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Abstract Equal-square graph of finite group G is a simple finite undirected graph with vertex
set G, in which two distinct vertices a, b are adjacent if and only if a2 = b2. In this research
paper we have studied various structural properties such as connectivity, vertex degree, girth,
clique number, independent number, chromatic number and matching number of Equal-square
graph of finite groups. We have also calculated Laplacian polynomial and domination number
of Equal-square graph of various finite groups.

1 Introduction

Studying graphs associated with groups is growing area of research due to their importance in
various fields. Various types of graph are studied in association with finite groups towards study
of their properties such as degree, girth, clique, chromatic number, matching, independent num-
ber, etc. In [1, 2, 3] various properties such as degree, connectedness, girth, clique, independent
number, chromatic number, etc are studied for complement graph of the square power graph,
cubic power graph of finite abelian group and line graphs associated to the unit graphs of rings
whereas square power graph of Zn is studied in [4]. Degree of a vertex in kth- power graph
is calculated in [5]. Various properties of Co-Prime Order graph of a finite groups are studied
in [6]. Vertex degree in the power graph of a finite abelian group is given in [7]. S. N. Singh
calculated the laplacian polynomial of power graph for Zn

pm in [8]. Perfect Italian domination
number of graphs is studied in [9] whereas idempotent graph of rings is studied in [10].
S. U. Rehman, et al. introduced and gave representation of equal-square graph for finite groups
in [11]. From [11] we have ’Theorem 1. A group G has odd order iff ES(G) is empty.’ , ’The-
orem 3. For a cyclic group G of order 2n, ES(G) = 2K2.’ and ’Theorem 4. ES(Dn) =
Kn+2 + (n−2

2 )K2, if n is even and Kn+1 + (n − 1)K1 if n is odd.’. We have further studied
the structural properties such as degree, girth, self-centred, clique, chromatic number, matching
number, independent number, weakly perfectness of equal-square graph for finite groups. We
finally calculated domination number and laplacian polynomial of Equal-square graph of various
finite groups.
Equal-square graph of finite group is finite simple undirected graph in which any pair of ver-
tices r, s are adjacent if and only if r2 = s2. It is represented as ES(G). A graph is said to
be connected if and only if we have path between every distinct vertices pair. If we have edge
between every distinct vertices pair then graph is said to be complete and denoted as Kn where
n is number of vertices in that graph. Let u be any vertex of graph then number of vertices with
which u have edge in that graph is known as degree of vertex u and denoted as deg(u). The
length of shortest cycle in graph ES(G) is known as girth of ES(G) and denoted as gr(ES(G)).
A clique of ES(G) is the complete subgraph of ES(G) and number of vertices in maximal
complete subgraph is known as clique number of ES(G), denoted as ω(ES(G)). A set of ver-
tices such that no pair of vertices in set have edge between them is known as independent set
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and number of vertices in maximal independent set is known as independent number denoted
as β(ES(G)). We have denoted vertex set of graph ES(G) by V (ES(G)) and its order by
|V (ES(G)|. Vertex coloring of equal-square graph means the mapping f : V (ES(G)) → M .
Elements of M are known as colors. If |M | = k, then f is known by k-coloring. If the colors
assigned are different to vertices having edge, then coloring is known as proper-coloring and
graph with proper k-coloring is known as k−colorable. Chromatic number[12, 13] is the value
of least k such that ES(G) is k−colorable. If clique number and chromatic number of any
graph are equal then graph is called weakly perfect. Independent edge set or matching of graph
ES(G) is a set of edges E of graph ES(G), in which no edges pair have common vertex. A
vertex is said to be matched if that vertex is incident to any edge in matching. Matching contain-
ing largest possible edges is known as Maximum matching and number of edges in maximum
matching is called matching number, denoted by µ(ES(G)). If all the vertices of the graph are
saturated by matching then it matching is called perfect matching. For finite natural number
n, dihedral group of order 2n is given as Dn = {ri, sj |o(r) = n, o(s) = 2, srs−1 = r−1}
which is also known as group of symmetries of a regular n-gon. For simplicity we have used
Dn = {r0, r 360

n
, r 2×360

n
, r 3×360

n
, · · · , r (n−1)×360

n

, s1, s2, · · · , sn} with r0 as identity element in which
r (i−1)×360

n

for 1 ≤ i ≤ n are rotation elements and sj for 1 ≤ j ≤ n are reflection elements.

2 Structural Properties of ES(G)

Theorem 2.1. Let ES(Dn) be equal-square graph of dihedral group Dn with identity element
r0 and x be any vertex in ES(Dn) then

deg(x) =


n+ 1, if n is even number and x2 = r0,

1, if n is even number and x2 ̸= r0,

n, if n is odd number and x2 = r0,

0, if n is odd number and x2 ̸= r0.

Proof. Let Dn = {r0, r 360
n
, r 2×360

n
, · · · , r (n−1)×360

n

, s1, s2, · · · , sn} be dihedral group of order 2n
with n rotation elements r (i−1)×360

n

for 1 ≤ i ≤ n and n reflection elements sj for 1 ≤ n.
ES(Dn) be equal-square graph of dihedral group Dn and x be any vertex in ES(Dn).
Case 1. When n is even number and x2 = r0
In this case we have n + 2 elements r0, r180, s1, s2, · · · , sn in Dn of order 2 with r2

0 = r2
180 =

s2
1 = s2

2 = · · · = s2
n = r0. We have no other element x ∈ Dn for which we have x2 = r0. Thus

we have n + 2 vertices in this component of ES(Dn) which are adjacent with each other and
form the Kn+2 component of ES(Dn). So we have deg(x) = n + 1 if n is even number and
x2 = r0.
Case 2. When n is even number and x2 ̸= r0
In this case we have n−2 elements r 360

n
, r 2×360

n
, · · · , r (n2 −1)×360

n

, r (n2 +1)×360
n

, · · · , r (n−1)×360
n

. We have
n−2

2 pairs (x, y) of elements (r 360
n
, r (n2 +1)×360

n

), (r 2×360
n

, r (n2 +2)×360
n

), · · · ,

(r (n2 −1)×360
n

, r (n−1)×360
n

) with x2 = y2 ̸= r0 and one pair elements square is not equal to any other

pair elements square. Hence we have deg(x) = 1 if n is even number and x2 ̸= r0.
Case 3. When n is odd number and x2 = r0
In this case we have n + 1 elements r0, s1, s2, · · · , sn in Dn of order 2 with r2

0 = s2
1 = s2

2 =
· · · = s2

n = r0. We have no other element x ∈ Dn for which we have x2 = r0. Thus we have
n + 1 vertices in this component of ES(Dn) which are adjacent with each other and form the
Kn+1 component of ES(Dn). So we have deg(x) = n if n is odd number and x2 = r0.
Case 4. When n is odd number and x2 ̸= r0
In this case we have n− 1 elements r 360

n
, r 2×360

n
, · · · , r (n−1)×360

n

. Among these n− 1 elements we

have no pair of elements (x, y) for which x2 = y2 and so forming the (n− 1)K1 components of
ES(Dn) Hence we have deg(x) = 1 if n is odd number and x2 ̸= r0.
Hence the required result. 2
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Theorem 2.2. Let ES(Dn) be equal-square graph of dihedral group Dn then
(i) ES(Dn) is connected iff n ∈ {1, 2}.
(ii) ES(Dn) is complete iff n ∈ {1, 2}.
(iii) ES(Dn) is self-centered iff n ∈ {1, 2}.

Proof. (i) Let ES(Dn) is connected. Using [11, Theorem 4] we have ES(Dn) = Kn+2 +
(n−2

2 )K2 for even n and Kn+1 + (n− 1)K1 for odd values of n. Thus ES(Dn) is disconnected
graph for even values of n ≥ 4 and odd values of n ≥ 3. Hence ES(Dn) is connected if
n ∈ {1, 2}.
Conversely, Using from [11, Theorem 4] we have for n = 1, ES(D1) = K2 and for n = 2,
ES(D2) = K4. So if n ∈ {1, 2} then ES(Dn) is connected.
Hence the required result.
(ii) Let ES(Dn) is complete graph then it is should be connected. But from Theorem 2.2(i) we
have ES(Dn) is disconnected for n ≥ 3. So n ̸≥ 3. Now for n ∈ {1, 2}, by using [11, Theorem
4] we have ES(D1) = K2 and ES(D2) = K4. Hence n ∈ {1, 2}.
Conversely, For n ∈ {1, 2} we have ES(D1) = K2 and ES(D2) = K4. Thus ES(Dn) is com-
plete. Hence the required result. 2

Theorem 2.3. Let ES(Dn) be equal-square graph of dihedral group Dn then girth

gr(ES(Dn)) =

{
3 if n ̸= 1,
∞ if n = 1.

Proof. Let ES(Dn) be equal-square graph of dihedral group Dn.
Case 1. When n ̸= 1
By using [11, Theorem 4] we have Kn+2 as a component of ES(Dn) for even values of n and
Kn+1 i case of odd values of n. Thus for n ̸= 1. we have cycle of length 3 in ES(Dn). Hence
gr(Dn) = 3 if n ̸= 1.
Case 2. When n = 1
Using [11, Theorem 4], we have ES(D1) = K2. Thus we have no cycle in ES(Dn). Hence
gr(ES(Dn)) = ∞ if n = 1. 2

Theorem 2.4. Let ES(Dn) be equal-square graph of dihedral group Dn then clique number

ω(ES(Dn)) =

{
n+ 2 if n is even number,
n+ 1 if n is odd number.

Proof. Let ES(Dn) be equal-square graph of dihedral group Dn.
Case 1. When n is even number
Using [11] we have Kn+2 and K2 two kinds of components in ES(Dn). Thus we have Kn+2
maximal complete sub-graph in ES(Dn). Hence ω(ES(Dn)) = n+ 2 if n is even number.
Case 2. When n is odd number
Using [11] we have Kn+1 and K1 two kinds of components in ES(Dn). Thus we have Kn+1
maximal complete sub-graph in ES(Dn). Hence ω(ES(Dn)) = n+ 1 if n is odd number. 2

Theorem 2.5. Let ES(Dn) be equal-square graph of dihedral group Dn then independent num-

ber, β(ES(Dn)) =

{
n
2 if n is even number,
n if n is odd number.

Proof. Let ES(Dn) be equal-square graph of dihedral group Dn.
Case 1. When n is even number
Using [11] we have n−2

2 components of K2 type and one component of Kn+2 type. Thus n−2
2

vertices from K2 type components(one vertex from each K2 component) and one vertex from
Kn+2 type component forms the maximal independent set. Hence β(ES(Dn)) =

n−2
2 + 1 = n

2 .
Case 2. When n is odd number
Using [11] we have n− 1 components of K1 type and one component of Kn+1 type. Thus n− 1
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vertices from K1 type components and one vertex from Kn+1 type component forms the maxi-
mal independent set. Hence β(ES(Dn)) = n− 1 + 1 = n. 2

Theorem 2.6. Let ES(Dn) be equal-square graph of dihedral group Dn then chromatic number,

χ(ES(Dn)) =

{
n+ 2 if n is even number,
n+ 1 if n is odd number.

Proof. Let ES(Dn) be equal-square graph of dihedral group Dn.
Case 1. When n is even number
Using [11] we have ES(Dn) = Kn+2 + (n−2

2 )K2. So we need 2 colors for proper coloring
of n−2

2 components of K2 type component and n + 2 colors for proper coloring of one Kn+2
type component. Thus using n + 2 colors we can do proper coloring of Kn+2 component and
using any 2 colors from already used n + 2 colors we can do proper coloring of n−2

2 compo-
nents of K2 type. Thus we need atleast n + 2 colors for proper coloring of ES(Dn). Hence
χ(ES(Dn)) = n+ 2 when n is even number.
Case 2. When n is odd number
Using [11] we have ES(Dn) = Kn+1 + (n − 1)K1. So we need 1 color for proper coloring
of n − 1 components of K1 type component and n + 1 colors for proper coloring of one Kn+1
type component. Thus using n + 1 colors we can do proper coloring of Kn+1 component and
using any 1 color from already used n + 1 colors we can do proper coloring of n − 1 compo-
nents of K1 type. Thus we need atleast n + 1 colors for proper coloring of ES(Dn). Hence
χ(ES(Dn)) = n+ 1 when n is odd number. 2

Theorem 2.7. Let ES(Dn) be equal-square graph of dihedral group Dn then matching number,

µ(ES(Dn)) =

{
n if n is even number,
n+1

2 if n is odd number.

Proof. Let ES(Dn) be equal-square graph of dihedral group Dn. Using [11, Theorem 4] we
have ES(Dn) = Kn+2 + (n−2

2 )K2 for even n and Kn+1 + (n− 1)K1 for odd values of n.
Case 1. When n is even number
In this case we have one Kn+2 component and (n−2

2 )− K2 components. Thus we have (n+2
2 )

edges from Kn+2 component and (n−2
2 ) edges from n−2

2 − K2 components forming together the
maximal set of edges from ES(Dn) such that no pair of edges have any common vertex. Thus
µ(ES(Dn)) =

n+2
2 + n−2

2 = n.
Case 2. When n is odd number
In this case we have one Kn+1 component and (n − 1)− K1 components. Thus (n+1

2 ) edges
from Kn+1 component forms the maximal set of edges from ES(Dn) such that no pair of edges
have any common vertex. Thus µ(ES(Dn)) =

n+1
2 . 2

Corollary 2.8. Let ES(Dn) be equal-square graph of dihedral group Dn then ES(Dn) have
perfect matching if and only if n is even number.

Proof. Let ES(Dn) be equal-square graph of dihedral group Dn and ES(Dn) have perfect
matching then we have
matching number µ(ES(Dn)) =

number of vertices in ES(Dn)
2 = 2n

2 = n. But from Theorem 2.7 we
have µ(ES(Dn)) = n when n is even number and µ(ES(Dn)) =

n+1
2 when n is odd number.

Thus ES(Dn) have perfect matching if n is even number.
Conversely, when n is even number using Theorem 2.7 we have ES(Dn) have perfect matching.
Hence the required result. 2

Theorem 2.9. Let Dn be dihedral group then square power graph of Dn, Γsq(G) is weakly
perfect.

Proof. From Theorem 2.4 and Theorem 2.6 we have ω(Γsq(G)) = χ(Γsq(G)). Hence Γsq(Dn)
is weakly perfect. 2
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Theorem 2.10. Let G be finite group of odd order and ES(G) be equal-square graph of G then
(i) ES(G) is disconnected graph.
(ii) deg(x) = 0 ∀x ∈ V (ES(G)).
(iii) Girth, gr(ES(G)) = ∞.
(iv) Clique number, ω(ES(G)) = 1.
(v) Independent number, β(ES(G)) = |G|.
(vi) Chromatic number, χ(ES(G)) = 1.
(vii) ES(G) is weakly-perfect.
(viii) Matching number, µ(ES(G)) = 0.

Proof. Let G be finite group of odd order n and ES(G) be equal-square graph of G. Then by
using [11, Theorem 1] we have ES(G) = nK1.
(i) As ES(G) = nK1. Thus ES(G) is disconneted.
(ii) Let x ∈ V (ES(G)). As we have no pair of vertices adjacent in ES(G), so deg(x) = 0
∀x ∈ V (ES(G)).
(iii) In ES(G) we have no cycle. Hence gr(ES(G)) = ∞.
(iv) As we have no pair of adjacent vertices in ES(G), so maximal complete subgraph of ES(G)
is K1. Hence β(ES(G)) = |G|.
(v) As we have no pair of adjacent vertices in ES(G) so maximal independent set is vertex set
of ES(G) itself. Hence β(ES(G)) = |V (ES(G))| = |G|.
(vi) We need atleast one color for proper coloring of K1 component in ES(G) and so atleast one
color to do proper coloring of ES(G). So χ(ES(G)) = 1.
(vii) From Theorem 2.10(iv) and (vi), we have ω(Γsq(G)) = χ(Γsq(G)). Hence Γsq(G) is
weakly perfect.
(viii) As ES(G) = nK1 so we have no edge in graph. Thus Matching number, µ(ES(G)) = 0.
2

Theorem 2.11. Let G be cyclic group of even order 2n and ES(G) be equal-square graph of G
then
(i) ES(G) is disconnected graph.
(ii) deg(x) = 1 ∀x ∈ G.
(iii) Girth, gr(ES(G)) = ∞.
(iv) Clique number, ω(ES(G)) = 2.
(v) Independent number, β(ES(G)) = |G|

2 .
(vi) Chromatic number, χ(ES(G)) = 2.
(vii) ES(G) is weakly-perfect.
(viii) Matching number, µ(ES(G)) = n.

Proof. Let G be cyclic group of even order 2n and ES(G) be equal-square graph of G. Then
from [11, Theorem 3] we have ES(G) = nK2.
(i) As we have ES(G) = nK2. So ES(G) is disconnected.
(ii) Let x ∈ V (ES(G)). In ES(G) we have only K2 type components. Thus deg(x) = 1 ∀x ∈ G.
(iii) We have no cycle in ES(G) so gr(ES(G)) = ∞.
(iv) As we have only K2 type components in ES(G). So we have K2 as maximal complete
subgraph in ES(G). Thus ω(ES(G)) = 2.
(v) We have n components of K2 type in ES(G). n vertices, one from each K2 component forms
the maximal independent set. Thus β(ES(G)) = n = |G|

2 .
(vi) For proper coloring of K2, we need atleast 2 colors. With two colors we can do proper
coloring of n−K2 components in ES(G). Hence χ(ES(G)) = 2.
(vii) From Theorem 2.11(iv) and (vi) we have we ω(Γsq(G)) = χ(Γsq(G)). Hence Γsq(G) is
weakly perfect.
(viii) As ES(G) = nK2 so we have maximal independent set of edges having n edges. Hence
Matching number, µ(ES(G)) = n. 2

Theorem 2.12. Let G = Z2 ×Z2 × · · ·×Z2 = Zm
2 and ES(G) be equal-square graph of G then

(i) ES(G) is connected graph.
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(ii) deg(x) = 2m − 1∀x ∈ G.
(iii) Girth, gr(ES(G)) = 3.
(iv) Clique number, ω(ES(G)) = 2m.
(v) Independent number = 1.
(vi) Chromatic number, χ(ES(G)) = 2m.
(vii) ES(G) is weakly-perfect.
(viii) Matching number, µ(ES(G)) = 2m−1.

Proof. Let G = Z2 × Z2 × · · · × Z2 = Zm
2 and ES(G) be equal-square graph of G then from

[11, Example 4] we have ES(G) = K2m . Hence we have the required results. 2

3 Laplacian Spectrum and Domination Number

Let ES(G) be equal-square graph of group G. Laplacian matrix, L(ES(G)) is the difference
of vertex degree diagonal matrix and adjacency matrix of ES(G). Characteristic polynomial of
L(ES(G)) is known as Laplacian polynomial denoted as ⊖(ES(G), x). Laplacian polynomial
of complete graph with n vertices Kn is ⊖(Kn, x) = x(x − n)n−1. If graph ES is disjoint
union of ES1, ES2, · · · , ESk then ⊖(ES, x) =

∏k
i=1 ⊖(ESi, x) [14]. Minimum dominating set

S is the minimal subset of vertices such that every vertex of graph either lie in S or adjacent
with atleast one vertex in S. Number of vertices in minimum dominating set for G is known
as domination number, denoted as γ(G). Domination number is studied in [15] for idempotent
divisor graphs associated with commutative rings.

Theorem 3.1. Let ES(Dn) be equal-square graph of dihedral group Dn of order 2n. Then

⊖(ES(G), x) =

{
x

n
2 (x− 2)

n−2
2 (x− n− 2)n+1 when n is even number,

xn(x− n− 1)n when n is odd number.

Proof. Let ES(Dn) be equal-square graph of dihedral group Dn of order 2n.
Case 1. When n is even number
From [11, Theorem 4] we have that ES(Dn) = Kn+2+(n−2

2 )K2. So we have ⊖(ES(Dn), x) =

⊖(Kn+2, x)×⊖(K2, x)
n−2

2 = x(x−n−2)n+1 × [x(x−2)]
n−2

2 = x
n
2 (x−2)

n−2
2 (x−n−2)n+1.

Case 2. When n is odd number
From [11, Theorem 4] we have that ES(Dn) = Kn+1+(n−1)K1. So we have ⊖(ES(Dn), x) =
⊖(Kn+1, x)×⊖(K1, x)n−1 = x(x− n− 1)n × xn−1 = xn(x− n− 1)n. 2

Theorem 3.2. Let ES(G) be equal-square graph of finite odd order n abelian group G. Then
⊖(ES(G), x) = xn.

Proof. Let ES(G) be equal-square graph of finite odd order n abelian group G. Using [11,
Theorem 1] we have ES(G) = nK1. So ⊖(ES(G), x) = ⊖(K1)n = xn. 2

Theorem 3.3. Let ES(G) be equal-square graph of cyclic group G of even order 2n. Then
⊖(ES(G), x) = ⊖(K2)n = xn(x− 2)n.

Proof. Let ES(G) be equal-square graph of cyclic group G of even order 2n. Then by using
[11, Theorem 3] we have ES(G) = nK2. Thus ⊖(ES(G), x) = ⊖(K2, x)n = [x(x − 2)]n =
xn(x− 2)n. 2

Theorem 3.4. Let G = Z2 × Z2 × · · · × Z2 = Zm
2 and ES(G) be equal-square graph of G then

⊖(ES(G), x) = x(x− 2m)2m−1.

Proof. Let G = Z2 × Z2 × · · · × Z2 = Zm
2 then ES(G) = K2m . Thus ⊖(ES(G), x) =

⊖(K2m , x) = x(x− 2m)2m−1. 2
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Theorem 3.5. Let G be group and ES(G) be equal square graph of G then domination number,

(i)When G = Dn, γ(G) =

{
n
2 if n is even,
n if n is odd.

(ii) When |G| is odd, γ(G) = |G|.
(iii) When G is cyclic group of order 2n, γ(G) = n.

Proof. (i) When G = Dn and n is even number then we have one component of Kn+2 type and
n−2

2 components of K2 type. So one vertex from Kn+2 and one from each K2 type components
forms minimum dominating set of G. Thus γ(G) = 1 + n−2

2 = n
2 .

When n is odd, then we have one Kn+1 and (n−1)K1 components. Thus γ(G) = 1+n−1 = n.
(ii) When |G| is odd, we have ES(G) = |G|K1. Thus γ(G) = |G|.
(iii) When G is cyclic group of order 2n, then we have ES(G) = nK2. Thus one vertex from
every K2 component combines to form the minimum dominating set. Hence γ(G) = n. 2
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