 150, [2]).

3 Formal context of the lattice BS(L)

In this section, we shall investigate the lattice BS(L) obtained by substitution sum
L L

∅ Bn

and introduce some results that provide the structural properties of the lattice BS(L).
Throughout this paper, a lattice L under consideration is a finite lattice, with the maximum
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element of L denoted by 1 and minimum element of L denoted by 0 such that |(L)| = |(L)| = n
where n is the number of atoms in the Boolean lattice Bn.

Lemma 3.1. Let L be a lattice with |(L)| = |(L)| = n and Bn be the Boolean lattice with n
atoms. Then | BS(L) |=| L | + | Bn | −2.

Proof. By the construction of BS(L), clearly,| BS(L) |≥| L | + | Bn | −2.
Let x ∈ BS(L), x ̸= 0, x ̸= 1. Let mi and m′

i be the meet irreducible elements of L and Bn

respectively, for 1 ≤ i ≤ n. There are two possibilities.
Case (1) If x = ∧mi where m′

i ∈ Bn, 1 ≤ i ≤ k, k < n. Then clearly, x ∈ Bn.
Case (2) Let x = ∧mj ∧m′

j , 1 ≤ j ≤ t, t ≤ n, mj ∈ (L), m′
j ∈ (Bn). Let y = ∧mj . Then

y ∈ L. Hence the proof. 2

Remark 3.2. The above lemma shows that every element of BS(L) comes from either L or
Bn. The substitution sum will not create new elements in BS(L). This will be used in the proof
characterization of irreducible elements in BS(L).

Lemma 3.3. For any x ∈ L, y ∈ Bn, x ̸= 0, 1, y ̸= 0, 1. Then either x ∥ y or x < y in BS(L).

Proof. Suppose that y = ∧S, where S = {m1,m2, ...,mk : k < n}, k < n and y < x, for some
x ∈ L.
Since y < x, x = ∧S′, where S′ ⊂ S. Since Bn is a Boolean lattice, ∧S′ = z′ ∈ Bn,
contradicting that x ∈ L. Therefore,for any x ∈ L, y ∈ Bn, x ̸= 0, 1, y ̸= 0, 1. Then either x ∥ y
or x < y in BS(L). 2

Remark 3.4. From Lemma 3.3, we observe that there exists no y ∈ Bn such that y < x.

Lemma 3.5. If x ≺ y in L or Bn, then x ≺ y in BS(L).

Proof. Let x = m1 ∧m2 ∧ ... ∧mk, k < n. Since x ≺ y in L, without loss of generality, we
assume y = m2 ∧m3 ∧ ... ∧mk, k < n.
Then in BS(L), x = m1 ∧m2 ∧ ... ∧mk ∧m′

1 ∧m′
2 ∧ ... ∧m′

k and y = m2 ∧m3 ∧ ... ∧mk ∧
m′

2 ∧m′
3 ∧ ... ∧m′

k, k < n.
Now, if x < c < y in BS(L), by lemma 3.3, c ∈ L, contradiction to the fact that x ≺ y in L.
Now, if x ∈ Bn, then x = m′

1 ∧m′
2 ∧ ... ∧m′

k and y = m′
2 ∧m′

3 ∧ ... ∧m′
k, k < n.

Note that, x and y have the same representation in BS(L). Clearly x < y in BS(L). 2

Lemma 3.6. If x ∈ L, then there exists y ∈ Bn such that x ≺ y in BS(L).

Proof. Let x ∈ L. Then x= m1 ∧m2 ∧ ...∧mk ∧m′
1 ∧m′

2 ∧ ...∧m′
k and y = m′

1 ∧m′
2 ∧ ...∧m′

k

in BS(L) for k ≤ n. Note that y is an element of Bn and x < y. Clearly x ≺
BS(L)

y. 2

The following theorems give a characterization of the irreducible elements of BS(L).

Theorem 3.7. The atoms of BS(L) satisfy the following: A(BS(L)) = A(L) ∪A(Bn).

Proof. Follows from Lemma 3.1, 3.2 and 3.3. 2

Theorem 3.8. The meet irreducible elements of BS(L) satisfy the relation
(BS(L)) = CoA(L) ∪ CoA(Bn).

Proof. Let x ∈ CoA(L). Without loss of generality, x = m1 in L. Then x = m1 ∧m′
1 in BS(L).

Then x ≺ m′
1 uniquely in BS(L). Therefore x ∈ (BS(L)). Let x ∈ CoA(Bn). By lemma 3.3,

Clearly, x ∈ (BS(L)). Therefore, CoA(L) ∪ CoA(Bn) ⊆ (BS(L)).
Let x ∈ (BS(L)). If x ∈ Bn, then x ∈ (Bn) if and only if x ∈ CoA(Bn). If x ∈ L, and suppose
that x /∈ CoA(L). Then x ≺ z , z ̸= 1 in L. By Lemma 3.5, x ≺ z in BS(L). Also, by Lemma
3.6, there exists a unique y ∈ Bn such that x ≺

BS(L)
y. This shows that x has one more covering

in BS(L) . 2

Theorem 3.9. The join irreducible elements of BS(L) satisfy the following :
(BS(L)) = (L)

⋃
(Bn)
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Proof. Suppose that a ∈ L be an atom in L. Then a ∈ (L) and 0 ≺ a in L. By Lemma 3.7 atoms
of L remain as atoms in BS(L) , hence join irreducible in BS(L).
Suppose that a ∈ (L) and a is not an atom. Let a− be the unique lower cover of a in ∈ L . Then
a− ≺

BS(L)
a by Lemma 3.6. Further, there exists no bi ∈ Bn such that bi ≺

BS(L)
a by Lemma 3.3.

Therefore, a− ≺ a is unique cover in BS(L).
The join irreducible elements of Bn are atoms in Bn. The atoms of Bn remain as atoms of
BS(L). 2

Example 3.1. A lattice L is depicted in Figure 2, the formal context of L is given in Figure 1.
The Boolean lattice B4 is depicted in Figure 4, the formal context of B4 is given in Figure 3.
The context table and corresponding lattice BS(L) obtained from substitution sum of L and B4
is given in Figure 5 and Figure 6, respectively.

m1 m2 m3 m4

a X X
b X X
c X
d X

Figure 1. Formal Context of L

Figure 2. Lattice L

m1’ m2’ m3’ m4’
a X X X
b X X X
c X X X
d X X X

Figure 3. Formal Context of B4

Figure 4. Lattice B4

4 Properties of BS(L)

Theorem 4.1. For any lattice with more than 2 elements, the corresponding BS(L) is always a
complemented lattice.

Proof. Let a ∈ BS(L). We prove that a has a complement.
Case 1. Suppose a ∈ Bn. Since Bn is a complemented lattice, there exists a unique a′ such

that a ∧ a′ = 0 and a ∨ a′ = 1 in Bn. The same a′ serve as complement of a in BS(L).
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m1 m2 m3 m4 m1’ m2’ m3’ m4’
a X X X X
b X X X X
c X X
d X X
a’ X X X
b’ X X X
c’ X X X
d’ X X X

Figure 5. Context of BS(L)

Figure 6. Lattice BS(L)

Case 2. Suppose a ∈ L, a ̸= 0 and a ̸= 1. Let b ∈ Bn be such that a ≺ b in BS(L). Let b′
be the complement of b ∈ Bn. We prove that b′ is a complement of a in BS(L). Since a < b in
BS(L), we have 0 = a ∧ b′ < b ∧ b′ = 0. Therefore, a ∧ b′ = 0.
Now, we prove that a ∨ b′ = 1. Observe that a ≺ b is the single bridge between L and Bn, we
have a ∨ b′=b ∨ b′ = 1.
Hence, BS(L) is a complemented Lattice. 2

5 Conclusion

This construction differs from doubling construction in that L might not constitute a convex sub-
lattice ofBn; nevertheless, a one-to-one mapping exists from L toBn. A general characterization

of the lattice generated by the substitution sum
L1 L2

L3 L4
is suggested for further study.
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