Palestine Journal of Mathematics

Vol 13(Special Issue I11)(2024) , 162-167 © Palestine Polytechnic University-PPU 2024

On generalization of exact sequences in modules

Rajani S. and Kedukodi B.S. and Harikrishnan P. and Kuncham S.P.

Communicated by Madeleine Al-Tahan

MSC 2010 Classifications: Primary18G99, 13C99.

Keywords and phrases:Exact sequence, U-exact sequence.

Abstract The notion of U-exact sequence in modules over rings was introduced in [20] as
a generalization of {0}-exact sequence. In this paper, we prove further results on U-exact and
V-coexact sequences where V' is induced by U. As shown in the commutative diagram fig.
1, wherein if row-1 is U-exact and row-2 is U -exact, then we prove that the sequence (0) —
ker f — ker f — ker f is (ker f NU)-exact, and the sequence (0) — coker f — coker f —

coker f is (%)—exaot. We provide explicit examples of the existence of U-exact and

’
U -coexactness.

1 Introduction

Let R be aring and let A I, B % C be an exact sequence of R-modules and R-homomorphisms
where f(A) = ¢g~'({0}). In [20], the authors introduced U-exact sequence (or quasi-exact se-
quence), as an answer to a natural question that what if one substitutes an arbitrary submodule
U of C in place of {0} submodule in the above. The authors [20] proved a classical five lemma,
in terms of U-exact sequences, and in [14], the authors studied U-split sequences and found
relationships between U-split sequences and projective modules. Further in [15], the authors
obtained some relationship between the quasi-exact sequence and superfluous (or essential) sub-
module. In case of module over nearrings, the essential ideals [24] and superfluous ideals [22]
were studied. The notions studied in this paper lead to the generalization of some important
aspects in homological algebra [21].

In this paper, we prove some extension results on U-exact and V-coexact sequences, those
are different from the results proved by the authors in [14, 20]. In particular, we prove that
if K" - K — K" — (0) is U-exact at K, then the corresponding U’ -coexactness of

(0) = Hom(K"',N) — Hom(K,N) — Hom(K ,N)
can be obtained, where
U ={heHom(K ,N):h(U)=0y}.

Further, as shown in the commutative diagram of fig. 1, wherein row-1 is U-exact and row-2 is
U -exact, we prove that the sequence

(0) = ker f — ker f — ker [~
is (ker f "N U)-exact, and the sequence
(0) — coker f" = coker f — coker

is (%)—exact.

m f
We provide detailed proofs whenever the sequence is either U-exact or V-coexact plays an im-
portant role, however we skip the verification if the proof is similar to that of {0}-exact se-
quences. We assume {0}-exactness in the sequences whenever it is not specified. We denote set
of all homomorphisms from R-module M to an R-module N by H(M, N).
We refer to [13, 16, 17] for standard definitions and notions on modules over rings (or commu-
tative rings).
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’
2 U-exact and U -coexact sequences

We start this section with the necessary definitions from [20].
Definition 2.1. [20] A sequence of R-modules and R-homomorphisms

o K 1—>K ﬂ)KHl—)

is U;11-exact (where U, is a submodule of K;, ) at K if
Im f; = fl+1(Ui+1)'

Definition 2.2. [20] A sequence (0) — P BER Q —% S — (0) which is {0}-exact at P, U-exact
at ) and {0}-exact at S is called U-exact, where U is a submodule of S.

Definition 2.3. A sequence (0) — P BERN Q -4 S — (0) is V-coexact (V is a submodule of P)
if f is one-one, g is onto and ker g = f(V).

Theorem 2.4. The sequence
K %K%K —(0) (1)
of R-modules and R-homomorphisms is a U-exact sequence at K if and only if
(0) = H(K",N) -2 H(K,N) % H(K ,N) (2)

is U'-coexact at H(K, N) where U' = {h € H(K,N) : h(U) = Oy}

for every R-module N.

Proof. Suppose K —% K —% K" — (0) is U-exact at K and {O}-exact an K. Then
Imu=v""(U)and v(K) = K.

To prove @ is a monomorphism, let f € ker ©. Then 5(f") = fo where

fo : K — N is a trivial homomorphism, implying f o v = fo. Since v(K) = K", it follows
that f"(K") =0 N- Therefore, ¢ is a monomorphism.

Next to prove o(U') = ker i, let f € ker @. Then a(f) = fo where fy is a zero mapping in
H(K',N),implying fou = fp .

Now (fou)(K') = fo (K') = Oy. Since the sequence-1 is U-exact, it follows that Oy =
fu(K") = f(v='(U)), which implies (v=')(U) C ker f.

Let k' € K". As v is a surjective map, there exists k € K such that v(k) = k" . Now define
g: K = N as g(k") = g(v(k)) = f(k). To see g is well defined, let ki ky € K" besuch
that klu = k2 Then there exist ki, k, € K such that U(k]) = klu and v(ky) = kz”. Then
ki —ky € ker v C v~ (U) = ker f, we get g(k:1 ) = g(k:z ) Let z € U. Then, there exists
y € K such that 2 = v(y) implies y € v~'(z) C v=1(U). Now, g(z) = g(v(y)) = f(y) €
f(0=!(x)) C f(v='(U)) = On. Hence g(U) = Oy and so g € U’

Now, 9(z) = (gov)(z) = g(v(z)) = f(z), forevery z € K. That is, 9(g) = f implies
f=1(g) € 5(U"). Therefore, ker i CU(U/)

To prove 5(U') C ker @, let f € ©(U'). Then there exists h € U such that f = (k).
Now a(f)(K') = a(@(h)(K') = a(hov)(K') = (hovou)(K') = (howv)(u(K)) =
(hov)(v™'(U)) = h(vov ") (U) = h(U) = Oy, since h € U'. Therefore, 5(U") C ker .
Hence the sequence is U’-coexact at H(K, N).

Conversely, suppose that the sequence-2 is U'-exact at H(K, N) for every R-module N.

To prove sequence-1 is U-exact, write N = 15 ;/v) By converse hypothesis, the sequence,
KII /l_) KI/ ﬂ , K/I
0 K K K
(0) = #( Im(v))%H( 7Im(v))—”'-[( ’Im(v))
is U'-coexact, where U' = {h € 7—[( ,%) ch(U) C Im(v)}.
Consider the map 7 : K~ — Im oy defined as 7(k") = k" + Im(v). Then 7 € H(K", 15;;;))'
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Let z € K. Now g}(ﬂ'))(x) = (rov)(z) = 7(v(z)) = v(z) + Im(v) = v(z) + v(K), a

zero element in , as v(z) € v(K). Therefore, o(r) = 0, so 7 € ker v = {0}, since

K
Im(v)
sequence -2 is U'-coexact. Now let k" € K. Since r is a zero mapping in H(K

! Ig(vj)v we
getw(k") = 0+ I'm(v), implies k" € Im( ) and we get K C v(K). Therefore, v is onto.
To prove v~ (U) C Im(u), put N = —£—_ Clearly, N is an R-module, and by the converse

hypothesis, the sequence,

K

) = HIK Im(u))

(0) — H(K

is U'-coexact, where U' = {h € H(K ", Im @ )|h( ) C Im(u)}.

Consider the natural map = : K — Im(u) defined by (k) = k + I'm(u). Let k¥ € K . Then
(@(n)) (k) = (mou) (k') = m(u(k")) = w(k) + Im(u) = 04 Im(u), as u(k') € Im(u). Now,
@(m) = 0 and since sequence-2 is U’ -coexact, we have 7 € 5(U’). Then 7 = #(h) = ho v,
for some h € U'. For any z € v~ (U), 7(z) = h(v(z)) € h(U) C Im(u), since h € U . So
x + Im(u) = 04 Im(u), and hence x € Im(u)

To prove Im(u) C v~} (U), put N = KTH Then the sequence

1" 1"

// K v K [ K
is U'-coexact, where U’ = {h € H(K' K" ENU) C U}

Define g : K —>—byg( Y =k" +Uf0reveryk eK".
Clearly g € H(K ", K—)
Now g(U) = 0 in £, so that g € U'. Since sequence-2 is U’ -coexact, i(g) € (U

implies that ﬂ(z‘;(g)) = 0in &~. Thatis, govou = 0. Now,0+U = (go

(gov)u(K)). , , |
This implies g(v(u(K ))) = v(u(K ))+ U, and so v(u(K )) C U. Therefore, u(K ) C v~ (U),
which shows that the sequence-1 is U-exact at K. O

In view of this theorem, we conclude that from the following corollary, an injective module
[23] can be characterized in terms of U-exact and U -coexact sequences.

Corollary 2.5. Let L be an R-module. Then the folowing statements are equivalent.
(i) L isinjective.
(ii) Given an U-exact sequence,
0) = K 4% K% K" —(0), then

the sequence
(0) = H(K",L) % H(K,L) = H(K',L) — (0)

. ’
is U -coexact.

The following examples explicitly illustrate the existence of U-exact and the corresponding
U -coexactness stated in the theorem 2.4.

Example 2.6. The sequence 27 — 7 — % — (0) is %-exact at Z, where v is the inclusion

map and v is the canonical map. Let N = %. Then the sequence,

5 H(Z, z

) = H( o =)

YVAYYA — H(2Z

37
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is U'-coexactat H(L, Z) where U = {f e H(L, Z): f() =0 in L}.

Clearly, v is one-one.

’H(%, %) = {id, fo, f1} where id is an identity map, fy is a zero map and f; is defined by
f1{0,2} =0 and f,{1,3} = 2. Clearly, U" = {fo, f1}, and 5(U") = {ho, hi} where hg is a zero
mapping and h, is defined by

Oifa =2z, 2€Z
h(a) =1 = .
2Qifa=2z+1,z€Z
Now, H(Z, %) = {h', ho, h1} where I’ is the canonical map. Now ker @ = {f € H(Z, %) :
a(f) =0inH(2Z, 5)}. Clearly, h" ¢ ker @and ker @ = {ho, h1}. Therefore, ker @ = o(U")
and hence the sequence is U -coexact.

Example 2.7. Consider the sequence of Z-modules
ZzXZ3i)ZzXZzXZg&ZQXZz—)(O),

which is ((0) x Zy)-exact at Z x Zy x Zsz , where u(l,m) = (0,1,m) for all (I,m) € Z, x Z3
and v(l,m,n) = (I,m) for all (I,m,n) € Zy X Zp x Zs.
Let N = Z; be a Z-module. Then the sequence

(0) = H(Zo X T, To) 5 H(Zo x o x L3, L) % (2o x L, Zs)
is U -exact at H(Zy x L x L3, L) where

U' = {f € H(Zs x Ly, Ts) : f((0) x Zy) = 0in Z,}.

Clearly, v is one-one.

H(Zz X Zz,Zz) = {fo, f1, f2} where f; is a zero mapping and f;(I,m) = [ and f>(I,m) = m
for all (I,m) € Zy X Zy. It can be seen that U' = {fo, fi}, and 5(U") = {ho, h1} where hy is a
zero mapping and hy (I, m,n) =l for all (I,m,n) € Z, x Zp x Zs.

Now, H(szZzXZ3, Zz) = {h()7 hy, hz}, where hz(l, m, n) = mforall (l, m, n) € Ty Xl X 1s.
Now ker @ = {h € H(Zy X Zy x L3, L) : u(h) = 0in (Zy x Z3, Z»)}. It can be verified
that hy ¢ ker @ and ker @ = {ho, h1}. Therefore, ker @ = ©(U') and hence the sequence is
U’ -coexact.

K 5 K
Note 2.8. [16] Let l f l s be a commutative diagram of R-modules and R-homomorphisms.
N Y5 N
Then
() u(ker f) C ker f’
(i) v(Im f) C Im f’

Note 2.9. [16] The above u and v give rise to the R-homomorphisms:
s ker f — ker f defined by @(k) = u(k) for every k € ker f
. coker f — coker [ defined by 5(n + I'm f) = v(n) + Im f . Then

< 2

(i) If u is one-one, then @ is one-one.

(i1) If v is onto, then ¥ is onto.

Theorem 2.10. Let
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(0) K —*+ K "3 K (0), (U — exact)
Jf’ lf Jf”
(0) N NN (0), (U —exact)

fig.1

be a commutative diagram of R-modules and R-homomorphisms with row-1 is U-exact and
row-2 is U -exact. Then the sequences,

0) = kerf 2 kerf % kerf”

is (kerf” N U)-exact at ker f, and

cokerf/ L coker f i) cokerf” — (0)

Proof. By hypothesis, Im u = v=!(U), v is onto and u is one-one.

Consider the sequence (0) — kerf — kerf — kerf . Since u is injective, we have @ is
injective (by note 2.9). It remains to show that I'm(@) = o~ (U N ker f").

To prove Im(@) C o~ "(U Nker f"). Let k € Im(@). Then there exists & € ker f such
that @w(k') = k. By 2.8 and from the fact that row-1 is U-exact, it follows that #(k) € U. That
is, k € o~ 1(U). Now since k € Im(a) C ker f. we have v(k) € ker f , and by note 2.9.
o(k) = v(k) € ker f", shows that k € =" (ker f") and concludes I'm(@) € 5~ (U Nker ).
On the other hand, let k € o' (U N ker f"). Then &(k) € U Nker f . Since k € v~ (U N
ker f') C v (ker f") C ker f, we have v(k) € UNker f'. Now k € v~ (U Nker f") C
v~ (U) = Im(u), there exists k" € K such that u(k') = k.

Now we show that k' € ker f', so that k € Im(u). For this, since k € ker f, it follows that
u (f (k)= of ) k)= (fou)k') = f(k) = 0. Since u'is one-one, f (k') € ker u" = 0.
Therefore, k' € ker f and hence a(k') = u(k') = k, proves v~ (U Nker f) C Im(a).

)-exact at coker f.

Consider the sequence: coker % coker f 25 coker f— (0). Since v is onto, by the note

~ . . . ~ ~— 1 ’ 12
2.9, we have v’ is onto. Therefore, it remains to show that Im(u') = v (%)

Letn+Im f € I?p(d’). Then there exists n+Imf e coker f' such that u'(n" 4+ Im f)
n4+Im f. Now, v'(n+Im f) =0 (' (n +Im f)) =0 (W (n) +Im f) = v (u'(n))
Im f"(note 2.9) € v’ (Im(u'))+Im f. Since row-2 is U -exact, it follows that v’ (n.+Im f)

’

V(0 U) 4 Im £ = U+ I " Therefore, &' (n + Im f) =+ Im f for some z € U,

which shows that v’ (n + I'm f) € (%)

On the other hand, let n + I'm f € 5'_1(%), implying that v’ (n) + Im f =z + Im f

for some z € U'. Now v/(n) —2 € Im f andsov'(n)—z = f (k") forsome k" € K". Since v

is onto, there exists k € K such that v(k) = k. Now we have, v'(n)—z = f (v(k)) = v'(f(k))
since f ov =1 o f . Therefore, n — f(k) € v/_l(U/) = I'm(u'), and hence n — f(k) = u'(n)
forsomen € N'. Now (n— f(k)) +Im f =u'(n') + I'm f, implying n+ Im f € Im(u), as
desired.

=+ 1

O

3 Conclusion

In this paper, we have continued the notions U-exact, V' -coexact sequences which was introduced
in [20]. We have proved further results on these notions. The study can be extended to flat
modules and tensor products of modules in terms of U-exact sequences. One can also study
similar exactness of sequences of ideals of modules over nearrings (for comprehensive literature
on module over nearrings, one may refer to [18, 19]).
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