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Abstract Let K be a field, Q = (Q0, Q1) be a quiver and KQ be the generalised path algebra
[10]. This paper gives a characterisation for the right and left modules over the path algebras of
finite acyclic quiver. The study shows that the modules over such path algebras could be written
as the decomposition of KQ-submodules. For KQ-modules over path algebras of quiver with
countably many vertices, a sequence of KQ-submodules is identified which in finite case is a
composition series.

1 Introduction

Many mathematical objects could be studied by describing their internal structure, which means
decomposing them to simpler objects like prime factorisation of natural numbers. With rings and
modules, this means direct sum decomposition. Modules over arbitrary rings can be visualised
as generalizations of vector spaces and abelian groups.In the 1920s, Emmy Noether used mod-
ules as an important tool in bringing to light the connection between the study of representations
of finite groups via groups of matrices and the study of rings [4]. Krull-Schmidt theorem states
that any two direct sum decompositions of a module of finite length into indecomposable sub-
modules are unique upto isomorphism. A similar study first appeared in the work of Frobenius
and Stickeberger [7] in which they discussed direct sum decomposition of finite abelian groups
into cyclic subgroups with prime power orders. Later in 1950, Azumaya [2] generalised Krull-
Schmidt theorem to infinite direct sums of modules with local endomorphism ring.
Caldero and Keller [5] dealt with cluster category of finitely generated right modules over path
algebra and proved that such an algebra of finite type can be viewed as a Hall algebra. Alamsyah
et. al. [9] showed that the indecomposable simple modules over the path algebra of Dynkin
quiver of type An and Dn are c-prime modules. Kariman [8]studied projective and hereditary
modules over path algebra of cyclic quivers using representation theory. Okoh [6] characterised
pure-injective modules, which are direct summands of direct products made up from finite di-
mensional R-modules using systems of cardinal invariants, which help to comprehend path al-
gebras over fields and how multiplication is given by path composition.

Definition 1.1. For a K-algebra A and a vector space M together with · : A×M → M , defined
by (a,m) 7→ am, (M, ·) is said to be a left A-module if the following conditions are met:

(a) (a1a2)m = a1(a2m)

(b) a(m1 +m2) = am1 + am2

(c) (a1 + a2)m = a1m+ a2m

(d) 1m = m

(e) a(km) = (ak)m = k(am)

for all a, a1, a2 ∈ A,m,m1,m2 ∈ M,k ∈ K.

A non-empty subset N of an A-module M is a submodule if for every a, b ∈ A and m,n ∈ N ,
we have that am + bn ∈ N . The quotient group of cosets of N , denoted by M/N , is an A-
module.
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The left A-module M is called a free module if there exists a subset X ⊆ M such that each

element m ∈ M can be expressed uniquely as a finite sum m =
n∑

i=1
aixifora1, ..., an ∈ A and

x1, ..., xn ∈ X .
Suppose M is an A-module, and M1,M2 are submodules of M . M is the internal direct sum of
M1 and M2 if M = M1 + M2 and M1 ∩ M2 = 0. In this case, every m ∈ M can be written
uniquely as m = m1 +m2 for m1 ∈ M1,m2 ∈ M2.
A quiver is a graph with directed edges with no constraints on the number of arrows between
two vertices or loops or even cycles. We decide to represent each point on the quiver by an open
dot, with each arrow pointing in the direction of its intended target.

Definition 1.2. A quiver [1, page 41] consists of two sets, Q0 and Q1, together with two map-
pings, s and t, such that Q0 is the set of elements called vertices, Q1 is the set of elements
called arrows and s, t : Q1 → Q0 which maps each edge α to its source, s(α) and target, t(α)
respectively.

Throughout, we denote an arrow from a to b as α : a → b or simply αab and a quiver as
(Q0, Q1, s, t) or (Q0, Q1).

Example 1.1. (i)

4

1 2 3

5

(ii)

• • •

• • • • • · · ·

• • •

A quiver is said to be finite if QO and Q1 are finite sets. A path of length l ≥ 1 with
source a and target b is a sequence (a|α1, α2, ...., αl|b) where αk ∈ Q for all 1 ≤ k ≤ l and
s(α1) = a, t(αk) = αk+1 for 1 ≤ k ≤ l and t(αl) = b. The composition of paths in a quiver is
used to define an algebra called path algebra.

Let Q = (Q0, Q1) be a quiver. The K- vector space generated by the set of all paths in Q
forms a K-algebra called path algebra. The product of two paths is the concatenation of paths,
that is,

(a|β1 · · ·βn|b)(c|γ1 · · · γm|d) = δbc(a|β1 · · ·βnγ1 · · · γm)

where δbc = 1 only when b = c and 0, otherwise. Thus the product of two paths is zero if the
target of first path does not coincide with the source of second path and if it does, the product is
the composed path. This product is then extended to all of KQ by using law of distribution.

Definition 1.3 (Path Algebra- A Generalised definition). [10] Let Q be a quiver, and let P be
the set of all paths in Q. A Path Algebra KQ of Q is defined as{∑

α∈P

cαα | cα ∈ K,α ∈ P

}

Addition and scalar multiplication is defined componentwise.

The generalised definition and the previous definition of path algebra are equivalent if Q is a
finite acyclic quiver. The set of all the paths in a finite acyclic quiver Q will act as the basis for
KQ.
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Example 1.2. a. Let Q be the quiver consisting of a single point and a single loop.

1
◦

α

The defining basis of KQ is ε1, α, α
2, ..., αl, ... and the multiplication is given by

ε1α
l = αlε1 = αl∀l ≥ 0

αlαk = αl+k∀l, k ≥ 0

where α0 = ε1 . Thus KQ is isomorphic to the polynomial algebra K[t] in one indeterminate
t.

b. Consider a quiver with two vertices 1, 2 and an arrow α from 1 to 2.

1
◦

2
◦

α

The basis of the path algebra of this quiver is {ϵ1, ϵ2, α}. The product of all basis elements is
given by the table Thus, the associated matrix algebra for the above quiver is given by

ϵ1 ϵ2 α

ϵ1 ϵ1 0 α

ϵ2 0 ϵ2 0
α 0 α 0

[
K K

0 K

]

It is clear that the path algebra and the associated matrix algebra have isomorphic correspon-
dence using the linear mapping,

ϵ1 7→

[
1 0
0 0

]
, ϵ2 7→

[
0 0
0 1

]
, α 7→

[
0 1
0 0

]

Theorem 1.1. [10] Let Q be a quiver and KQ be the corresponding path algebra.Then,

(a) KQ is an associative algebra

(b) The element
∑

a∈Q0
ϵa is the identity in KQ.

(c) KQ is finite dimensional if and only if Q is finite and acyclic.

The above theorem characterises the path algebra of quivers including infinite dimensional
cases using the generalized definition. Another result that is necessary for this study on modules
over path algebras is the following theorem which characterises simple R-modules.

Theorem 1.2. [3, page 74] Let M be a left A-module. M is simple if and only if Rm = M for
all nonzero m ∈ M .
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2 Characterisation of Modules Over Path algebra

Theorem 2.1. Let Q be a finite acyclic quiver with n vertices. Any left module M over KQ will
have the following properties:

(a) M can be written as
M = M1 ⊕M2 ⊕ · · · ⊕Mn

where Mi are submodules of M

(b) ϵi acts as an identity operator on Mi, that is ϵiMi = Mi for each i.

(c) If α is a path from i to j, then αMk = 0 for k ̸= j and αMj ⊆ Mi

Proof. Let Q be an acyclic quiver with n vertices and M be a left KQ-module.
For each i = 1, 2, · · · , n, define Mi = ϵiM .To prove (a), we need to first prove (b).
Consider an arbitrary element mi ∈ Mi. Then there exists m ∈ M such that mi = ϵim.

ϵimi = ϵi(ϵim) = ϵ2
im = ϵim = mi

for all i = 1, 2, · · · , n. This proves ϵi acts as an identity operator on each Mi.

ϵiMj = ϵi(ϵjM) = 0 (∵ ϵiϵj = 0; i ̸= j)

That is, ϵi annihilates Mj for i ̸= j.
We have

(∑n
i=1 ϵi

)
M = M which expands to

ϵ1M + ϵ2M + · · ·+ ϵnM = M

M1 +M2 + · · ·+Mn = M

We claim Mi ∩Mj = 0 for i ̸= j.
Let m ∈ Mi ∩Mj for i ̸= j. Then m is in Mi and Mj . Since ϵi acts as an identity operator on
Mi and annihilates Mj , we get

m = ϵim = 0

Consider a path α from i to j.
αMk = αϵkM

Now, αϵk is zero only when k ̸= j. That is, αMk = 0 for k ̸= j

αMj = αϵjM

= ϵiαϵjM

⊆ ϵi(αM)

⊆ ϵiM = Mi

Remark 2.2. The above theorem also holds for any right module M over KQ. In that case, if α
is a path from i to j, then Mkα = 0 for k ̸= i and Miα ⊆ Mj

Proposition 2.3. Let M be a left KQ-module. The modules over finite dimensional path algebra
are faithful.

Proof. Annihilator of M is the set of elements in KQ such that am = 0 for all m ∈ M . That is

Ann(M) = {a =
∑
α∈Q0

aαα ∈ KQ :
( ∑
α∈Q0

aαα
)
m = 0,∀m}

If α is from i to j, by theorem, we have αMj ⊆ Mi. That is, αm = 0 for all m if and only if
α = 0. As a consequence of the above theorem, we can observe that Ann(M) must be zero.
Hence M is a faithful module.
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Example 2.4. a. Lets begin with a simple example to understand the consequences of above
theorem. Consider the quiver,

1◦ 2◦
β

α

The path algebra KQ is given by

KQ =

[
K K2

0 K

]

It is easy to verify that the module M = K2 is a left module over KQ. Here, M1 =

(
K

0

)

and M2 =

(
0
K

)
. So M = M1 ⊕M2.

For m1 ∈ M1,m2 ∈ M2,

ϵ1m1 =

(
1 0
0 0

)(
k1

0

)
=

(
k1

0

)

ϵ2m2 =

(
0 0
0 1

)(
0
k2

)
=

(
0
k2

)
ϵi acts as an identity operator on each Mi.

Consider α =

(
0 (1, 0)
0 0

)
and β =

(
0 (0, 1)
0 0

)
from 1 to 2.

αM2 =

(
0 (1, 0)
0 0

)(
0
K

)
=

(
K

0

)
⊆ M1

βM2 =

(
0 (0, 1)
0 0

)(
0
K

)
=

(
K

0

)
⊆ M1

Hence the theorem is verified.

b. Let n ∈ N and n < ∞. Consider the quiver

1◦ 2◦ · · · n◦ · · ·α β

The path algebra KQ is given by the n× n upper triangular matrix
K K · · · K

0 K · · · K
...

...
. . .

...
0 0 · · · K


Clearly, M = Kn is a left KQ-module. Each submodule Mi is the n × 1 matrix with an
element from K in the ith row and all other entries 0. Then, M = M1 ⊕M2 ⊕ · · · ⊕Mn.

Consider m1 =
(

k1 0 · · · 0
)t

∈ M1

ϵ1m1 =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




k1

0
...
0

 =


k1

0
...
0

 = m1
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This also holds true for mi ∈ Mi for each 1 ≤ i ≤ n. That is, ϵi acts as an identity operator
on each Mi. Consider the path p = 2αβ from 1 to 3. We need to show that pM3 ⊆ 1.

pM3 =



0 0 2 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




0
0
K

·
0

 =


2K
0
0
·
0

 ⊆ M1

This could be verified for any path in KQ. Hence the theorem is verified.

Theorem 2.5. Let Q be an acyclic quiver with countable vertices and M be a left KQ-module.
Then there exists a sequence of submodules M ⊃ M1 ⊃ M2 ⊃ · · · which has the following
properties

(a) Mi/Mi+1 is a left KQ–module on which ϵi+1 acts as an identity operator for each i.

(b) Mi/Mi+1 is a simple KQ-module for each i.

(c) M/Mi is a left KQ–module on which
i∑

j=1
ϵj acts as an identity operator.

If KQ is finite dimensional, the sequence terminates for some i.

Proof. Define Mk =
( ∞∑
i=k+1

ϵi
)
M for k = 1, 2, · · ·

Recall that for cosets of a ring H, aH = bH when a− b ∈ H
To prove ϵi+1 acts as an identity operator on Mi/Mi+1:
By definition,

Mi/Mi+1 = {m+Mi+1 : m ∈ Mi} and

ϵi+1(m+Mi+1) = ϵi+1m+Mi+1

Since m is in Mi, m =
( ∞∑
j=i+1

ϵj
)
m′ for some m′ ∈ M .

ϵi+1m = ϵi+1
( ∞∑
j=i+1

ϵj
)
m′ = ϵi+1m

′

Then, m− ϵi+1m =
( ∞∑
j=i+2

ϵj
)
m′ ∈ Mi+1 which implies

m+Mi+1 = ϵi+1m+Mi+1

This proves (a).
Now to prove (c), we will show that

m+Mi =
( i∑
j=1

ϵj
)
(m+Mi)

or equivalently,

m− (
i∑

j=1

ϵj)m ∈ Mi

Since
∞∑
j=1

ϵj acts as an identity operator on M,

m− (
i∑

j=1

ϵj)m =
∞∑
j=1

ϵjm−
i∑

j=1

ϵjm = (
∞∑

j=i+1

ϵj)m ∈ Mi
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Mi/Mi+1 is a simple KQ-module iff KQ(m+Mi+1) = Mi/Mi+1 for all m+Mi+1 ∈ Mi/Mi+1.

Clearly, KQ(m+Mi+1) ⊆ Mi/Mi+1. To prove the converse, consider an arbitrary element
m′ +Mi+1 ∈ Mi/Mi+1 where m′ ∈ Mi.

Since m ∈ Mi and Mi =
( ∞∑

j=i+1
ϵj

)
M , there exists an element m ∈ M such that

m′ =
( ∞∑

j=i+1

ϵj

)
m

Hence

m′ +Mi+1 =
( ∞∑

j=i+1

ϵj

)
m+Mi+1

=
( ∞∑

j=i+1

ϵj

)
(m+Mi+1)

∈ KQ(m+Mi+1)

Since m′ +Mi+1 is arbitrary, this is true for all m′ +Mi+1 ∈ Mi/Mi+1. This proves the factor
modules Mi/Mi+1 are simple KQ-modules.

Example 2.6. a. Let M = K3. Consider the following quiver

1 2

3

The path algebra KQ is given by

KQ =

 K K K2

0 K K

0 0 K


By the definition of Mi from above proof,

M1 = (
3∑

j=2

ϵj)M =

 0 0 0
0 1 0
0 0 1


 K

K

K

 =

 0
K

K



M2 = (
3∑

j=3

ϵj)M =

 0 0 0
0 0 0
0 0 1


 K

K

K

 =

 0
0
K



M3 =

 0
0
0


The quotient modules are given by

M0/M1 = {M1, (K, 0, 0) +M1} = {M1, ϵ1M +M1}

M1/M2 = {M2, ϵ2M +M2}
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M2/M3 = {M3, ϵ3M +M3}

Consider M0/M1. Any element in the quotuent module M0/M1 is either the identity coset or
a coset of the form ϵ1m+M for some m ∈ M0 = M .

ϵ1(0 +M) = ϵ1m+M = 0 +M

ϵ1(ϵ1m+M) = ϵ2
1m+M = ϵ1m+M

This holds true for M1/M2 and M2/M3. Hence ϵi+1 acts as an identity operator on Mi/Mi+1
for each i.
Also,

M/M2 = {M2, ϵ1M +M2, ϵ2M +M2},M/M3 = M

It is clear that
i∑

j=1
ϵj acts as an identity operator on M/Mi for each i.

Since each Mi+1 is maximal in Mi, Mi/Mi+1 is a simple KQ-module.

b. Consider the quiver
1◦

2◦ 3◦ n−1◦ n◦

The path algebra KQ is given by the n× n lower triangular matrices

KQ =



K 0 0 · · · 0
K K 0 · · · 0
K 0 K · · · 0
...

...
. . . . . .

...
K 0 0 · · · K


M = Kn is a left KQ-module. The submodules Mi are given by M0 = M ,

M1 =



0
K

K
...
K

 ,M2 =



0
0
K
...
K

 , · · · ,Mn =


0
0
...
0


Using similar calculations as in previous example, one could verify the results of the theorem
2.5.

3 Conclusion

The work gives a characterisation of certain modules over path algebra of quivers. The first
main theorem establishes a direct sum decomposition of left modules over path algebras of finite
acyclic quivers such that the stationary path at each vertex acts as the identity operator on its
corresponding constituent submodules and each non zero path α from i to j in KQ corresponds
to a relation αMj ⊆ Mi. It is also shown that the modules over finite dimensional path algebras
are faithful.

The second theorem can be used to form a sequence of submodules of left modules over
path algebras of acyclic quivers with countable vertices. This sequence holds the property that
the stationary path at vertex i + 1 acts as the identity operator on the simple factor module
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Mi/Mi+1. The sum of different stationary paths(
i∑

j=1
ϵj) acts as identity operator on different

submodules(M/Mi). If finite quivers are considered, then this sequence is a composition series
for the module under consideration.

The work discussed in this paper could be developed further by exploring the characterisation
of modules over path algebra of infinite quivers.
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