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Abstract Let Dn be dihedral group of order 2n with identity element e then its square power
graph is a undirected, finite, simple graph in which pair of distinct vertices a, b have edge iff
ab = c2 or ba = c2 for any c ∈ Dn where c2 ̸= e. In this research paper we have studied various
structural properties such as connectedness, vertex degree, girth, clique, chromatic number and
laplacian spectrum of square power graph of dihedral group Dn of order 2n for odd number n.

1 Introduction

Studying graphs associated with groups is an growing and interesting topic among researchers.
Depending upon different group properties we have various types of graphs such as power graph,
co-prime graph, additive power graph, square element graph, square power graph, cubic power
graph, kth-power graph, etc. A. Sehgal and SN Singh researched the degree of a vertex in the
power graph of a finite abelian group [1]. L. Lu and others studied the Integral Cayley graphs
over dihedral groups [2]. R. S. Gupta and M. K. Sen studied square element graph in association
with ring in [3]. B. Biswas and other researchers studied connectedness of square element graph
of arbitrary rings in [4], properties of square element graph of square-subtract rings in [5] and
over semigroups in [6]. R. R. Prathap and T. T. Chelvam researched cubic power graph in [7] and
complement of square power graph in [8] for finite abelian group. P. Rana and others studied
degree of a vertex in kth−power graph of a finite abelian group [9]. A. Siwach and others
researched square power graph of Zn and 2 − group in [10]. A. Sehgal and others explored
the structural characteristics of Co-Prime Order graph for a finite abelian Group and Dihedral
Group in [11]. F. Ali and others studied the properties of commuting graph of dihedral group
[12]. Girth, diameter, completeness, bipartiteness, chromatic number and traversability of line
graphs associated to the unit graphs of rings are studied in [13]. In [14] laplacian spectra for
power graphs of abelian groups is studied.
In this paper we have studied square power graph of dihedral group. Square power graph of a
finite group G with identity element e, Γsq(G) is undirected, simple, finite graph with vertex set
G and two distinct vertices a, b ∈ G are adjacent if and only if ab = c2 or ba = c2 for any c ∈ G
and c2 ̸= e.

2 Preliminaries

Let us recall some important results about graphs and dihedral group which are necessary and
used in our study. Dn be a dihedral group of order 2n, with n reflection elements and n rota-
tion elements i.e Dn = {xiyj : x2 = e, yn = e, xy = y−1x; i = 0, 1; j = 0, 1, 2, · · · , n − 1}.
Throughout this paper we have used
Dn = {R0, R 360

n
, R 2×360

n
, R 3×360

n
, · · ·R (n−1)×360

n

, Fa1 , Fa2 , Fa3 , · · · , Fan} here R i×360
n

are rotation
elements for 0 ≤ i ≤ n − 1 and R360 = R0; and Faj

are reflection elements all with order 2 for
1 ≤ j ≤ n. We have two distinct rotation elements or two distinct reflection elements always
combine to form rotation element i.e R i×360

n
× R j×360

n
= R k×360

n
where 0 ≤ i, j, k ≤ n − 1

and Fai × Faj = R k×360
n

where 1 ≤ i, j ≤ n and 0 ≤ k ≤ n − 1. We also have one
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rotation and one reflection element combine to form reflection element i.e R i×360
n

× Faj
=

Fak
where 0 ≤ i ≤ n − 1 and 1 ≤ j, k ≤ n. When n is odd we have n number of ele-

ments of order 2 in Dn. D2
n = {R2

0, R
2
360
n

, R2
2×360

n

, R2
3×360

n

, · · ·R2
(n−1)×360

n

, F 2
a1
, F 2

a2
, F 2

a3
, · · · , F 2

an
} =

{R0, R 360
n
, R 2×360

n
, R 3×360

n
, · · · , R (n−1)×360

n

} when n is odd number.
Square power graph of a finite group G with identity element e, Γsq(G) is undirected, simple,
finite graph with vertex set G and two distinct vertices a, b ∈ G are adjacent if and only if
ab = c2 or ba = c2 for any c ∈ G and c2 ̸= e. It can be clearly seen that any pair of vertices
X,Y ∈ Dn are adjacent in square power graph Γsq(Dn) if and only if XY ∈ D2

n \ {R0} or
Y X ∈ D2

n \ {R0}. When two distinct vertices are adjacent we say they have edge between
them. We have used d(X,Y ) for distance between vertices X and Y vertices, shortest path
length between vertices X and Y . Girth gr(Γsq(G)) of square power graph is the length of
shortest cycle in Γsq(G). Maximal complete subgraph of Γsq(G) is known as clique of Γsq(G)
and number of vertices in largest clique is denoted as ω(Γsq(G)) and known by clique num-
ber of square power graph. Number of vertices with which vertex X is adjacent in Γsq(G) is
known as degree of vertex X in square power graph Γsq(G), denoted as degΓsq(G)(X). Kn is
the complete graph with n vertices. If there are n disjoint components C1, C2, · · · , Cn of graph
C then we denote them as C = [C1] ∪ [C2] ∪ · · · ∪ [Cn]. Complement of any component of
graph means pairs of vertices which were having edge in that component is not having edge in
its complement and pair of vertices which were not having edge in that component are having
edge in complement of that component. For complement of any component C1 of C we have
used C1. So we have [Kn] ∪ [Kn] ∪ · · · ∪ [Kn] = nKn, [Kn] = nK1 We have two disjoint
components K1 ∪ n−1

2 K2 and Kn in Γcpg(G) when G = Dn with odd number n. Thus we have
used Γcpg(G) = [K1 ∪ n−1

2 K2] ∪ [Kn].

3 Properties of Γsq(Dn)

Theorem 3.1. Let Γsq(G) be square power graph of Dn and n is odd number then Γsq(G) is
disconnected graph.

Proof. For G = Dn, Γsq(G) be square power graph. We have X,Y ∈ Dn if and only if
XY ∈ D2

n or Y X ∈ D2
n. We have D2

n = {R i×360
n

: 0 ≤ i ≤ n − 1} when n is odd number.
When one of X,Y is rotation element and another is reflection element then we have XY and
Y X both are reflection elements. Thus we have XY /∈ D2

n and Y X /∈ D2
n. So we have no edge

between any reflection element and rotation element vertex in square power graph of dihedral
group. We have no path between reflection and rotation vertices. Hence square power graph of
dihedral group Γsq(Dn) for odd n is disconnected graph. 2

Theorem 3.2 ([6]). Let Γsq(G) be square power graph of Dn then Γsq(G) = [K1 ∪ n−1
2 K2] ∪

[Kn] if n is odd number.

Proof. When n is odd number, we have D2
n = {R i×360

n
: 0 ≤ i ≤ n−1} and we have two vertices

X,Y ∈ Dn are adjacent in Γsq(Dn) if and only if XY ∈ D2
n \ {R0} or Y X ∈ D2

n \ {R0}. When
X and Y both are rotation elements and X−1 ̸= Y then we have XY and Y X both belongs to
D2

n \ {R0} and so are adjacent. In this case we have only R0 element which is self inverse so we
have R0 element vertex having edge with all other rotation vertices in Γsq(Dn).
When both of X and Y are both are reflection elements then we have XY and Y X both belongs
to D2

n. So we have edge between every pair of reflection element vertices in square power graph.
When one of X and Y is reflection element and another is rotation element then we have both
XY and Y X reflection elements and so we have both XY and Y X does not belong to D2

n.
Thus we have no edge between any reflection element vertex and rotation element vertex. Hence
we have two components in Γsq(Dn), one with n rotation element vertices and another with
n reflection element vertices. In component with rotation element vertices we have R0 having
edge with every other rotation element vertex and every rotation element other than R0 having
edge with every other rotation other than its inverse. Hence we have [K1 ∪ n−1

2 K2] structure of
this component. In second component with n reflection element vertices we have edge between
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every pair of distinct reflection vertices and so we have Kn structure of this component. Hence
we have Γsq(Dn) = [K1 ∪ n−1

2 K2] ∪ [Kn] when n is odd number. 2

Corollary 3.3. Let Γsq(G) be square power graph of Dn then number of components in Γsq(G)
is two when n is odd number.

Proof. From Theorem 3.2 we have two disjoint components in Γsq(G) when n is odd number.2

Corollary 3.4. Let Γsq(G) be square power graph of Dn and n is odd number then

(i)d(Ri, Rj) =

{
1 if R−1

i ̸= Rj

2 if R−1
i = Rj

(ii)d(Fai
, Faj

) = 1

Proof. Using Theorem 3.2 we have the required result. 2

Theorem 3.5. Let Γsq(G) be square power graph of Dn and n is odd number then girth

gr(Γsq(G)) =

{
∞ when n = 1
3 otherwise

Proof. When n = 1 then by using Theorem 3.2 we have Γsq(G) = [K1] ∪ [K1] = K1 ∪ K1.
Hence we have no cycle in Γsq(G) and so gr(Γsq(G)) = ∞ when n = 1.
When n is odd number other than 1 then by using Theorem 3.2 we have one component Kn of
Γsq(G). Hence we have cycle of length three in Γsq(G) for odd number n other than 1. Hence
gr(Γsq(G)) = 3 when n is odd number other than 1. 2

Theorem 3.6. Let Γsq(G) be square power graph of Dn then clique number ω(Γsq(G)) = n
when n is odd number.

Proof. When n = 1 then by using Theorem 3.2 we have Γsq(G) = [K1]∪ [K1] = K1 ∪K1. Thus
we have K1 complete subgraph of Γsq(G) with maximum vertices. Hence ω(Γsq(G)) = 1 when
n = 1.
When n is odd number ≥ 3 then from Theorem 3.2 we have two components each with n
vertices and one of them is Kn. Thus Kn is maximal complete subgraph of Γsq(G). Hence
ω(Γsq(G)) = n when n is odd number ≥ 3.
Hence the required result. 2

Theorem 3.7 ([6]). Let Γsq(G) be square power graph of Dn then chromatic number χ(Γsq(G)) =
n when n is odd number.

Proof. Using Theorem 3.2 and Corollary 3.3 we have two components in Γsq(G), one of which
is of form Kn. Assign n different colours to n vertices in Kn component. Now using the 1+ n−1

2
colours out of n colours already used in Kn component, we get the proper colouring i.e adjacent
vertices assigned different colours. Hence χ(Γsq(G)) = n. 2

Theorem 3.8. Let Γsq(G) be square power graph of Dn and n is odd number then Γsq(G) is
weakly perfect.

Proof. Using Theorem 3.6 and Theorem 3.7 we get ω(Γsq(G)) = n = χ(Γsq(G)). Thus Γsq(G)
is weakly perfect. 2

Theorem 3.9. Let Γsq(G) be square power graph of Dn and n is odd number then degree of any
vertex X

degΓsq(G)(X) =


n− 1 if X = R0

n− 2 if X is any rotation element vertex other than R0

n− 1 if X is any reflection element vertex

Proof. From Theorem 3.2 we have two components in Γsq(G). In one component with n rotation
element vertices, R0 is adjacent with all other n− 1 rotation element vertices. Any rotation ele-
ment other than R0 is not self inverse in Dn when n is odd number. Every rotation element vertex
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in this component other than R0 is adjacent with n− 2 rotation element vertices which excludes
only their inverse rotation element vertex. So degΓsq(G)(R0) = n− 1 and degΓsq(G)(X) = n− 2
if X is any rotation element vertex other than R0.
In second component of Γsq(G), we have n reflection elements vertices with every pair of dis-
tinct vertices having edge. Hence degΓsq(G)(X) = n− 1 if X is any reflection element vertex.2

Theorem 3.10. Let Γsq(G) be square power graph of Dn, dihedral group of order 2n and n is

odd number then independent number, β(Γsq(G)) =

{
2 if n = 1,
3 otherwise.

Proof. Let Γsq(G) be square power graph of Dn, dihedral group of order 2n and n is odd num-
ber. Then by using Theorem 3.2 we have two disjoint components in Γsq(G), one of which is
Kn and another is [K1 ∪ n−1

2 K2].
Case 1. When n = 1
In this case we have Γsq(G) = 2K1. Hence β(Γsq(G)) = 2.
Case 2. When n is odd number other than 1
In this case we have one vertex from Kn component and two vertices of a, a−1 type from
[K1 ∪ n−1

2 K2] component forming the maximal independent set. Thus β(Γsq(G)) = 3. 2

Theorem 3.11. Let Γsq(G) be square power graph of Dn, dihedral group of order 2n and n is
odd number then matching number, µ(Γsq(G)) = n− 1.

Proof. Let Γsq(G) be square power graph of Dn, dihedral group of order 2n and n is odd number.
Then using Theorem 3.2 we have two disjoint components in Γsq(G), one of which is Kn and
another is [K1 ∪ n−1

2 K2]. So n−1
2 edges from Kn component and n−1

2 edges from [K1 ∪ n−1
2 K2]

component forms the maximal independent edge set. Thus µ(Γsq(G)) = n−1
2 + n−1

2 = n− 1. 2

4 Laplacian Spectrum of Γsq(Dn)

Theorem 4.1. Let Γsq(G) be square power graph of Dn where n is odd number then we have

Laplacian matrix L =

[
U O

O V

]
2n×2n

. Characteristic polynomial of L is C(x) = x2(n −

x)
3(n−1)

2 (n − 2 − x)
n−1

2 having laplacian spectrum 0 with multiplicity 2, n − 2 with multiplicity
n−1

2 and n with multiplicity 3(n−1)
2 .

where U =



n− 1 −1 −1 · · · −1 −1 −1
−1 n− 2 −1 · · · −1 −1 0
−1 −1 n− 2 · · · −1 0 −1
· · · · · · · · · · · · · · · · · · · · ·
−1 −1 0 · · · −1 n− 2 −1
−1 0 −1 · · · −1 −1 n− 2


n×n

,

V =



n− 1 −1 −1 · · · −1 −1 −1
−1 n− 1 −1 · · · −1 −1 −1
−1 −1 n− 1 · · · −1 −1 −1
· · · · · · · · · · · · · · · · · · · · ·
−1 −1 −1 · · · n− 1 −1 −1
−1 −1 −1 · · · −1 n− 1 −1
−1 −1 −1 · · · −1 −1 n− 1


n×n

and O is n× n zero matrix.

Proof. Using Theorem 3.9 and Corollary 3.4 we get the 2n× 2n laplacian matrix,

L =

[
U O

O V

]
2n×2n

and so we have Characteristic polynomial of L,
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C(x) = det(L − xI) =

[
U − xI O

O V − xI

]
. So, C(x) = det(U − xI)det(V − xI). We have

U − xI =



n− 1 − x −1 −1 · · · −1 −1 −1
−1 n− 2 − x −1 · · · −1 −1 0
−1 −1 n− 2 − x · · · −1 0 −1
· · · · · · · · · · · · · · · · · · · · ·
−1 −1 0 · · · −1 n− 2 − x −1
−1 0 −1 · · · −1 −1 n− 2 − x


n×n

and

V − xI =



n− 1 − x −1 −1 · · · −1 −1 −1
−1 n− 1 − x −1 · · · −1 −1 −1
−1 −1 n− 1 − x · · · −1 −1 −1
· · · · · · · · · · · · · · · · · · · · ·
−1 −1 −1 · · · n− 1 − x −1 −1
−1 −1 −1 · · · −1 n− 1 − x −1
−1 −1 −1 · · · −1 −1 n− 1 − x


n×n

Applying R1 →
∑n

i=1 Ri and then taking out −x common from first row in det(U − xI), we get
det(U − xI) = −xdet(U1)

where U1 =



1 1 1 · · · 1 1 1
−1 n− 2 − x −1 · · · −1 −1 0
−1 −1 n− 2 − x · · · −1 0 −1
· · · · · · · · · · · · · · · · · · · · ·
−1 −1 0 · · · −1 n− 2 − x −1
−1 0 −1 · · · −1 −1 n− 2 − x


n×n

Applying Ri → Ri +R1 for 2 ≤ i ≤ n on det(U1), we get
det(U − xI) = −xdet(U1) = −xdet(U2) where

U2 =



1 1 1 · · · 1 1 1
0 n− 1 − x 0 · · · 0 0 1
0 0 n− 1 − x · · · 0 1 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 1 · · · 0 n− 1 − x 0
0 1 0 · · · 0 0 n− 1 − x


n×n

Solving U2 along first coloumn we get
det(U − xI) = −xdet(U1) = −xdet(U2) = −xdet(U3) where

U3 =



n− 1 − x 0 0 · · · 0 0 1
0 n− 1 − x 0 · · · 0 1 0
0 0 n− 1 − x · · · 1 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 1 0 · · · 0 n− 1 − x 0
1 0 0 · · · 0 0 n− 1 − x


(n−1)×(n−1)

Now applying R1 →
∑n−1

i=1 Ri, and taking (n−x) common from first row we get, det(U−xI) =
−xdet(U1) = −xdet(U2) = −xdet(U3) = −x(n− x)det(U4)

where U4 =



1 1 1 · · · 1 1 1
0 n− 1 − x 0 · · · 0 1 0
0 0 n− 1 − x · · · 1 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 1 0 · · · 0 n− 1 − x 0
1 0 0 · · · 0 0 n− 1 − x


(n−1)×(n−1)

Now applying Rn−1 → Rn−1 − R1, on det(U4) and then solving it along first coloumn we get,
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det(U − xI) = −xdet(U1) = −xdet(U2) = −xdet(U3) = −x(n − x)det(U4) = −x(n −
x)det(U5)

where U5 =



n− 1 − x 0 0 · · · 0 1 0
0 n− 1 − x 0 · · · 1 0 0
0 0 n− 1 − x · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
1 0 0 · · · 0 n− 1 − x 0
−1 −1 −1 · · · −1 −1 n− 2 − x


(n−2)×(n−2)

Now solving det(U5) along (n− 2)th column we get,
det(U − xI) = −x(n− x)det(U5) = −x(n− x)(n− 2 − x)det(U6)

where U5 =



n− 1 − x 0 0 · · · 0 0 1
0 n− 1 − x 0 · · · 0 1 0
0 0 n− 1 − x · · · 1 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 1 0 · · · 0 n− 1 − x 0
1 0 0 · · · 0 0 n− 1 − x


(n−3)×(n−3)

On repeating the same process in last we get,
det(U − xI) = −x(n− x)

n−1
2 (n− 2 − x)

n−1
2

Now let us find det(V − xI), applying R1 →
∑n

i=1 Ri on det(V − xI), then taking out −x
common from first row, we get det(V − xI) = −xdet(V1)

where V1 =



1 1 1 · · · 1 1 1
−1 n− 1 − x −1 · · · −1 −1 −1
−1 −1 n− 1 − x · · · −1 −1 −1
· · · · · · · · · · · · · · · · · · · · ·
−1 −1 −1 · · · −1 n− 1 − x −1
−1 −1 −1 · · · −1 −1 n− 1 − x


n×n

Applying Ri → Ri +R1 for 2 ≤ i ≤ n on det(V1), and then solving along first column we get
det(V − xI) = −xdet(V1) = −xdet(V2) where

V2 =



n− x 0 0 · · · 0 0 0
0 n− x 0 · · · 0 0 0
0 0 n− x · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 n− x 0
0 0 0 · · · 0 0 n− x


(n−1)×(n−1)

Thus we get, det(V − xI) = −xdet(V1) = −xdet(V2) = −x(n− x)n−1

We get C(x) = det(U − xI)det(V − xI) = −x(n − x)
n−1

2 (n − 2 − x)
n−1

2 (−x)(n − x)n−1 =

x2(n− x)
3(n−1)

2 (n− 2 − x)
n−1

2 .
Hence Characteristic polynomial of L is C(x) = x2(n−x)

3(n−1)
2 (n− 2−x)

n−1
2 and so laplacian

spectrum 0 with multiplicity 2, n− 2 with multiplicity n−1
2 and n with multiplicity 3(n−1)

2 . 2
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