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Abstract In this paper, we introduce, graph of lower and upper approximation of a non-
empty subset of a nearring with respect to an ideal. We relate the properties of these graphs
with properties of ideals. We study the relationship between the connectivity of the graph and
properties of the approximation set. We obtain the properties of these graphs under nearring
homomorphism.

1 Introduction

Science and technology, especially the computer network progress year by year, and a huge
quantity of data is generated every day. To deal with this mounting amount of data, which is in
exact, uncertain or vague knowledge, the need for tools to analyze this information is becoming
more and more. In 1982, to analyze the collected inconsistent, imprecise, data and knowledge
Palwak [16] proposed an extension to set theory called rough set theory. This theory is a for-
mal approach to model and process the unpredictable and imprecision that appears in the form
of inexact, uncertain, or vague knowledge. It does not require any extra or pilot details of the
data, it just requires two sets known as lower and upper approximation sets. This theory has
a widespread range of applications in a number of real-life fields, like intelligent information
processing [17], [10], banking [21], medicine [15], decision support and analysis, knowledge
discovery, machine learning [18], etc.
Graph is a geometric structure that represents relationship between elements of a set. In graph
the objects are called vertices which are connected by edges. It is a very significant fundamental
tool in mathematics having applications in many branches of Science and Engineering. He and
Shi [13] defined edge rough graph using the notion of a partition on the edge set of a graph. By
enduing the edges of a rough graph with weight attribute, He, Chan, and Shi[12] extended the
concept edge set of a graph to a weighted rough graph. Mathew, John and Garg [7] extended the
idea of edge rough graph to vertex rough graph and defined R−vertex graph in terms of R−lower
and R−upper approximate graph of the subgraph of the given graph.
Many authors studied the relationship between algebraic properties of an algebraic structure and
properties of a graph. Beck [4] introduced the notion of zero divisor graphs of a commutative
ring. Anderson and Livingston [2] generalized this notion. Further using this notion Redmond
[20] found bound on the size of a ring. Redmond [19] proposed the ideal-based zero divisor
graphs of a nearring. Anderson and Badawi [3] defined and studied the total graph of a commu-
tative ring. The graph of a nearring with respect to an ideal and ideal symmetry of the graph was
introduced by Bhavanari, Kuncham and Kedukodi [5]. Davaaz [9] associated rough sets with
ring theory, and defined lower and upper approximation of a set with respect to an ideal of the
ring.
In this paper, we find a relation between the rough approximation set and graph theory. We
define the graph of an approximation set namely the graph of lower approximation of a set A
with respect to an ideal E of nearring L and the graph of upper approximation of a set A with
respect to an ideal E of nearring L, denoted by CAprL

E
(A) and C

Apr
L
E(A)

respectively and provide
some examples. We relate the properties of an ideal with properties of graph and show how
the properties of a graph change with the properties of an ideal and vice versa. Prime numbers
play a very important role in many fields such as cryptography, telecommunication to produce
error-correcting codes, etc. Prime ideals are the generalization of prime numbers. When the
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ideal, lower (upper) approximation set are c-prime ideal, we study the connectedness of vertices
in the graph of lower (upper) approximation and provide examples. Further, we prove that if
the nearring is an integral nearring with only trivial ideals then the graph of lower (upper) ap-
proximation is either a star graph or a complete graph or a null graph. We show that the lower
(upper) approximation graph of set L\A is a subgraph of the lower (upper) approximation graph
of set A. We define the ideal symmetry in the graph of lower (upper) approximation and derive
some results. Nearring homomorphism is a relation between the elements of two nearrings and
graph homomorphism is the relation between two graphs that preserves adjacency. In the last
part, we study the graph homomorphism of the graph of lower (upper) approximation. We prove
that nearring homomorphism is a graph homomorphism in both lower and upper approximation
graphs. The connectedness of vertices is preserved under homomorphism.

2 Preliminaries

We refer to Anderson and Fuller [1], Bhavanari and Kuncham [6] for rings, Harrary [11], Clark
and Holton [8] for graph theory, Z.Suraj [22] and Davvaz [9] for rough set theory. In this paper
L,L1, L2 represent nearrings and E represents an ideal.

Definition 2.1. (Bhavanari, Kuncham [6]) Let (L,+, ·) be a nearring and I be a normal subgroup
of (L,+). Then I is called an ideal, if for all n,m ∈ L and for all i ∈ I
(i) i · n ∈ I (ii) n · (m+ i)− n ·m ∈ I

Definition 2.2. (Davvaz [9]) Let I be an ideal of a ring R and X be a non − empty subset of R.
Then the sets Apr

I
(X) = {x ∈ R : x + I ⊆ X} and AprI(X) = {x ∈ R : (x + I) ∩X ̸= ∅}

are called, respectively lower and upper approximations of the set X with respect to the ideal I .

Definition 2.3. (Davvaz [9]) Let I be an ideal of a ring R and AprI(X) = (Apr
I
(X), AprI(X))

a rough set in the approximation space (R, I). If Apr
I
(X) and AprI(X) are ideals (resp.subrings)

of R , then we call AprI(X) a rough ideal (resp.subring) .

Definition 2.4. (Harrary [11]) A graph G = (V, F ) consists of a set of objects V = {v1, v2, ...}
called vertices (or points) and another set F = {e1, e2, ..} whose elements are called edges (or
lines) such that each edge e is identified with an unordered pair (vi, vj) of vertices. The vertices
vi and vj are called end vertices of e.

Definition 2.5. (Harrary [11]) A vertex cover of graph G is a subset K of V such that if (u, v) is
an edge of G, then u ∈ K or v ∈ K or both u ∈ K and v ∈ K.

Definition 2.6. (Hell and Nesetril [14]) Let G1 = (V1, F1) and G2 = (V2, F2) be two graphs.
A graph homomorphism of G1 to G2 is a mapping g : V1 → V2 such that (g(u), g(v)) ∈ F2
whenever (u, v) ∈ F1.

Definition 2.7. (Bhavanari, Kuncham [6]) Let L1andL2 be two nearrings. Then ς : L1 → L2 is
called a nearring homomorphism if for all x, y ∈ L1,
(i) ς(x+ y) = ς(x) + ς(y) (ii) ς(xy) = ς(x)ς(y).

Definition 2.8. (Bhavanari, Kuncham [6]) An ideal I of a nearring L is called c-prime (com-
pletely prime) if x, y ∈ L and x · y ∈ I implies x ∈ I or y ∈ I .

Definition 2.9. (Bhavanari, Kuncham [6]) Let L be a nearring.
(i) A nonzero element r is said to be a right zero divisor, if there exists a nonzero element a ∈ L
such that ar = 0.
(ii)A nonzero element r is said to be a left zero divisor, if there exists a nonzero element a ∈ L
such that ra = 0.
(iii) L is said to be integral nearring if it has no zero divisors.

Definition 2.10. (Kedukodi, Jagadeesha , Kuncham , Juglal [5]) Let I be an ideal of a ring R.
Let CI(R) be the graph with vertex set R and the pair of distinct vertices x and y are adjacent if
and only if x · y ∈ I or y · x ∈ I . The graph CI(R) is called as c-prime graph of R with respect
to an ideal I .



196 Sabina Rachana Crasta , Jagadeesha B

Definition 2.11. (Kedukodi, Jagadeesha , Kuncham , Juglal [5]) The graph CI(R) is said to be
ideal symmetric if for every pair of vertices x, y ∈ CI(R) with an edge between them, either
deg(x) = deg(0) or deg(y) = deg(0).

3 Graph of Rough Approximation Set

Definition 3.1. Let E be an ideal and A be a nonempty subset of a nearring L.
i) Let CAprL

E
(A) be the graph with vertex set L and two vertices a ̸= y, (a, y) ∈ F [CAprL

E
(A)] if

and only if a · y ∈ AprL
E
(A) or y · a ∈ AprL

E
(A). Then the graph CAprL

E
(A) is called the graph of

lower approximation of A with respect to the ideal E of L.
ii) Let C

Apr
L
E(A)

be the graph with vertex set L and two vertices a ̸= y, (a, y) ∈ F [C
Apr

L
E(A)

] if

and only if a · y ∈ Apr
L

E(A) or y · a ∈ Apr
L

E(A). Then the graph C
Apr

L
E(A)

is called the graph of
upper approximation of A with respect to the ideal E of L.

Example 3.2. Let L be the ring of integer modulo 6, E = {0, 2, 4} and A = {1, 2, 3, 5}. Then
AprL

E
(A) = {1, 3, 5} and Apr

L

E(A) = {0, 1, 2, 3, 4, 5}. The graph of lower and upper approxi-
mation of A with respect to the ideal E of nearring L is shown in Figure 1 and 2 respectively.

1 2 3 4 5

0

Figure 1. CAprL
E
(A)

1 2

3 4

5 0

Figure 2. C
Apr

L
E(A)

Example 3.3. Consider the nearring L = {0, r, s, t}, defined as in Table 1.

+ 0 r s t

0 0 r s t

r r 0 t s

s s t 0 r

t t s r 0

· 0 r s t

0 0 0 0 0
r r r r r

s 0 r s t

t r 0 t s

Table 1. Nearring for Example 3.3

Let E = {0, r} and A = {0, r, s}. Then AprL
E
(A) = {0, r} and Apr

L

E(A) = {0, r, s, t}.
Graph of lower and upper approximation of A with respect to the ideal E of nearring L is shown
Figure 3 and 4 respectively.
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r s t

0

Figure 3. CAprL
E
(A)

r s

t

0

Figure 4. C
Apr

L
E(A)

Remark 3.4. Let E be an ideal of a nearring L and A be a non empty subset of L. If | A |<| E |
then CAprL

E
(A) is an empty graph.

Example 3.5. Let L = Z6, be the ring of integer modulo 6, E = {0, 2, 4} and A = {2, 4}. Then
AprL

E
(A) = ∅. Therefore the graph of lower approximation of A with respect to the ideal E is

an empty graph. We observe that | A |<| E |.

Proposition 3.6. Let E be an ideal of a nearring L and A be a non-empty subset of L. Let
a ∈ V [CAprL

E
(A)].

(i) If E is a c-prime ideal of L and a is connected to all other vertices of CAprL
E
(A) then a /∈ E.

(ii) If AprL
E
(A) is a c-prime ideal of L and a is connected to all other vertices of CAprL

E
(A) then

a ∈ AprL
E
(A).

Proof. (i) Let E be a c-prime ideal of L and a ∈ V [CAprL
E
(A)] be such that a is connected to all

other vertices of CAprL
E
(A). Then for all y ∈ L, (a, y) ∈ F [CAprL

E
(A)] =⇒ ay ∈ AprL

E
(A) or

ya ∈ AprL
E
(A). Let ay ∈ AprL

E
(A). Then ay + E ⊆ A. Hence ay ∈ A and ay /∈ E. As E is a

c-prime ideal of L, a /∈ E.
The proof is similar for ya ∈ AprL

E
(A).

(ii) Let AprL
E
(A) be a c-prime ideal of L and a ∈ V [CAprL

E
(A)] be such that a is connected to

all other vertices of CAprL
E
(A). Then for all y ∈ L \ AprL

E
(A), (a, y) ∈ F [CAprL

E
(A)] =⇒ ay ∈

AprL
E
(A) or ya ∈ AprL

E
(A). Let ay ∈ AprL

E
(A). As AprL

E
(A) is a c-prime ideal of L, we get

a ∈ AprL
E
(A). The proof is similar for ya ∈ AprL

E
(A).

Now we give an example to show that the Proposition 3.6(i) is not true if we exclude the
assumptions.

Example 3.7. Consider the nearring L = {0, c, d, e}, defined as in Table 2.
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+ 0 c d e

0 0 c d e

c c 0 e d

d d e 0 c

e e d c 0

· 0 c d e

0 0 0 0 0
c 0 c 0 c

d d d d d

e d e d e

Table 2. Nearring for Example 3.7

Let E = {0} and A = {0, e}. Then AprL
E
(A) = {0, e}. The graph of CAprL

E
(A) is shown in

Figure 5.

c d e0

Figure 5. CAprL
E
(A)

We observe that {0} is not a c-prime ideal ,(c · d = 0 ∈ E however c /∈ E and d /∈ E) and 0 is a
vertex in CAprL

E
(A) connected to all other vertices but 0 ∈ E.

Now we provide an example to show that the Proposition 3.6(ii) is not true if we exclude the
assumptions.

Example 3.8. Let L be the ring of integers modulo 6, E = {0, 2, 4} and A = {0, 1, 2, 4, 5} then
AprL

E
(A) = {0, 2, 4}. The graph of CAprL

E
(A) is shown in Figure 6.

0

1 2

3 4

5

Figure 6. CAprL
E
(A)

Note that AprL
E
(A) = {0, 2, 4} a c-prime ideal of L , 3 ∈ V [CAprL

E
(A)] , which is not con-

nected to all other vertices of CAprL
E
(A) and 3 /∈ AprL

E
(A).

Proposition 3.9. Let E be an ideal of a nearring L and A be a nonempty subset of L. Let
a ∈ V [C

Apr
L
E(A)

].

(i) If Apr
L

E(A) is a c-prime ideal of L and a is connected to all other vertices of C
Apr

L
E(A)

then

a ∈ Apr
L

E(A).
(ii) If Apr

L

E(A) is a c-prime ideal of L and a ∈ Apr
L

E(A) then a is connected to all other vertices
of C

Apr
L
E(A)

.



Graph of a Rough Approximation Set 199

Proof. (i) Let Apr
L

E(A) be a c-prime ideal of L and a ∈ V [C
Apr

L
E(A)

] such that a is connected to

all other vertices of C
Apr

L
E(A)

. Then for all y ∈ L \ Apr
L

E(A), (a, y) ∈ F [C
Apr

L
E(A)

] =⇒ ay ∈

Apr
L

E(A) or ya ∈ Apr
L

E(A). Let ay ∈ Apr
L

E(A). As Apr
L

E(A) is c-prime ideal a ∈ Apr
L

E(A).
The proof is similar for ya ∈ Apr

L

E(A).
(ii) Let a ∈ Apr

L

E(A), a c-prime ideal of L. Assume that a is an isolated vertex in C
Apr

L
E(A)

.

Then for all y ∈ L, (a, y) /∈ F [C
Apr

L
E(A)

] =⇒ ay /∈ Apr
L

E(A) and ya /∈ Apr
L

E(A). As Apr
L

E(A)

is c-prime ideal , we get a /∈ Apr
L

E(A). - a contradiction. Therefore a is connected to all other
vertices of C

Apr
L
E(A)

.

Proposition 3.10. Let E be an ideal of a nearring L and A be a nonempty subset of L. Let
a ∈ V [C

Apr
L
E(A)

]. If Apr
L

E(A) is a c-prime ideal of L then a is connected to all other vertices of

C
Apr

L
E(A)

if and only if a ∈ Apr
L

E(A).

Proof. Proof follows from Proposition 3.9 (i) and (ii)

Now we give an example to prove that the Proposition 3.9(i) is not true if we exclude the
assumptions.

Example 3.11. Let L = Z8 be the ring of integers modulo 8, E = {0, 4} and A = {0, 2}. Then
Apr

L

E(A) = {0, 2, 4, 6}. The graph of C
Apr

L
E(A)

is shown in Figure 7.

0

7 4

35 6

1 2

Figure 7. C
Apr

L
E(A)

We observe that Apr
L

E(A) is a c-prime ideal of L, 1 is not connected to all other vertices of
C

Apr
L
E(A)

and 1 /∈ Apr
L

E(A).

Proposition 3.12. Let E be an ideal and A be a non-empty subset of nearring L. Let a ∈
V [C

Apr
L
E(A)

].
(i) If E is a c-prime ideal of L and a ∈ E then a is an isolated vertex CAprL

E
(A).

(ii) If AprL
E
(A) is a c-prime ideal of L and a ∈ AprL

E
(A) then a is connected to all other vertices

of CAprL
E
(A) .

Proof. (i) Let E be a c-prime ideal of L and a ∈ E be such that a is conneceted to a vertex y ∈ L.
Then (a, y) ∈ F [CAprL

E
(A)]. Hence ay ∈ AprL

E
(A) or ya ∈ AprL

E
(A). Let ay ∈ AprL

E
(A). Then

ay+E ⊆ A. Therefore ay ∈ A and ay /∈ E - a contradiction to the fact that E is a c - prime ideal
and a ∈ E. Therefore a is an isolated vertex in CAprL

E
(A). The proof is similar for ya ∈ AprL

E
(A).

(ii) Let a ∈ AprL
E
(A), a c-prime ideal of L. Assume that a is an isolated vertex in CAprL

E
(A).

Then for all y ∈ L , (a, y) /∈ F [CAprL
E
(A)] =⇒ ay /∈ AprL

E
(A) and ya /∈ AprL

E
(A). - a
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contradiction to a ∈ AprL
E
(A), and AprL

E
(A) is a c-prime ideal of L. Therefore a is connected

to all other vertices of CAprL
E
(A).

Now we provide an example to show that Proposition 3.12(i) is not true if we exclude the
assumptions.

Example 3.13. Let L = Z6 be the ring of integers modulo 6, E = {0} and A = {0, 1, 3}. Then
AprL

E
(A) = {0, 1, 3}. The graph of CAprL

E
(A) is shown in Figure 8.

0

1 2 3

4 5

Figure 8. CAprL
E
(A)

We observe that {0} is not a c-prime ideal of L (3 · 4 = 0 ∈ E however 3 /∈ E and 4 /∈ E)
and 0 ∈ E but 0 is not a isolated vertex in CAprL

E
(A) .

Now we provide an example to show that Proposition 3.12(ii) is not true if we exclude the
assumptions.

Example 3.14. Let L = Z6 be the ring of integers modulo 6, E = {0, 2, 4} and A = {0, 1, 2, 4, 5}.
Then AprL

E
(A) = {0, 2, 4}. The graph of CAprL

E
(A) is shown in Figure 9.

0

1 2 3

4 5

Figure 9. CAprL
E
(A)

Note that AprL
E
(A) = {0, 2, 4} is a c-prime ideal of L , 3 /∈ AprL

E
(A) and 3 is not connected

to all other vertices of CAprL
E
(A) .

Proposition 3.15. Let E be an ideal and A be a non-empty subset of a nearring L. Let a ∈
V [CAprL

E
(A)]. If AprL

E
(A) is a c-prime ideal of L then a ∈ AprL

E
(A) if and only if a is connected

to all other vertices of CAprL
E
(A).

Proof. Proof follows from the Proposition 3.6(ii) and Proposition 3.12(ii).

Proposition 3.16. Let L be an integral nearring with only ideals {0} and L. Let E and A be the
ideals of L. Then CAprL

E
(A) is either a star graph or a complete graph or a null graph.
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Proof. Let L be an integral nearring with only ideals {0} and L. Let E and A be the ideals of L.
Case(i): When E = L and A = L, we get AprL

E
(A) = L. Therefore CAprL

E
(A) is a complete

graph.
Case(ii): When E = {0} and A = {0}. Let a, y ∈ L such that a ̸= 0 ̸= y. Suppose (a, y) ∈
F [CAprL

E
(A)] then ay ∈ AprL

E
(A) or ya ∈ AprL

E
(A). Let ay ∈ AprL

E
(A). Then ay + E ⊆ A.

Therefore ay ∈ A = {0} =⇒ ay = 0. As L is a integral nearring a = 0 or y = 0 .
Contradiction to a ̸= 0 ̸= y. Hence CAprL

E
(A) is a star graph.

Case(iii): When E = {0} and A = L. Then AprL
E
(A) = L. Therefore CAprL

E
(A) is a complete

graph.
Case(iv): When E = L and A = {0}. Then AprL

E
(A) = ∅. Therefore CAprL

E
(A) is a null

graph.

Now we provide an example to show that Proposition 3.16 is not true if we exclude the
assumptions.

Example 3.17. Let L = Z5 be the ring of integers modulo 5, E = {0} and A = {0, 1, 3} then
AprL

E
(A) = {0, 1, 3}. The graph of CAprL

E
(A) is shown in Figure 10

1 2

0

3 4

Figure 10. CAprL
E
(A)

We observe that L is an integral nearring with only ideals {0} and L, E is an ideal of L but
A is not an ideal of L. Then CAprL

E
(A) is neither a complete graph nor a star graph.

Proposition 3.18. Let L be an integral nearring with only ideals {0} and L. Let E and A be the
ideals of L. Then C

Apr
L
E(A)

is either a star graph or a complete graph.

Proof. Let L be an integral nearring with only ideals {0} and L. Let E and A be the ideals of L.
Case(i): When E = L and A = L, we get Apr

L

E(A) = L. Therefore C
Apr

L
E(A)

is a complete
graph.
Case(ii): When E = {0} and A = {0}. Let a, y ∈ L such that a ̸= 0 ̸= y. Suppose (a, y) ∈
F [C

Apr
L
E(A)

] then ay ∈ Apr
L

E(A) or ya ∈ Apr
L

E(A). Let ay ∈ Apr
L

E(A). Then (ay+E)∩A ̸= ∅.
Let z ∈ (ay + E) ∩ A. Then z ∈ A = {0}. Therefore z = 0 =⇒ 0 ∈ ay + E. As
E = {0}, ay = 0. As L is Integral nearring a = 0 or y = 0 - a contradiction to a ̸= 0 ̸= y.
Therefore C

Apr
L
E(A)

is a star graph.

Case(iii): E = {0} and A = L. Then Apr
L

E(A) = L. Therefore C
Apr

L
E(A)

is a complete graph.

Case(iv): When E = L and A = {0}, we get Apr
L

E(A) = {0}. Therefore C
Apr

L
E(A)

is a star
graph.

Now we provide an example to show that Proposition 3.18 is not true if we exclude the
assumptions.
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Example 3.19. Let L = Z5 be the ring of integers modulo 5, E = {0} and A = {0, 2, 3} then
Apr

L

E(A) = {0, 2, 3}. The graph of C
Apr

L
I (A)

is shown in Figure 11.

1 2

0

3 4

Figure 11. C
Apr

L
E(A)

We observe that E is an ideal of a integral nearring L with only ideals {0} and L, A is not an
ideal of L. Then C

Apr
L
E(A)

is neither a complete graph nor a star graph.

Proposition 3.20. Let E be an ideal of nearring L.
(i) If AprL

E
(A) is a c-prime ideal then AprL

E
(A) is a vertex cover of CAprL

E
(A).

(ii) If E is c-prime ideal then AprL
E
(A) is not a vertex cover of CAprL

E
(A).

Proof. (i) Let AprL
E
(A) be a c-prime ideal of L. Let a, y ∈ L be such that (a, y) ∈ F [CAprL

E
(A)].

Then ay ∈ AprL
E
(A) or ya ∈ AprL

E
(A) . Let ay ∈ AprL

E
(A). Then as AprL

E
(A) is c- prime

ideal, a ∈ AprL
E
(A) or y ∈ AprL

E
(A). Therefore AprL

E
(A) is a vertex cover of CAprL

E
(A).

(ii) Let E be a c-prime ideal of L. Let a, y ∈ L be such that (a, y) ∈ F [CAprL
E
(A)]. Then

ay ∈ AprL
E
(A) or ya ∈ AprL

E
(A). Let ay ∈ AprL

E
(A). Then ay + E ⊆ A =⇒ ay ∈ A − E.

Therefore ay /∈ E. As E is c-prime ideal, a /∈ E and y /∈ E . Hence AprL
E
(A) is not a vertex

cover of CAprL
E
(A).

Proposition 3.21. Let E be an ideal of nearring L. If Apr
L

E(A) is a c-prime ideal then Apr
L

E(A)
is a vertex cover of C

Apr
L
E(A)

.

Proof. Let Apr
L

E(A) be a c-prime ideal of L. Let a, y ∈ L such that (a, y) ∈ F [C
Apr

L
E(A)

].

Then ay ∈ Apr
L

E(A) or ya ∈ Apr
L

E(A). Let ay ∈ Apr
L

E(A). As Apr
L

E(A) is c- prime ideal,
a ∈ Apr

L

E(A) or y ∈ Apr
L

E(A). Therefore Apr
L

E(A) is a vertex cover of C
Apr

L
E(A)

.

Proposition 3.22. Let E be an ideal of a nearring L and A be a nonempty subset of L. Then
(i) CAprL

E
(L\A) is a subgraph of CAprL

E
(L).

(ii) C
Apr

L
E(L\A)

is a subgraph of C
Apr

L
E(L)

.
(iii) If A = E then CAprL

E
(L\E) is a subgraph of CAprL

E
(L).

(iv) If A = E then C
Apr

L
E(L\E)

is a subgraph of C
Apr

L
E(L)

.

Proof. (i) We have V [CAprL
E
(L\A)] = L = V [CAprL

E
(A)]. If A = L then L\A = L\L = ∅. Hence

AprL
E
(L\A) = ∅ =⇒ CAprL

E
(L\A) is an empty graph. Therefore F [CAprL

E
(L\A)] ⊆ F [CAprL

E
(L)].

Let A ̸= L and a, y ∈ L \ A be such that (a, y) ∈ F [CAprL
E
(L\A)]. Then ay ∈ AprL

E
(L \ A) or

ya ∈ AprL
E
(L \ A). Let ay ∈ AprL

E
(L \ A). Then ay + E ⊆ (L \ A). As L \ A ⊆ L, ay + E ⊆

L =⇒ ay ∈ AprL
E
(L). Hence (a, y) ∈ F [CAprL

E
(L)]. Therefore F [CAprL

E
(L\A)] ⊆ F [CAprL

E
(L)].

The proof is similar for ya ∈ AprL
E
(L \A). Thus, CAprL

E
(L\A) is a subgraph of CAprL

E
(L).
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(ii) We have V [C
Apr

L
E(L\A)

] = L = V [C
Apr

L
E(L)

]. If A = L then L \A = L \ L = ∅. Hence

Apr
L

E(L\A) = ∅ =⇒ C
Apr

L
E(L\A)

is a empty graph. Therefore F [C
Apr

L
E(L\A)

] ⊆ F [C
Apr

L
E(L)

].

Let A ̸= L and a, y ∈ L \ A such that (a, y) ∈ F [C
Apr

L
E(L\A)

]. Then ay ∈ Apr
L

E(L \ A) or

ya ∈ Apr
L

E(L \ A). Let ay ∈ Apr
L

E(L \ A). Then (ay + E) ∩ (L \ A) ̸= ∅. As L \ A ⊆ L,
(ay + E) ∩ L ̸= ∅. Hence, ay ∈ Apr

L

E(L). Therefore, (a, y) ∈ F [C
Apr

L
E(L)

]. Therefore

F [C
Apr

L
E(L\A)

] ⊆ F [C
Apr

L
E(L)

]. The proof is similar for ya ∈ Apr
L

E(L \ A). Thus C
Apr

L
E(L\A)

is a subgraph of C
Apr

L
E(L)

.
Proof of (iii) and (iv) are similar.

Definition 3.23. Let (a, y) ∈ CAprL
E
(A), then the graph CAprL

E
(A) is said to be ideal symmetric if

and only if either a is connected to all other vertices of L or y is connected to all other vertices
of L. Let (a, y) ∈ C

Apr
L
E(A)

, then the graph C
Apr

L
E(A)

is said to be ideal symmetric if and only if
either a is connected to all other vertices of L or y is connected to all other vertices of L.

Proposition 3.24. Let E be an ideal of L and A be a nonempty subset of L.
(i)If AprL

E
(A) is a c-prime ideal of L then CAprL

E
(A) is ideal symmetric.

(ii) Suppose

(a) AprL
E
(A) is c-semiprime

(b) CAprL
E
(A) is ideal symmetric

(c) For every a ∈ L, a is connected to all other vertices of L in CAprL
E
(A)

=⇒ a ∈ AprL
E
(A).

Then AprL
E
(A) is c-prime.

Proof. (i) Let AprL
E
(A) be a c-prime ideal of L. Let a, y ∈ L be such that (a, y) ∈ F [CAprL

E
(A)].

Then ay ∈ AprL
E
(A) or ya ∈ AprL

E
(A). Let ay ∈ AprL

E
(A). Then, as AprL

E
(A) is c- prime

ideal, a ∈ AprL
E
(A) or y ∈ AprL

E
(A). Hence from Proposition 3.12(ii), a is connected to all

other vertices of CAprL
E
(A) or y is connected to all other vertices of CAprL

E
(A). Hence CAprL

E
(A)

is ideal symmetric.
(ii) Let a, y ∈ L such that ay ∈ AprL

E
(A). If a = y then a ∈ AprL

E
(A), as AprL

E
(A) is c-

semiprime. Let a ̸= y. Then there is an edge between a and y in CAprL
E
(A). As CAprL

E
(A) is ideal

symmetric , a is connected to all other vertices of CAprL
E
(A) or y is connected to all other vertices

of CAprL
E
(A). From (c), a ∈ AprL

E
(A) or y ∈ AprL

E
(A). Therefore AprL

E
(A) is c-prime.

Proposition 3.25. Let E be an ideal of L and A be a nonempty subset of L.
(i)If Apr

L

E(A) is a c-prime ideal of L then C
Apr

L
E(A)

is ideal symmetric.

(ii) Suppose

(a) Apr
L

E(A) is c-semiprime
(b) C

Apr
L
E(A)

is ideal symmetric
(c) For every a ∈ L, a is connected to all other vertices of L in C

Apr
L
E(A)

=⇒ a ∈ Apr
L

E(A).
Then Apr

L

E(A) is c-prime.

Proof. (i) Let Apr
L

E(A) be a c-prime ideal of L. Let a, y ∈ L such that (a, y) ∈ F [C
Apr

L
E(A)

].

Then ay ∈ Apr
L

E(A) or ya ∈ Apr
L

E(A). Let ay ∈ Apr
L

E(A). Then as Apr
L

E(A) is c- prime
ideal, a ∈ Apr

L

E(A) or y ∈ Apr
L

E(A). Hence from Proposition 3.9(ii), a is connected to all other
vertices of C

Apr
L
E(A)

or y is connected to all other vertices of C
Apr

L
E(A)

. Therefore C
Apr

L
E(A)

is
ideal symmetric.
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(ii) Let a, y ∈ L such that ay ∈ Apr
L

E(A). If a = y then a ∈ Apr
L

E(A), as Apr
L

E(A) is c-
semiprime. Let a ̸= y. Then there is an edge between a and y in C

Apr
L
E(A)

. As C
Apr

L
E(A)

is ideal
symmetric , a is connected to all other vertices of C

Apr
L
E(A)

or y is connected to all other vertices

of C
Apr

L
E(A)

. From (c), a ∈ Apr
L

E(A) or y ∈ Apr
L

E(A). Therefore Apr
L

E(A) is c-prime.

4 Graph Homomorphism

Proposition 4.1. Let ς : L1 → L2 be a nearring homomorphism. Let E be an ideal and A be a
non empty subset of L1. Then
(i) ς is a graph homomorphism from C

Apr
L1
E (A)

to C
Apr

L2
ς(E)

ς(A)
.

(ii) ς is a graph homomorphism from C
Apr

L1
E (A)

to C
Apr

L2
ς(E)

ς(A)
.

Proof. Let E be an ideal and A be a non empty subset of L1. Then ς(E) is an ideal of L2.
(i) Let (a, y) ∈ F [C

Apr
L1
E (A)

]. Then ay ∈ AprL1
E
(A) or ya ∈ AprL1

E
(A). Let ay ∈ AprL1

E
(A).

Then ay + E ⊆ A. Hence, ay ∈ A and ay /∈ E =⇒ ς(ay) ∈ ς(A) and ς(ay) /∈ ς(E)
=⇒ ς(ay) ∈ ς(A)−ς(E). As ς is a nearring homomorphism ς(a)ς(y) ∈ ς(A)−ς(E). Therefore
ς(a)ς(y) + ς(E) ⊆ ς(A) =⇒ ς(a)ς(y) ∈ AprL2

ς(E)
ς(A). Thus (ς(a), ς(y)) ∈ F [C

Apr
L2
ς(E)

ς(A)
].

The proof is similar for ya ∈ AprL1
E
(A). Therefore ς is a graph homomorphism from C

Apr
L1
E (A)

to C
Apr

L2
ς(E)

ς(A)
.

(ii) Let(a, y) ∈ F [C
Apr

L1
E (A)

]. Then ay ∈ Apr
L1
E (A) or ya ∈ Apr

L1
E (A). Let ay ∈ Apr

L1
E (A).

Then (ay + E) ∩ A ̸= ∅. Let w ∈ (ay + E) ∩ A. Then w ∈ ay + E and w ∈ A. Therefore
ς(w) ∈ ς(ay + E) and ς(w) ∈ ς(A). As ς is nearring homomorphism, ς(w) ∈ ς(ay) + ς(E)
and ς(w) ∈ ς(A) =⇒ ς(w) ∈ ς(a)ς(y) + ς(E) and ς(w) ∈ ς(A). Hence ς(w) ∈ [ς(a)ς(y) +

ς(E)] ∩ ς(A) =⇒ [ς(a)ς(y) + ς(E)] ∩ ς(A) ̸= ∅. Therefore ς(a)ς(y) ∈ Apr
L2
ς(E)ς(A). Thus

(ς(a), ς(y)) ∈ F [C
Apr

L2
ς(E)

ς(A)
]. Proof is similar for ya ∈ Apr

L1
E (A). Therefore ς is a graph

homomorphism from C
Apr

L1
E (A)

to C
Apr

L2
ς(E)

ς(A)
.

Now we provide an example for the graph homomorphism in Proposition 4.1

Example 4.2. Let L1 =
Z

8Z
and L2 =

Z

4Z
. Then L1 and L2 are commutative rings. Let

ς : L1 → L2 be defined by ς(a + 8Z) = a + 4Z. Then ς is an onto nearring homomorphism.
Consider E = {0 + 8Z, 2 + 8Z, 4 + 8Z, 6 + 8Z} an ideal of L1 and A = {1 + 8Z, 2 + 8Z, 3 +

8Z, 5 + 8Z, 7 + 8Z}. Then AprL1
E
(A) = {1 + 8Z, 3 + 8Z, 5 + 8Z, 7 + 8Z} and Apr

L1
E (A) =

{0+8Z, 1+8Z, 2+8Z, 3+8Z, 4+8Z, 5+8Z, 6+8Z, 7+8Z}. We have ς(E) = {0+4Z, 2+4Z}
and ς(A) = {1+4Z, 2+4Z, 3+4Z}. Then AprL2

ς(E)
ς(A) = {1+4Z, 3+4Z} and Apr

L2
ς(E)ς(A) =

{0 + 4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z}. The graph of C
Apr

L1
E (A)

and C
Apr

L2
ς(E)

ς(A)
is shown in Figure

12 and 13 respectively.
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3 + 8Z

0 + 8Z 1 + 8Z 2 + 8Z

4 + 8Z 5 + 8Z 6 + 8Z

7 + 8Z

Figure 12. C
Apr

L1
E (A)

1 + 4Z 3 + 4Z 2 + 4Z0 + 4Z

Figure 13. C
Apr

L2
ς(E)

ς(A)

We observe that ς is a graph homomorphism from C
Apr

L1
E (A)

to C
Apr

L2
ς(E)

ς(A)
.

The graph of C
Apr

L1
E (A)

and C
Apr

L2
ς(E)

ς(A)
is shown in Figures 14 and 15 respectively.
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1 + 8Z 2 + 8Z

4 + 8Z

5 + 8Z

3 + 8Z

6 + 8Z

0 + 8Z 7 + 8Z

Figure 14. C
Apr

L1
E (A)

1 + 4Z

2 + 4Z

3 + 4Z

0 + 4Z

Figure 15. C
Apr

L2
ς(E)

ς(A)

We observe that ς is a graph homomorphism from C
Apr

L1
E (A)

to C
Apr

L2
ς(E)

ς(A)
.

Lemma 4.3. Let ς : L1 → L2 be an onto nearring homomorphism. Let E be an ideal and A be
a non empty subset of L1. If a ∈ L1 and ς(a) /∈ ς(E) then a /∈ E.

Proof. Let E be an ideal and A be a non empty subset of L1. Then ς(E) is an ideal of L2. Let
a ∈ L1 be such that ς(a) /∈ ς(E). Suppose a ∈ E. Then ς(a) ∈ ς(E), - a contradiction to
ς(a) /∈ ς(E). Therefore a /∈ E.

Proposition 4.4. Let ς : L1 → L2 be an onto nearring homomorphism. Let E be an ideal and A
be a non empty subset of L1.
(i) If a ∈ L1 and ς(a) is connected to all other vertices of C

Apr
L2
ς(E)

ς(A)
then a is connected to all

other vertices of C
Apr

L1
E (A)

.

(ii) If a ∈ L1 with ς(a) is connected to all other vertices of C
Apr

L2
ς(E)

ς(A)
then a is connected to all

other vertices of C
Apr

L1
E (A)

.

Proof. (i) Let a ∈ L1 be such that ς(a) is connected to all other vertices of C
Apr

L2
ς(E)

ς(A)
. Then

for all, y ∈ L1 there exists ς(y) ∈ L2 such that (ς(a), ς(y)) ∈ F [C
Apr

L2
ς(E)

ς(A)
]. Therefore

ς(a)ς(y) ∈ AprL2
ς(E)

ς(A) or ς(y)ς(a) ∈ AprL2
ς(I)

ς(A). Let ς(a)ς(y) ∈ AprL2
ς(E)

ς(A). Then
ς(a)ς(y) + ς(E) ⊆ ς(A) =⇒ ς(a)ς(y) ∈ ς(A) − ς(E). As ς is nearring homomorphism
ς(ay) ∈ ς(A) − ς(E) =⇒ ς(ay) ∈ ς(A) and ς(ay) /∈ ς(E). Hence ay ∈ A and from
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Lemma 4.3, ay /∈ E. Therefore ay ∈ A − E and ay + E ⊆ A =⇒ ay ∈ AprL1
E
(A) and

(a, y) ∈ F [C
Apr

L1
E (A)

].

The proof is similar for ς(y)ς(a) ∈ AprL2
ς(E)

ς(A).
Thus if a ∈ L1 and ς(a) is connected to all other vertices of C

Apr
L2
ς(E)

ς(A)
then a is connected to

all other vertices of C
Apr

L1
E (A)

.

(ii) Let a ∈ L1 with ς(a) is connected to all other vertices of C
Apr

L2
ς(E)

ς(A)
. Then for all y ∈

L1, there exists ς(y) ∈ L2 such that (ς(a), ς(y)) ∈ F [C
Apr

L2
ς(E)

ς(A)
]. Therefore ς(a)ς(y) ∈

Apr
L2
ς(E)ς(A) or ς(y)ς(a) ∈ Apr

L2
ς(E)ς(A). Let ς(a)ς(y) ∈ Apr

L2
ς(E)ς(A). Then [ς(a)ς(y)+ς(E)]∩

ς(A) ̸= ∅. Therefore there exists ς(q) ∈ L2 such that ς(q) ∈ ς(a)ς(y) + ς(E) and ς(q) ∈ ς(A).
As ς is a onto nearring homomorphism , ς(q) ∈ ς(ay) + ς(E) and ς(q) ∈ ς(A) =⇒
ς(q) ∈ ς(ay + E) and ς(q) ∈ ς(A). Hence q ∈ ay + E and q ∈ A =⇒ q ∈ (ay + E) ∩ A =⇒
(ay + E) ∩ A ̸= ∅. Therefore ay ∈ Apr

L1
E (A) and (a, y) ∈ F [C

Apr
L1
E (A)

]. The proof is simi-

lar for ς(y)ς(a) ∈ Apr
L2
ς(E)ς(A). Thus if a ∈ L1 with ς(a) is connected to all other vertices of

C
Apr

L2
ς(E)

ς(A)
then a is connected to all other vertices of C

Apr
L1
E (A)

.

Now we provide an example for the Proposition 4.4

Example 4.5. Let L1 =
Z

8Z
and L2 =

Z

4Z
. Then L1 and L2 are commutative rings. Let

ς : L1 → L2 be defined by ς(a + 8Z) = a + 4Z. Then ς is an onto nearring homomorphism.
Consider E = {0 + 8Z, 2 + 8Z, 4 + 8Z, 6 + 8Z}, an ideal of L1.
Let A = {0+8Z, 1+8Z, 2+8Z, 4+8Z, 5+8Z, 6+8Z}. Then AprL1

E
(A) = {0+8Z, 2+8Z, 4+

8Z, 6+8Z} and Apr
L1
E (A) = {0+8Z, 1+8Z, 2+8Z, 3+8Z, 4+8Z, 5+8Z, 6+8Z, 7+8Z}.

We have ς(E) = {0 + 4Z, 2 + 4Z} and ς(A) = {0 + 4Z, 1 + 4Z, 2 + 4Z}.
AprL2

ς(E)
ς(A) = {0+4Z, 2+4Z} and Apr

L2
ς(E)ς(A) = {0+4Z, 1+4Z, 2+4Z, 3+4Z}. Graphs

of CAprL
E
(A) and CAprL

ς(E)
ς(A) are shown in Figures 16 and 17 respectively.

1 + 8Z 2 + 8Z

4 + 8Z

5 + 8Z

3 + 8Z

6 + 8Z

0 + 8Z 7 + 8Z

Figure 16. CAprL
E
(A)
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1 + 4Z

2 + 4Z

3 + 4Z

0 + 4Z

Figure 17. CAprL
ς(E)

ς(A)

We observe that if a ∈ L1 with ς(a) is connected to all other vertices of in CAprL
ς(E)

ς(A) then
a is connected to all other vertices of CAprL

E
(A).

The graph of C
Apr

L1
E (A)

and C
Apr

L2
ς(E)

ς(A)
is same as in Figures 14 and 15 respectively.

We observe that if a ∈ L1 with ς(a) is connected to all other vertices of C
Apr

L2
ς(E)

ς(A)
then a is

connected to all other vertices of C
Apr

L1
E (A)

.

Lemma 4.6. Let ς : L1 → L2 be an one−to−one and onto nearring homomorphism. Let E an
ideal and A be a non empty subset of L1.Then ς(A− E) = ς(A)− ς(E).

Proof. Let t ∈ L1 be such that ς(t) ∈ ς(A − E). Then t ∈ A − E ⇒ t ∈ A and t /∈ E. Hence
ς(t) ∈ ς(A) and ς(t) /∈ ς(E) =⇒ ς(t) ∈ ς(A) − ς(E). Therefore ς(A − E) ⊆ ς(A) − ς(E).
Now, let y ∈ L1 be such that ς(y) ∈ ς(A) − ς(E). Then ς(y) ∈ ς(A) and ς(y) /∈ ς(E) =⇒
y ∈ A and from Lemma 4.3, y /∈ E. Hence y ∈ A − E =⇒ ς(y) ∈ ς(A − E). Therefore
ς(A)− ς(E) ⊆ ς(A− E). Thus ς(A− E) = ς(A)− ς(E)

Proposition 4.7. Let ς : L1 → L2 be an one−to−one and onto nearring homomorphism. Con-
sider an ideal E and a non empty subset A of nearring L1 .
(i) If a ∈ E and ς(a) is an isolated vertex in C

Apr
L2
ς(E)

ς(A)
then a is an isolated vertex in C

Apr
L1
E (A)

.

(ii)If a ∈ E and ς(a) is an isolated vertex in C
Apr

L2
ς(E)

ς(A)
then a is an isolated vertex in C

Apr
L1
E (A)

.

Proof. (i) Let a ∈ E and ς(a) be an isolated vertex in C
Apr

L2
ς(E)

ς(A)
. Assume that a is not

an isolated vertex in C
Apr

L1
E (A)

. Then there exists y ∈ L1 such that (a, y) ∈ F [C
Apr

L1
E (A)

].

Therefore ay ∈ AprL1
E
(A) or ya ∈ AprL1

E
(A) . Let ay ∈ AprL1

E
(A). Then ay + E ⊆ A or

ay ∈ A − E. Hence ς(ay) ∈ ς(A − E), from Lemma 4.6, ς(ay) ∈ ς(A) − ς(E). There-
fore ς(ay) ∈ ς(A) and ς(ay) /∈ ς(E). As ς is nearring homomorphism ς(a)ς(y) ∈ ς(A) and
ς(a)ς(y) /∈ ς(E) . Hence ς(a)ς(y) ∈ ς(A) − ς(E) =⇒ ς(a)ς(y) + ς(E) ⊆ ς(A). Therefore
ς(a)ς(y) ∈ AprL2

ς(E)
ς(A) =⇒ (ς(a), ς(y)) ∈ F [C

Apr
L2
ς(E)

ς(A)
], -a contradiction to ς(a) is an

isolated vertex in C
Apr

L2
ς(E)

ς(A)
. Thus a is an isolated vertex in C

Apr
L1
E (A)

. The proof is similar for

ya ∈ AprL1
E
(A).

(ii) Let a ∈ E and ς(a) be an isolated vertex in C
Apr

L2
ς(E)

ς(A)
. Assume that a is not an isolated

vertex in C
Apr

L1
E (A)

. Then there exists y ∈ L1 such that (a, y) ∈ F [C
Apr

L1
E (A)

]. Therefore

ay ∈ Apr
L1
E (A) or ya ∈ Apr

L1
E (A). Let ay ∈ Apr

L1
E (A). Then

(ay+E)∩A ̸= ∅. Let p ∈ (ay+E)∩A. Then p ∈ ay+E and p ∈ A. Therefore ς(p) ∈ ς(ay+E)
and ς(p) ∈ ς(A). As ς is nearring homomorphism, ς(p) ∈ ς(ay) + ς(E) and ς(p) ∈ ς(A) =⇒
ς(p) ∈ ς(a)ς(y) + ς(E) and ς(p) ∈ ς(A). Hence ς(p) ∈ [ς(a)ς(y) + ς(E)] ∩ ς(A). Therefore
[ς(a)ς(y) + ς(E)] ∩ ς(A) ̸= ∅ =⇒ ς(a)ς(y) ∈ Apr

L2
ς(E)ς(A). -a contradiction to ς(a) is an

isolated vertex in C
Apr

L2
ς(E)

ς(A)
. Hence a is an isolated vertex in C

Apr
L1
E (A)

. The proof is similar

for ya ∈ Apr
L1
E (A).

Conclusions: In this paper we defined two types of graphs namely lower approximation
graph and upper approximation graph. We studied the connectivity property of graph of lower
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(upper) approximation. We related the properties of an ideal with properties of graph. Further
we defined ideal symmetry of graph of lower (upper) approximation. We proved the graph
homomorphism in lower (upper) approximation graphs.
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