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Abstract The notion of U -exact sequence in modules over rings was introduced in [20] as
a generalization of {0}-exact sequence. In this paper, we prove further results on U -exact and
V -coexact sequences where V is induced by U . As shown in the commutative diagram fig.
1, wherein if row-1 is U -exact and row-2 is U

′
-exact, then we prove that the sequence (0) →

ker f
′ → ker f → ker f

′′
is (ker f

′′∩U)-exact, and the sequence (0) → coker f
′ → coker f →

coker f
′′

is
(
U

′
+Im f

′′

Im f ′′

)
-exact. We provide explicit examples of the existence of U -exact and

U
′
-coexactness.

1 Introduction

Let R be a ring and let A f−→ B
g−→ C be an exact sequence of R-modules and R-homomorphisms

where f(A) = g−1({0}). In [20], the authors introduced U -exact sequence (or quasi-exact se-
quence), as an answer to a natural question that what if one substitutes an arbitrary submodule
U of C in place of {0} submodule in the above. The authors [20] proved a classical five lemma,
in terms of U -exact sequences, and in [14], the authors studied U -split sequences and found
relationships between U -split sequences and projective modules. Further in [15], the authors
obtained some relationship between the quasi-exact sequence and superfluous (or essential) sub-
module. In case of module over nearrings, the essential ideals [24] and superfluous ideals [22]
were studied. The notions studied in this paper lead to the generalization of some important
aspects in homological algebra [21].
In this paper, we prove some extension results on U -exact and V -coexact sequences, those
are different from the results proved by the authors in [14, 20]. In particular, we prove that
if K

′ → K → K
′′ → (0) is U -exact at K, then the corresponding U

′
-coexactness of

(0) → Hom(K
′′
, N) → Hom(K,N) → Hom(K

′
, N)

can be obtained, where

U
′
= {h ∈ Hom(K

′′
, N) : h(U) = 0N}.

Further, as shown in the commutative diagram of fig. 1, wherein row-1 is U -exact and row-2 is
U

′
-exact, we prove that the sequence

(0) → ker f
′
→ ker f → ker f

′′

is (ker f
′′ ∩ U)-exact, and the sequence

(0) → coker f
′
→ coker f → coker f

′′

is
(
U

′
+Im f

′′

Im f ′′

)
-exact.

We provide detailed proofs whenever the sequence is either U -exact or V -coexact plays an im-
portant role, however we skip the verification if the proof is similar to that of {0}-exact se-
quences. We assume {0}-exactness in the sequences whenever it is not specified. We denote set
of all homomorphisms from R-module M to an R-module N by H(M,N).
We refer to [13, 16, 17] for standard definitions and notions on modules over rings (or commu-
tative rings).
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2 U -exact and U
′-coexact sequences

We start this section with the necessary definitions from [20].

Definition 2.1. [20] A sequence of R-modules and R-homomorphisms

· · · → Ki−1
fi−→ Ki

fi+1−−→ Ki+1 → · · ·

is Ui+1-exact (where Ui+1 is a submodule of Ki+1) at Ki if
Im fi = f−1

i+1(Ui+1).

Definition 2.2. [20] A sequence (0) → P
f−−→ Q

g−−→ S → (0) which is {0}-exact at P , U -exact
at Q and {0}-exact at S is called U -exact, where U is a submodule of S.

Definition 2.3. A sequence (0) → P
f−−→ Q

g−−→ S → (0) is V -coexact (V is a submodule of P )
if f is one-one, g is onto and ker g = f(V ).

Theorem 2.4. The sequence

K
′ u−−→ K

v−−→ K
′′
→ (0) (1)

of R-modules and R-homomorphisms is a U -exact sequence at K if and only if

(0) → H(K
′′
, N)

v̄−−→ H(K,N)
ū−−→ H(K

′
, N) (2)

is U
′
-coexact at H(K,N) where U

′
= {h ∈ H(K

′′
, N) : h(U) = 0N}

for every R-module N .

Proof. Suppose K
′ u−−→ K

v−−→ K
′′ → (0) is U -exact at K and {0}-exact an K

′′
. Then

Im u = v−1(U) and v(K) = K
′′

.
To prove v̄ is a monomorphism, let f

′′ ∈ ker v̄. Then v̄(f
′′
) = f0 where

f0 : K → N is a trivial homomorphism, implying f
′′ ◦ v = f0. Since v(K) = K

′′
, it follows

that f
′′
(K

′′
) = 0N . Therefore, v̄ is a monomorphism.

Next to prove v̄(U
′
) = ker ū, let f ∈ ker ū. Then ū(f) = f0

′
where f0

′
is a zero mapping in

H(K
′
, N), implying f ◦ u = f0

′
.

Now (f ◦ u)(K
′
) = f0

′
(K

′
) = 0N . Since the sequence-1 is U -exact, it follows that 0N =

f(u(K
′
)) = f(v−1(U)), which implies (v−1)(U) ⊆ ker f .

Let k
′′ ∈ K

′′
. As v is a surjective map, there exists k ∈ K such that v(k) = k

′′
. Now define

g : K
′′ → N as g(k

′′
) = g(v(k)) = f(k). To see g is well defined, let k1

′′
, k2

′′
∈ K

′′
be such

that k1
′′
= k2

′′
. Then there exist k1, k2 ∈ K such that v(k1) = k1

′′
and v(k2) = k2

′′
. Then

k1 − k2 ∈ ker v ⊆ v−1(U) = ker f , we get g(k1
′′
) = g(k2

′′
). Let x ∈ U . Then, there exists

y ∈ K such that x = v(y) implies y ∈ v−1(x) ⊆ v−1(U). Now, g(x) = g(v(y)) = f(y) ∈
f(v−1(x)) ⊆ f(v−1(U)) = 0N . Hence g(U) = 0N and so g ∈ U

′
.

Now, v̄(x) = (g ◦ v)(x) = g(v(x)) = f(x), for every x ∈ K. That is, v̄(g) = f implies
f = v̄(g) ∈ v̄(U

′
). Therefore, ker ū ⊆ v̄(U

′
).

To prove v̄(U
′
) ⊆ ker ū, let f ∈ v̄(U

′
). Then there exists h ∈ U

′
such that f = v̄(h).

Now ū(f)(K
′
) = ū(v̄(h))(K

′
) = ū(h ◦ v)(K

′
) = (h ◦ v ◦ u)(K

′
) = (h ◦ v)(u(K

′
)) =

(h ◦ v)(v−1(U)) = h(v ◦ v−1)(U) = h(U) = 0N , since h ∈ U
′
. Therefore, v̄(U

′
) ⊆ ker ū.

Hence the sequence is U ′-coexact at H(K,N).
Conversely, suppose that the sequence-2 is U

′
-exact at H(K,N) for every R-module N .

To prove sequence-1 is U -exact, write N = K
′′

Im(v) . By converse hypothesis, the sequence,

(0) → H
(
K

′′
,

K
′′

Im(v)

) v̄−→ H
(
K,

K
′′

Im(v)

) ū−→ H
(
K

′
,

K
′′

Im(v)

)
is U

′
-coexact, where U

′
= {h ∈ H(K

′′
, K

′′

Im(v)) : h(U) ⊆ Im(v)}.

Consider the map π : K
′′ → K

′′

Im(v) defined as π(k
′′
) = k

′′
+ Im(v). Then π ∈ H(K

′′
, K

′′

Im(v)).
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Let x ∈ K. Now (v̄(π))(x) = (π ◦ v)(x) = π(v(x)) = v(x) + Im(v) = v(x) + v(K), a
zero element in K

′′

Im(v) , as v(x) ∈ v(K). Therefore, v̄(π) = 0, so π ∈ ker v̄ = {0}, since

sequence-2 is U
′
-coexact. Now let k

′′ ∈ K
′′

. Since π is a zero mapping in H(K
′′
, K

′′

Im(v)), we

get π(k
′′
) = 0 + Im(v), implies k

′′ ∈ Im(v) and we get K
′′ ⊆ v(K). Therefore, v is onto.

To prove v−1(U) ⊆ Im(u), put N = K
Im(u) . Clearly, N is an R-module, and by the converse

hypothesis, the sequence,

(0) → H(K
′′
,

K

Im(u)
)

v̄−→ H(K,
K

Im(u)
)

ū−→ H(K
′
,

K

Im(u)
)

is U
′
-coexact, where U

′
= {h ∈ H(K

′′
, K
Im(u))|h(U) ⊆ Im(u)}.

Consider the natural map π : K → K
Im(u) defined by π(k) = k + Im(u). Let k

′ ∈ K
′
. Then

(ū(π))(k
′
) = (π ◦u)(k′

) = π(u(k
′
)) = u(k

′
)+ Im(u) = 0+ Im(u), as u(k

′
) ∈ Im(u). Now,

ū(π) = 0 and since sequence-2 is U
′
-coexact, we have π ∈ v̄(U

′
). Then π = v̄(h) = h ◦ v,

for some h ∈ U
′
. For any x ∈ v−1(U), π(x) = h(v(x)) ∈ h(U) ⊆ Im(u), since h ∈ U

′
. So

x+ Im(u) = 0 + Im(u), and hence x ∈ Im(u).
To prove Im(u) ⊆ v−1(U), put N = K

′′

U . Then the sequence

(0) → H(K
′′
,
K

′′

U
)

v̄−→ H(K,
K

′′

U
)

ū−→ H(K
′
,
K

′′

U
)

is U
′
-coexact, where U

′
= {h ∈ H(K

′′
, K

′′

U )|h(U) ⊆ U}.

Define g : K
′′ → K

′′

U by g(k
′′
) = k

′′
+ U for every k

′′ ∈ K
′′

.

Clearly g ∈ H(K
′′
, K

′′

U ).

Now g(U) = 0 in K
′′

U , so that g ∈ U
′
. Since sequence-2 is U

′
-coexact, ū(g) ∈ v̄(U

′
) = ker(ū),

implies that ū(v̄(g)) = 0 in K
′′

U . That is, g ◦ v ◦ u = 0. Now, 0 + U = (g ◦ v ◦ u)(K
′
) =

(g ◦ v)(u(K ′
)).

This implies g(v(u(K
′
))) = v(u(K

′
))+U , and so v(u(K

′
)) ⊆ U . Therefore, u(K

′
) ⊆ v−1(U),

which shows that the sequence-1 is U -exact at K.

In view of this theorem, we conclude that from the following corollary, an injective module
[23] can be characterized in terms of U -exact and U

′
-coexact sequences.

Corollary 2.5. Let L be an R-module. Then the folowing statements are equivalent.

(i) L is injective.

(ii) Given an U -exact sequence,

(0) → K
′ u−→ K

v−→ K
′′
→ (0), then

the sequence
(0) → H(K

′′
, L)

v̄−→ H(K,L)
ū−→ H(K

′
, L) → (0)

is U
′
-coexact.

The following examples explicitly illustrate the existence of U -exact and the corresponding
U

′
-coexactness stated in the theorem 2.4.

Example 2.6. The sequence 2Z u−−→ Z v−−→ Z
4Z → (0) is 2Z

4Z -exact at Z, where u is the inclusion
map and v is the canonical map. Let N = Z

4Z . Then the sequence,

(0) → H
( Z

4Z ,
Z
4Z

) v̄−−→ H
(
Z, Z

4Z
) ū−−→ H

(
2Z, Z

4Z
)
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is U
′
-coexact at H

( Z
4Z ,

Z
4Z
)

where U
′
= {f ∈ H

( Z
4Z ,

Z
4Z
)

: f
( 2Z

4Z
)
= 0 in Z

4Z}.
Clearly, v̄ is one-one.
H
( Z

4Z ,
Z
4Z
)
= {id, f0, f1} where id is an identity map, f0 is a zero map and f1 is defined by

f1{0̄, 2̄} = 0̄ and f1{1̄, 3̄} = 2̄. Clearly, U
′
= {f0, f1}, and v̄(U

′
) = {h0, h1} where h0 is a zero

mapping and h1 is defined by

h(a) =

{
0̄ if a = 2x, x ∈ Z
2̄ if a = 2x+ 1, x ∈ Z

Now, H
(
Z, Z

4Z
)
= {h′

, h0, h1} where h
′

is the canonical map. Now ker ū = {f ∈ H
(
Z, Z

4Z
)

:
ū(f) = 0 in H

(
2Z, Z

4Z
)
}. Clearly, h

′
/∈ ker ū and ker ū = {h0, h1}. Therefore, ker ū = v̄(U

′
)

and hence the sequence is U
′
-coexact.

Example 2.7. Consider the sequence of Z-modules

Z2 × Z3
u−→ Z2 × Z2 × Z3

v−→ Z2 × Z2 → (0),

which is ((0) × Z2)-exact at Z2 × Z2 × Z3 , where u(l,m) = (0, l,m) for all (l,m) ∈ Z2 × Z3
and v(l,m, n) = (l,m) for all (l,m, n) ∈ Z2 × Z2 × Z3.
Let N = Z2 be a Z-module. Then the sequence

(0) → H
(
Z2 × Z2, Z2

) v̄−→ H
(
Z2 × Z2 × Z3, Z2

) ū−→
(
Z2 × Z3, Z2

)
is U

′
-exact at H

(
Z2 × Z2 × Z3, Z2

)
where

U
′
= {f ∈ H

(
Z2 × Z2, Z2

)
: f((0)× Z2) = 0 in Z2}.

Clearly, v̄ is one-one.
H
(
Z2 × Z2,Z2

)
= {f0, f1, f2} where f0 is a zero mapping and f1(l,m) = l and f2(l,m) = m

for all (l,m) ∈ Z2 × Z2. It can be seen that U
′
= {f0, f1}, and v̄(U

′
) = {h0, h1} where h0 is a

zero mapping and h1(l,m, n) = l for all (l,m, n) ∈ Z2 × Z2 × Z3.
Now, H

(
Z2×Z2×Z3, Z2

)
= {h0, h1, h2}, where h2(l,m, n) = m for all (l,m, n) ∈ Z2×Z2×Z3.

Now ker ū = {h ∈ H
(
Z2 × Z2 × Z3, Z2

)
: ū(h) = 0 in

(
Z2 × Z3, Z2

)
}. It can be verified

that h2 /∈ ker ū and ker ū = {h0, h1}. Therefore, ker ū = v̄(U
′
) and hence the sequence is

U
′
-coexact.

Note 2.8. [16] Let
K K

′

N N
′

u

f f
′

v

be a commutative diagram of R-modules and R-homomorphisms.

Then

(i) u(ker f) ⊆ ker f
′

(ii) v(Im f) ⊆ Im f
′

Note 2.9. [16] The above u and v give rise to the R-homomorphisms:
ū : ker f → ker f

′
defined by ū(k) = u(k) for every k ∈ ker f

ṽ : coker f → coker f
′

defined by ṽ(n+ Im f) = v(n) + Im f
′
. Then

(i) If u is one-one, then ū is one-one.

(ii) If v is onto, then ṽ is onto.

Theorem 2.10. Let
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(0) K
′

K K
′′

(0), (U − exact)

(0) N
′

N N
′′

(0), (U
′ − exact)

f
′

u v

f f
′′

u
′

v
′

fig.1

be a commutative diagram of R-modules and R-homomorphisms with row-1 is U -exact and
row-2 is U

′
-exact. Then the sequences,

(0) → kerf
′ ū−→ kerf

v̄−→ kerf
′′

is (kerf
′′ ∩ U)-exact at ker f , and

cokerf
′ ũ′

−→ cokerf
ṽ′

−→ cokerf
′′
→ (0)

is
(
U

′
+Im f

′′

Im f ′′

)
-exact at coker f .

Proof. By hypothesis, Im u = v−1(U), v is onto and u is one-one.
Consider the sequence (0) → kerf

′ → kerf → kerf
′′

. Since u is injective, we have ū is
injective (by note 2.9). It remains to show that Im(ū) = v̄−1(U ∩ ker f

′′
).

To prove Im(ū) ⊆ v̄−1(U ∩ ker f
′′
). Let k ∈ Im(ū). Then there exists k

′ ∈ ker f
′

such
that ū(k

′
) = k. By 2.8 and from the fact that row-1 is U -exact, it follows that v̄(k) ∈ U . That

is, k ∈ v̄−1(U). Now since k ∈ Im(ū) ⊆ ker f . we have v(k) ∈ ker f
′′

, and by note 2.9.
v̄(k) = v(k) ∈ ker f

′′
, shows that k ∈ v̄−1(ker f

′′
) and concludes Im(ū) ⊆ v̄−1(U ∩ ker f

′′
).

On the other hand, let k ∈ v̄−1(U ∩ ker f
′′
). Then v̄(k) ∈ U ∩ ker f

′′
. Since k ∈ v−1(U ∩

ker f
′′
) ⊆ v−1(ker f

′′
) ⊆ ker f, we have v(k) ∈ U ∩ ker f

′′
. Now k ∈ v−1(U ∩ ker f

′′
) ⊆

v−1(U) = Im(u), there exists k
′ ∈ K

′
such that u(k

′
) = k.

Now we show that k
′ ∈ ker f

′
, so that k ∈ Im(ū). For this, since k ∈ ker f , it follows that

u
′
(f

′
(k

′
)) = (u

′ ◦ f ′
)(k

′
) = (f ◦ u)(k′

) = f(k) = 0. Since u
′
is one-one, f

′
(k

′
) ∈ ker u

′
= 0.

Therefore, k
′ ∈ ker f

′
and hence ū(k

′
) = u(k

′
) = k, proves v−1(U ∩ ker f

′′
) ⊆ Im(ū).

Consider the sequence: coker f
′ ũ′

−→ coker f
ṽ′

−→ coker f
′′ → (0). Since v is onto, by the note

2.9, we have ṽ′ is onto. Therefore, it remains to show that Im(ũ′) = ṽ′−1(U
′
+Im f

′′

Im f ′′

)
.

Let n+ Im f ∈ Im(ũ′). Then there exists n
′
+ Im f

′ ∈ coker f
′

such that ũ′(n
′
+ Im f

′
) =

n + Im f . Now, ṽ′(n + Im f) = ṽ′(ũ′(n
′
+ Im f

′
)) = ṽ′(u

′
(n

′
) + Im f) = v

′
(u

′
(n

′
)) +

Im f
′′

(note 2.9) ∈ v
′
(Im(u

′
))+Im f

′′
. Since row-2 is U

′
-exact, it follows that ṽ′(n+Im f) =

v
′
(v

′−1
(U

′
)) + Im f

′′
= U

′
+ Im f

′′
. Therefore, ṽ′(n+ Im f) = x+ Im f

′
for some x ∈ U

′
,

which shows that ṽ′(n+ Im f) ∈
(
U

′
+Im f

′′

Im f ′′

)
.

On the other hand, let n+ Im f ∈ ṽ′−1(U
′
+Im f

′′

Im f ′′

)
, implying that v

′
(n) + Im f

′
= x+ Im f

′

for some x ∈ U
′
. Now v′(n)−x ∈ Im f

′
and so v′(n)−x = f

′′
(k

′′
) for some k

′′ ∈ K
′′

. Since v
is onto, there exists k ∈ K such that v(k) = k

′′
. Now we have, v′(n)−x = f

′′
(v(k)) = v

′
(f(k))

since f
′′ ◦ v = v

′ ◦ f . Therefore, n− f(k) ∈ v
′−1

(U
′
) = Im(u

′
), and hence n− f(k) = u

′
(n

′
)

for some n
′ ∈ N

′
. Now (n− f(k)) + Im f = u

′
(n

′
) + Im f , implying n+ Im f ∈ Im(ũ′), as

desired.

3 Conclusion

In this paper, we have continued the notions U -exact, V -coexact sequences which was introduced
in [20]. We have proved further results on these notions. The study can be extended to flat
modules and tensor products of modules in terms of U -exact sequences. One can also study
similar exactness of sequences of ideals of modules over nearrings (for comprehensive literature
on module over nearrings, one may refer to [18, 19]).
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