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Abstract Our paper delves into exploring skew cyclic codes over a generalized class of rings
denoted by T = Tr. We define Tr = Fq[u1, u2, ..., ur]/⟨u3

i − ui, uiuj − ujui⟩ri,j=1, q = pm and p
is some odd prime. Our study introduces a Gray map for the ring T and explores its properties.
Using a decomposition theorem, we analyze the structural features of skew cyclic codes over T .
Additionally, we offer a formula to find the count of skew cyclic codes of length n over the ring
T under specific conditions. Further, we derive a criterion to get Linear Complementary Dual
(LCD) codes over T from skew cyclic codes. Moreover, we present a technique for deriving
quantum codes from a particular class of skew cyclic codes over T which contain their dual.

1 Introduction

The extensive algebraic features of cyclic codes make them one of the most intriguing families of
codes. Hammous et al. [14] showed the existence of many good non-linear binary codes under
the Gray map. Further many researchers studied cyclic codes over various chain and non-chain
rings. As a generalization of cyclic codes, Boucher et al. [5] developed the idea of skew-cyclic
codes or θ-cyclic codes in 2007, where θ is some automorphism of the finite field being used as
code algebra. They further extended their study in [6] We know that cyclic codes of length n
over Fq can be identified as ideals of Fq[y]/⟨yn − 1⟩. Skew cyclic codes of arbitrary length were
studied by Siap et al. [27]. It is interesting to observe that for an automorphism θ, skew θ-cyclic
codes of length n over Fq can be identified as left submodules in Fq[y : θ]/⟨yn − 1⟩. Here,
Fq[y : θ] is a non-commutative ring in general and called a skew polynomial ring. In Fq[y : θ]
addition operation is the usual addition of polynomials and multiplication is defined using the
rule y ∗ ay = θ(a)y2.

Motivated by the study of skew cyclic codes over a finite field, Abualrub, and Seneviratne [1]
provided a study of skew cyclic codes over the ring F2 + vF2, where v2 = v. In 2014, Jin [19]
studied skew cyclic codes over Fp + vFp with v2 = 1. Further, skew cyclic codes over Fq + vFq

were investigated by Gao [11] and Gursoy et al. [13] using two different automorphisms. Dertli
at al. [9] studied skew cyclic and quasi-cyclic codes over F2 + uF2 + u2F2. Yao et al. [29]
described the structural properties of skew cyclic codes over Fq +uFq + vFq +uvFq. Moreover,
they provided a formula for the number of skew cyclic codes under certain conditions. Shi et al.
[24] studied skew cyclic codes over Fq + vFq + v2Fq and further Shi et al. [25] extended their
study over a more general non-chain ring. Ashraf et al. [2] provided a study of skew-cyclic codes
over Fq + uFq + vFq. Islam and Prakash [18] studied skew cyclic codes and skew constacyclic
codes over Fq + uFq + vFq + uvFq. Irwansyah et al. [16] studied ΘS-cyclic codes over a
class of non-chain rings Ak. Later, a more general class of non-chain rings Bk was taken into
consideration to study skew cyclic codes by Irwansyah et al. [17]. Recently, many researchers
studied skew cyclic and skew constacyclic codes over various non-chain rings and provided
many applications of them in the construction of LCD codes, quantum codes, DNA codes, etc.
Motivated by these studies, here in this article we choose a class of finite commutative rings
denoted by T and study skew cyclic codes over it.

Linear Complementary Dual(LCD) codes are an important class of linear codes that have
many applications including in cryptography for countermeasures against side-channel attacks,
fault injection attacks and in secret sharing, etc. They were first introduced by Massey [20] in
1992. A characterization of a cyclic code over a finite field to be an LCD code was discovered
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by Yang and Massey [30] in 1994. Recently, Boulanour et al. [7] provided a criterion for skew
constacyclic codes to be LCD. We use this criterion to characterize LCD codes from skew cyclic
codes over T .

Quantum codes were first discovered by Shor [26] in 1995. In 1998, Calderbank et al. [8]
described a method to find quantum error-correcting codes (QEC) using the self-orthogonal clas-
sical linear codes over a finite field. Further many classes of quantum MDS codes over Fq were
constructed by Grassl et al. [12]. Qian et al. introduced the initial method for constructing
quantum codes from cyclic codes of odd length over the finite chain ring F2 + uF2 with u2 = 0
in their work [23]. Motivated by these studies many researchers obtained quantum codes using
cyclic codes which either contain their dual (dual-containing) or contained in their dual (self-
orthogonal) over various chain and non-chain rings. In 2019, Özen et al. [22] derived the con-
ditions for a skew cyclic code over Fq to be self-orthogonal and dual-containing. Although their
criterion for dual-containing skew cyclic codes is incorrect and a correct version of the result is
mentioned in [10]. We use the method mentioned in [10] to obtain dual-containing skew cyclic
codes over T and find quantum codes from their Gray images.

In brief, the main accomplishments of this article can be summarized as::

(i) The establishment of a Gray map on T and an exploration of its characteristics are pre-
sented.

(ii) The examination of the attributes of linear codes over T is conducted using the decompo-
sition method.

(iii) We discuss automorphisms on T and study skew cyclic codes over them.

(iv) A technique for deriving quantum codes from skew cyclic codes over T is provided by us.

(v) The skew cyclic LCD codes over T are characterized by us.

2 Preliminaries

Suppose that Fq is a finite field with q elements, where q = pm, p is an odd prime and m is a
positive integer. A subspace of Fn

q with dimension k is referred to as a linear code of length n
and dimension k over Fq and denoted as [n, k]q. Let θ be an automorphism of Fq. Skew θ-cyclic
shift of a vector v = (v0, v1, . . . , vn) is defined as σθ(v) = (θ(vn−1), θ(v0), θv1, . . . , θ(vn−2). A
linear code C of length n over Fq is said to skew θ-cyclic if σθ(v) ∈ C, ∀v ∈ C. Note that if θ is
the identity map then C is cyclic code. For a vector v = (v0, v1, . . . , vn) ∈ Fn

q , v 7→
∑n−1

i=0 viy
i

is an isomorphism between Fn
q and Fq[y; θ]/⟨yn − 1⟩. Under this isomorphism, a linear code

C is a skew cyclic code of length n if and only if it (its image) is a left submodule of An =
Fq[y; θ]/⟨yn − 1⟩. If the order of θ divides n then An is a ring and a linear code C is a skew
θ-cyclic code of length n if and only if it (its image) is a left ideal of An. The monic generator
polynomial f(y) =

∑n−k−1
i=0 fiy

i of this ideal is called the generator polynomial of this code and
a generator matrix (consisting of basis vectors in rows) of this code is given as:

G =


f0 f1 . . . fn−k−1 0 . . . 0
0 θ(f0) θ(f1) . . . θ(fn−k−1) . . . 0
...

...
... . . .

...
...

...
0 0 . . . θk−1(f0) θk−1(f1) . . . θk−1(fn−k−1)


The skew reciprocal polynomial of a polynomial f(y) =

∑k
i=0 fiy

i ∈ Fq[x; θ] ⟨yn − 1⟩ is
defined as f†(y) =

∑k
i0
θi(fk−i)yi ∈ Fq[x; θ] ⟨yn − 1⟩. For two vectors v = (v0, v1, . . . , vn) and

w = (w0, w1, . . . , wn) ∈ Fn
q , their Euclidean inner product is defined as:

v.Ew =
n−1∑
i=0

viwi.
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If q = r2 is an even power of some prime then Hermitian inner product of v and w is defined as:

v.Hw =
n−1∑
i=0

viw̄i,

where w̄i = wr
i . The Euclidean dual and Hermitian dual of a linear code C ⊆ Fn

q are respectively
given as:

C⊥E = {w ∈ Fn
q : v.Ew = 0,∀v ∈ C},

C⊥H = {w ∈ Fn
q : v.Ew̄ = 0,∀v ∈ C}.

These definitions and concepts can be obtained in detail in any standard book of coding theory
like [15]. Consider Fq[u1, u2, ..., ur]/⟨u3

i − ui, uiuj − ujui⟩, which is a finite commutative ring.
Let T1 = Fq[u1]⟨u3

1 − u1⟩ and Tj+1 = Tj [uj+1]⟨u3
j+1 − uj+1⟩ then T = Tr. Let

Bj =

{
κj1 = 1 − u2

j , κj2 =
u2
j − uj

2
, κj3 =

u2
j + uj

2

}

Now let
ηi1i2...ir = Π

r
j=1κjij .

Then we can verify that

η2
i1i2...ir

= ηi1i2...ir

ηi1i2...irηl1l2...lr = 0∑
i1,i2,...,ir

ηi1i2...ir = 1,
(2.1)

where
∑

i1,i2,...,ir
=

∑3
i1=1 . . .

∑3
ir=1. Thus by a decomposition theorem of ring theory

T =
⊕

i1i2...ir

ηi1i2...irT ∼=
⊕

i1i2...ir

ηi1i2...irFq.

Thus any v ∈ T can be expressed as

v =
∑

i1,i2,...,ir

ηi1i2...irvi1i2...ir

in a unique way, where vi1i2...ir ∈ Fq and ij ∈ {1, 2, 3} for j = 1, 2, ..., r.

3 Gray Map

We define a Gray map ϕ : T → F3r

q as

ϕ(v) = (vi1i2...ir)i1,i2,...,irM

= (v11...1, . . . , v11...r, v21...1, . . . vrr...r)M

for all v =
∑

i1,i2,...,ir
ηi1i2...irvi1i2...ir ∈ C, where M ∈ GL3r(Fq) is such that MMT = λI3r , for

some λ ∈ F∗
q . The Lee-weight of an element v ∈ T is defined as

wL(v) = wH(ϕ(v)),

where wH denotes the Hamming weight.
We can extend ϕ to T n as Φ : T n 7→ F3rn

q as

Φ(v) = (ϕ(v0), ϕ(v1), ..., ϕ(vn−1)),
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for all v = (v0, v1, ..., vn−1) ∈ Rn.
For any v = (v0, v1, ..., vn−1) ∈ T n, we define its Lee-weight as

wL(v) =
n−1∑
k=0

wL(v
k)

.
And for any two v,w ∈ Rn, their Lee distance is define as

dL(v,w) = wL(v − w).

Theorem 3.1. The Gray map Φ is a bijective, linear map and it preserves the distance between
(T n, dL) and (F3rn

q , dH).

Proof. Since ϕ is bijective and linear, Φ is also bijective and linear. For the proof of later part,
let r and t ∈ T n be such that

r = (r0, r1, ..., rn−1), t = (t0, t1, ..., tn−1),

where

ri =
∑

i1i2...ir

ηi1i2...irr
i
i1i2...ir

, ti =
∑

i1i2...ir

ηi1i2...ir t
i
i1i2...ir

Now,

dL(r, t) = wtL(r − t)

= wtL(r
0 − t0, r1 − t1, ..., rn−1 − tn−1)

=
n−1∑
i=0

wtL(r
i − ti)

=
n−1∑
i=0

wtH(ϕ(ri − ti))

=
n−1∑
i=0

wtH(ϕ(ri)− ϕ(ti))

= wtH(ϕ(r0)− ϕ(t0), ϕ(r1)− ϕ(t1), ..., ϕ(rn−1)− ϕ(tn−1))

= wtH((ϕ(r0), ϕ(r1), ..., ϕ(rn−1))− (ϕ(t0), ϕ(t1), ..., ϕ(tn−1)))

= wtH(Φ(r)− Φ(t))

= dH(Φ(r), Φ(t))

Hence, Φ is distance preserving between (T n, dL) and (F3rn
q , dH).

Theorem 3.2. For any two c, d ∈ T n, c ⊥ d if and only if Φ(c) ⊥ Φ(d). In other words, Φ

preserves orthogonality.

Proof. Let c,d ∈ T n such that c = (c0, c1, . . . , cn−1) and d = (d0, d1, . . . , dn−1), where ci =∑
i1i2...ir

cii1i2...ir
ηi1i2...ir and di =

∑
i1i2...ir

dii1i2...ir
ηi1i2...ir , for i = 0, 1, 2, . . . , n−1. Now, using

the definition of Euclidean inner product and properties of primitive orthogonal idempotents, we
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get

c.d =
n−1∑
i=0

ci.di

=
n−1∑
i=0

(
∑

i1i2...ir

cii1i2...ir
ηi1i2...ir).(

∑
l1l2...lr

dil1l2...lr
ηl1l2...lr)

=
n−1∑
i=0

(
∑

i1i2...ir

cii1i2...ir
dii1i2...ir

ηi1i2...ir) (3.1)

=
∑

i1i2...ir

(
n−1∑
i=0

cii1i2...ir
dii1i2...ir

)ηi1i2...ir . (3.2)

and

Φ(c).Φ(d) = Φ(c)Φ(d)T

=
n−1∑
i=0

ϕ(ci)ϕ(di)T

=
n−1∑
i=0

(ci11...1, . . . , c
i
rr...r)MMT (di11...1, . . . , d

i
rr...r)

T

= λ

n−1∑
i=0

(
∑

i1i2...ir

cii1i2...ir
dii1i2...ir

)

= λ
∑

i1i2...ir

n−1∑
i=0

cii1i2...ir
dii1i2...ir

(3.3)

Since, {ηi1i2...ir : ij ∈ {1, 2, 3}} is a linearly independent set and λ ∈ F∗
q , from (3.1) and (3.3),

we conclude that c.d = 0 if and only if Φ(c).Φ(d) = 0, i.e. c ⊥ d if and only if Φ(c) ⊥ Φ(d).

4 Linear Codes over T

An T -submodule of T n is called a linear code over T having length n. For a linear code C ⊆ T n

and for (i1, i2, ..., ir) ∈ {1, 2, 3}r, we define

Ci1i2...ir = {wi1i2...ir ∈ Fn
q : ∃ wl1l2...lr ∈ Fn

q , (i1, i2, ..., ir) ̸= (l1, l2, ..., lr)

such that
∑

l1,l2,...,lr

ηl1l2...lrwl1l2...lr ∈ C}.

Then Ci1i2...ir ⊆ Fn
q are also linear ∀ij ∈ {1, 2, 3}, C =

⊕
i1i2...ir

ηi1i2...irCi1i2...ir and |C| =
Πi1i2...ir |Ci1i2...ir |.

For a linear code C of length n over T , its dual code C⊥ is defined as

C⊥ = {w ∈ T n : w.v = 0,∀v ∈ C},

where w.v denotes the usual Euclidean inner product. The code C is called self-orthogonal if
C⊥ ⊆ C and self-dual if C⊥ = C.

Theorem 4.1. Let C =
⊕

i1i2...ir
ηi1i2...irCi1i2...ir be an (n, qk, dL) linear code over T then

(i) Φ(C) is a [3rn, k, dH ] linear code over Fq, where dH = dL,

(ii) Φ(C)⊥ = Φ(C⊥),

(iii) C⊥ =
⊕

i1i2...ir
ηi1i2...irC⊥

i1i2...ir
,



Skew cyclic codes over Fq[u1, u2, ..., ur]/⟨u3
i − ui, uiuj − ujui⟩ri,j=1 221

(iv) C is a self-orthogonal code if and only if Φ(C) is a self-orthogonal code over Fq,

(v) C is a dual containing code if and only if Φ(C) is a dual containing code over Fq,

(vi) C is a self-dual code if and only if Φ(C) is a self-dual code over Fq

Proof. Proof of part (a), follows from Theorem 3.1. Part (b) follows from Theorems 3.1 and 3.2.
Part (c) follows from Theorem 3.1. Part (d), (e) and (f) can be proved using the fact Φ is bijective
and linear from Theorem 3.1.

Theorem 4.2. If Gi1i2...ir is some generator matrix of Ci1i2...ir , ij ∈ {1, 2, 3} then

G =
[
ηi1i2...irGi1i2...ir

]
i1i2...ir

=



η11...1G11...1

η11...2G11...1
...

η11...rG11...r
...

ηrr...1Grr...1
...

ηrr...rGrr...r


and

[
Φ(ηi1i2...irGi1i2...ir)

]
i1i2...ir

=



Φ(η11...1G11...1)

Φ(η11...2G11...1)
...

Φ(η11...rG11...r)
...

Φ(ηrr...1Grr...1)
...

Φ(ηrr...rGrr...r)


are the generator matrices of C and Φ(C) respectively.

Proof. The proof of the above results follows from the fact that Φ is bijective and linear proved
in Theorem 3.1.

5 Skew cyclic Codes over T

This section focuses on the characteristics of skew cyclic codes over T . We will first look at the
automorphisms of T .

Let Θ : T → T be an automorphism. Then Θ|Fq
, the restriction map over Fq is an Fq-

automorphism. Therefore Θ|Fq
= θt : a 7−→ ap

t

for some t such that 0 ≤ t ≤ m − 1 where
q = pm and a ∈ Fq. Thus for

∑
i1,i2,...,ir

ηi1i2...irvi1i2...ir ∈ T , we have

Θ(
∑

i1,i2,...,ir

ηi1i2...irvi1i2...ir) =
∑

i1,i2,...,ir

Θ(ηi1i2...ir)v
pt

i1i2...ir
.

From eq. 2.1, we conclude that the set {ηi1i2...ir : ij ∈ {1, 2, 3} for j = 1, 2, ..., r} is a complete
set in T . Therefore, the set {Θ(ηi1i2...ir) : ij ∈ {1, 2, 3} for j = 1, 2, ..., r} is permutation of
the set {ηi1i2...ir : ij ∈ {1, 2, 3} for j = 1, 2, ..., r}. Hence, ∃ γj ∈ S3, the permutation group of
{1, 2, 3}, for j = 1, 2, ..., r such that Θ(ηi1i2...ir) = ηγ1(i1)γ2(i2)...γr(ir). Therefore

Θ(
∑

i1,i2,...,ir

ηi1i2...irvi1i2...ir) =
∑

i1,i2,...,ir

ηγ1(i1)γ2(i2)...γr(ir)v
pt

i1i2...ir
.
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Whenever γj are identity permutation for all j = 1, 2, ..., r and Θ|Fq
= θt then we denote Θ by

Θt. For any element α = (α0, α1, . . . , αn−1) ∈ T n, its Θ-cyclic shift is defined as:

σΘ(α) = (Θ(αn−1),Θ(α0), . . . ,Θ(αn−2).

Definition 5.1. For an automorphism Θ of T , C ⊆ T n is called a skew Θ-cyclic code of length
n, if it is linear and σΘ(α) ∈ C whenever α ∈ C.

For an automorphism Θ of T , T [y; Θ] is a non-commutative ring(in general) under usual
addition of polynomials and multiplication defined as y ∗ ay = Θ(a)y2 and it is called skew-
Θ polynomial ring. Moreover, for a vector v = (v0, v1, . . . , vn−1) ∈ T n, v 7→

∑n−1
i=0 viyi is

an isomorphism between T n and T [y; Θ]/⟨yn − 1⟩. Under this isomorphism, a linear code C
is a skew Θ-cyclic code of length n if and only if it (its image) is a left submodule of An =
T [y; Θ]/⟨yn − 1⟩. If the order of Θ divides n then An is a ring and a linear code C is a skew
Θ-cyclic code of length n if and only if it (its image) is a left ideal of An.

Theorem 5.2. Suppose that C =
⊕

i1i2...ir
ηi1i2...irCi1i2...ir is a linear code of length n over T .

Then C is a Θt-skew cyclic code over T if and only if Ci1i2...ir are θt-skew cyclic code over Fq,
for all ij ∈ {1, 2, 3}.

Proof. Let Ci1i2...ir be skew θt-cyclic codes for all ij ∈ {1, 2, 3}. Let c = (c0, c1, c2, . . . , cn−1) ∈
C. Suppose that for l ∈ {0, 1, . . . , n− 1}, cl =

∑
i1i2...ir

cli1i2...ir
ηi1i2...ir . Then

(c0
i1i2...ir

, c1
i1i2...ir

, . . . , cn−1
i1i2...ir

) ∈ Ci1i2...ir .

Since Ci1i2...ir is a θt-skew cyclic code for all ij ∈ {1, 2, 3}, we have

σθt((c
0
i1i2...ir

, c1
i1i2...ir

, . . . , cn−1
i1i2...ir

)) = (θ(cn−1
i1i2...ir

), θ(c0
i1i2...ir

), θ(c1
i1i2...ir

), . . . , θ(cn−2
i1i2...ir

))

∈ Ci1i2...ir ,∀ij ∈ {1, 2, 3}.

Thus
∑

i1i2...ir
(θ(cn−1

i1i2...ir
), θ(c0

i1i2...ir
), θ(c1

i1i2...ir
), . . . , θ(cn−2

i1i2...ir
))ηi1i2...ir

= (
∑

i1i2...ir
cn−1
i1i2...ir

ηi1i2...ir ,
∑

i1i2...ir
c0
i1i2...ir

ηi1i2...ir , . . . ,
∑

i1i2...ir
cn−2
i1i2...ir

ηi1i2...ir)

= (Θ(cn−1),Θ(c0),Θ(c1),Θ(c2), ...,Θ(cn−2)) = σΘ(c) ∈ C . This proves that C is skew Θt-
cyclic.

Next, let us assume that C is skew Θt-cyclic. Let (c0
i1i2...ir

, c1
i1i2...ir

, . . . , cn−1
i1i2...ir

) ∈ Ci1i2...ir .,
for ij ∈ {1, 2, 3} then∑

i1i2...ir
(c0

i1i2...ir
, c1

i1i2...ir
, ..., cn−1

i1i2...ir
)ηi1i2...ir

= (
∑

i1i2...ir
c0
i1i2...ir

ηi1i2...ir ,
∑

i1i2...ir
c1
i1i2...ir

ηi1i2...ir , ...,
∑

i1i2...ir
cn−1
i1i2...ir

ηi1i2...ir) ∈ C.
Since C is skew Θt-cyclic,
(Θt(

∑
i1i2...ir

cn−1
i1i2...ir

ηi1i2...ir),Θt(
∑

i1i2...ir
c0
i1i2...ir

ηi1i2...ir), . . . ,Θt(
∑

i1i2...ir
cn−2
i1i2...ir

ηi1i2...ir))

=
∑

i1i2...ir
(θt(c

n−1
i1i2...ir

), θt(c0
i1i2...ir

), θt(c1
i1i2...ir

), ..., θt(c
n−2
i1i2...ir

))ηi1i2...ir

∈ C =
⊕

i1i2...ir
Ci1i2...irηi1i2...ir . This implies that

(θt(c
n−1
i1i2...ir

), θt(c
0
i1i2...ir

), ..., θt(c
n−2
i1i2...ir

)) = σθt(c
0
i1i2...ir

, c1
i1i2...ir

, ..., cn−1
i1i2...ir

) ∈ Ci1i2...ir ,

for all ij ∈ {1, 2, 3} which proves that they all are skew θt-cyclic.

Corollary 5.3. If the order of Θt divides n, the dual code of a skew Θt-cyclic code of length n
over T is also a skew Θt-cyclic code.

Theorem 5.4. Suppose that C =
⊕

i1i2...ir
ηi1i2...irCi1i2...ir is a skew Θt-cyclic code of length n

over T . Let Ci1i2...ir = ⟨fi1i2...ir(y)⟩, where fi1i2...ir(y) are monic right divisors of yn − 1 and
ij ∈ {1, 2, 3}, for j = 1, 2, ..., r. Then ∃ a polynomial f(y) in T [y; θt] such that

(i) C = ⟨f(y)⟩

(ii) f(y) is right divisor of yn − 1

(iii) |C| = q
3rn−

∑
i1,i2,...,ir

deg(fi1i2...ir (y))
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Proof. Since Ci1i2...ir = ⟨fi1i2...ir(y)⟩, for ij ∈ {1, 2, 3} and C =
⊕

i1i2...ir
ηi1i2...irCi1i2...ir , then

C =

{
c(y) =

∑
i1i2...ir

ηi1i2...irri1i2...ir(y)fi1i2...ir(y)|ri1i2...ir(y) ∈ Fq[y; θt]

}
.

Hence C ⊆ ⟨η11...1f11...1(y), . . . , ηrr...rfrr...r(y)⟩. Conversely, for any∑
i1i2...ir

ηi1i2...irki1i2...ir(y)fi1i2...ir(y) ∈ ⟨η11...1f11...1(y), . . . , ηrr...rfrr...r(y)⟩,

where ki1i2...ir(y) ∈ Fq[y; θt]/⟨yn − 1⟩, there exist ri1i2...ir(y) ∈ Fq[y; θt] such that

ηi1i2...irki1i2...ir(y) = ηi1i2...irri1i2...ir(y)

. Thus ⟨η11...1f11...1(y), . . . , ηrr...rfrr...r(y)⟩ ⊆ C. Hence

⟨η11...1f11...1(y), . . . , ηrr...rgrr...r(y)⟩ = C.

Now let f(y) =
∑

i1i2...ir
ηi1i2...irfi1i2...ir(y) then ⟨f(y)⟩ ⊆ C. Also since ηi1i2...irfi1i2...ir =

ηi1i2...irfi1i2...ir , for all ij ∈ {1, 2, 3} so C ⊆ ⟨f(y)⟩. Hence C ⊆ ⟨f(y)⟩. Further as fi1i2...ir(y)
divides yn − 1 ∈ Fq[y : θt] and are monic as well for all ij ∈ {1, 2, 3}. Thus yn − 1 =
gi1i2...ir(y)fi1i2...ir(y) for some gi1i2...ir(y) ∈ Fq[y : θt]. Therefore,

(
∑

i1i2...ir

ηi1i2...irgi1i2...ir(y))f(y) = (
∑

i1i2...ir

ηi1i2...irgi1i2...ir(y))(
∑

i1i2...ir

ηi1i2...irfi1i2...ir(y))

=
∑

i1i2...ir

ηi1i2...irgi1i2...ir(y)fi1i2...ir(y)

=
∑

i1i2...ir

ηi1i2...ir(y
n − 1)

= yn − 1 ∈ T [y; Θt].

Hence f(y) divides yn − 1 from right. Since |C| = Πi1i2...ir |Ci1i2...ir |, we get

|C| = q
3rn−

∑
i1,i2,...,ir

deg(fi1i2...ir (y)).

Example 5.5. Let q = 52 then Fq = GF [5]/⟨X2 + 4X + 2⟩ and let s be a root of X2 + 4X + 2.
Consider the ring Fq/⟨u3

1 − u1, u
3
2 − u2, u1u2 − u2u1⟩. Let θ = θ1 be the Frobenius map i.e.

a 7−→ a5.

Then the order of θ is 2. Now consider the factorization of x4 − 1 in Fq[x; θ].

y4 − 1 = (y + 2s+ 1)(y + 2s+ 2)(y + 4s+ 4)(y + 4s+ 2)

= (y + 4)(y + 1)(y + 2)(y + 3)

= (y + 2s+ 1)(y + 2s+ 2)(y + 3)(y + 2)

= (y + 2s+ 1)(y + 2s+ 2)(y + s+ 1)(y + s+ 3)

Let f(y) = (y + 4s+ 4)(y + 4s+ 2) = y2 + (s+ 1)y + 1 which is a right divisor of y4 − 1.
Then for all ij ∈ {1, 2, 3}, let Ci1i2...ir = ⟨f(x)⟩ is a skew cyclic code. A generator matrix of
Ci1i2...ir is given as: [

1 s+ 1 1 0
0 1 4s2 + 2 1

]
Ci1i2...ir are [4, 2, 3] skew cyclic codes over Fq which is MDS. Hence, C =

⊕
i1i2...ir

ηi1i2...irCi1i2...ir

is a skew cyclic code of length 4 over T with minimum Lee distance dL = 3.
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Theorem 5.6. A skew Θ-cyclic code C ⊆ T n is a quasi cyclic code of index ν, where ν = n
(n,O(θ)) .

Proof. Suppose that nΘ = (n,O(Θ)) and n = nΘl. By extended Euclidean algorithm, we
find two integers c′ and d′ satisfying nθ = c′O(Θ) + d′n. If d′ > 0, find e ∈ N satisfying
O(Θ)e − d′ > 0. Then (c′ + ne)O(Θ) = nΘ + (O(Θ)e − d′)n. In this case, take c = c′ + ne
and d = O(Θ)e − d′. Otherwise if d′ < 0, then simply take c = c′ and d = −d′. Thus we have
cO(Θ) = nΘ + dn. Let

w = (w0,0, w0,1, . . . , w0,nΘ−1, w1,0, w1,1, . . . , w1,nΘ−1, . . . , wl−1,0, wl−1,1, . . . , wl−1,nΘ−1) ∈ C.

Say w = (w0,w1, . . . ,wl−1), where wi = (wi,0, wi,1, . . . , wi,nθ−1). Now since C is a skew cyclic
code, σΘ(w), σ2

Θ
(w), . . ., σnΘ

Θ
(w), . . . , σnθ+dn

Θ
(w), . . . ∈ C. Since nΘ + dn is divisible by O(Θ),

we have

σnΘ+dn
Θ

= (ΘnΘ+dn(wl−1),ΘnΘ+dn(w0),ΘnΘ+dn(w1), . . . ,ΘnΘ+dn(wl−2))

= (wl−1,w0, . . . ,wl−2)

= τid,l(w) ∈ C

This shows that ∀ w ∈ C, τid,l(w) ∈ C. Hence, C is a quasi-cyclic code of index l. In particular,
if nΘ = 1, then n = l and so C is cyclic.

Corollary 5.7. Let (n,O(Θt)) = 1 and yn − 1 = Πs
k=1fk(y)

nk , where fk(y) are irreducible
factors. Then the number of skew θt-cyclic codes of length n over T is Πs

k=1(nk + 1)3r

.

Example 5.8. Let q = 34 then Fq = GF [3]/⟨X4 + 2X3 + 2⟩ = F3(β) where β is a root of
X4 + 2X3 + 2. Further, let r = 3. Then T = T3 = F81/⟨u3

1 − u1, u
3
2 − u2, u

3 − u3, u1u2 −
u2u1, u1u3 − u3u1, u2u3 − u3u2⟩. Let Θ1 be an automorphism of T such that Θ1(ηi1i2i3) =
ηγ1(i1)γ2(i2)γ3(i3) where γ1 = (23), γ2 = (123) and γ3 = (132) ∈ S3 the permutation group of
{1, 2, 3} and Θ1|F81 = θ1 the Frobenius map i.e. θ1 : a 7−→ a3. Then the order of θ1 is 4 and that
of Θ1, O(Θ1) = lcm(2, 3, 3, 4) = 12. Now let n = 24 and then from the factorization of y24 − 1
in F81[x; θ1] we observe that u(y) = y17 + (β2 + β + 1)y16 + 2y13 + (2β2 + 2β + 2)y12 + y5 +
(β2 + β + 1)y4 + 2y + 2β2 + 2β + 2 is a right divisor of y24 − 1. Let Ci1i2i3 = ⟨u(y)⟩ for all
ij ∈ {1, 2, 3}. Thus Ci1i2i3 is a skew θ1-cyclic code of length 24 and minimum distance 6. Since
gcd(24, 12) = 12 > 1. Hence by Theorem 5 skew Θ1-cyclic code C =

⊕
i1i2i3

ηi1i2i3Ci1i2i3 is a
quasi-cyclic code of index 2(= 24/12) and dL = 6.

Again Let Θ2 be another automorphism of T such that Θ2(ηi1i2i3) = ηγ1(i1)γ2(i2)γ3(i3) where
γ1 = γ2 = γ3 = id, the identity permutation and Θ2|F81 = θ1 the Frobenius map i.e. θ1 :
a 7−→ a3. Then O(Θ2) = lcm(1, 1, 1, 4) = 4. Suppose that n = 15 then gcd(15, 4) = 1 and
hence by Theorem 5 any skew Θ2-cyclic code is cyclic. Thus yn−1 has a unique factorization as:

y15 − 1 = (y4 + y3 + y2 + y + 1)3(y + 2)3.

Hence by Corollary 5.7, there are (3 + 1)27 × (3 + 1)27 = 454 skew Θ2-cyclic codes over T in
total.

Finally Let Θ3 be an automorphism of T where γ1 = (12), γ2 = (13) and γ3 = (23) ∈ S3

and Θ3|F81 = θ2 i.e. θ2 : a 7−→ a32
= a9. Now o(γ1) = o(γ2) = o(γ3) = o(θ2) = 2 and so

O(Θ3) = lcm(2, 2, 2, 2) = 2. If we take n = 8 then by Theorem 5, any skew Θ3-cyclic code is
a quasi-cyclic code of index 4 and any skew Θ3-cyclic code over T of odd length is cyclic.

Example 5.9. Let q = 53 then Fq = GF [5]/⟨X3 + 3X + 3⟩ = F3(δ) where δ is a root of
X3 + 3X + 3. Further, let r = 2. Then T = T2 = F125/⟨u3

1 − u1, u
3
2 − u2, u1u2 − u2u1⟩. Let Θ1

be an automorphism of T such that Θ1(ηi1i2i3) = ηγ1(i1)γ2(i2)γ3(i3) where γ1 = (123), γ2 = (132)
and γ3 = (123) ∈ S3 the permutation group of {1, 2, 3} and Θ1|F125 = θ1 the Frobenius map
i.e. θ1 : a 7−→ a5. Then the order of θ1 is 3 and that of Θ1, O(Θ1) = lcm(3, 3, 3, 3) = 3.
Now let n = 18 and then from the factorization of y18 − 1 in F125[x; θ1] we observe that u(y) =
y12 + y9 + 4y3 + 4 is a right divisor of y18 − 1. Let Ci1i2i3 = ⟨u(y)⟩ for all ij ∈ {1, 2, 3}. Thus
Ci1i2i3 is a skew θ1-cyclic code of length 18 and minimum distance 4. Since gcd(18, 3) = 3 > 1.
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Hence by Theorem 5, the skew Θ1-cyclic code C =
⊕

i1i2i3
ηi1i2i3Ci1i2i3 is a quasi-cyclic code of

index 6(= 18/3) and dL = 4.
Again Let Θ2 be another automorphism of T such that Θ2(ηi1i2i3) = ηγ1(i1)γ2(i2)γ3(i3) where

γ1 = γ2 = γ3 = id, the identity permutation and Θ2|F125 = θ2 i.e. θ2 : a 7−→ a10. Then
O(Θ2) = lcm(1, 1, 1, 3) = 3. Suppose that n = 20 then gcd(20, 3) = 1 and hence by Theorem
5, any skew Θ2-cyclic code is cyclic. Thus yn − 1 has a unique factorization as:

y20 − 1 = (y + 4)5(y + 2)5(y + 3)5(y + 1)5.

Hence by Corollary 5.7, there are (5+1)9 × (5+1)9 × (5+1)9 × (5+1)9 = 636 skew Θ2-cyclic
codes over T in total.

6 Construction of Quantum Codes

The focus of this section is on building quantum codes from skew cyclic codes over T . We begin
by revisiting the definition of quantum codes and the CSS construction. We also revisit a criterion
for identifying dual-containing skew cyclic codes over Fq, which we leverage to characterize
dual-containing skew cyclic codes over T . We then present an approach to generate quantum
codes from dual-containing skew cyclic codes over T , and we use this method to construct a
novel quantum code.

Definition 6.1. (Quantum Codes) Let H be a q-dimensional Hilbert space over the field of
complex numbers C. Then n-fold tensor product of H defined as H⊗n = H ⊗ H ⊗ ... ⊗
H (n times) is a qn-dimensional Hilbert space. A k- dimensional subspace of H⊗n is called an
[[n, k]]q quantum code.

Lemma 6.2. (CSS Construction) ([8], Theorem 3) Let C be an [n, k, d] linear code over Fq such
that C⊥ ⊆ C, then there exists a [[n, 2k − n, d]]q QECC (quantum error correcting code).

Lemma 6.3. ([10], Corollary 5.7) Let C be skew θ-cyclic code of length n over Fq such that
ord(θ) | n. If f(y) is the generator polynomial of C such that g(y)f(y) = yn − 1. Then C
contains its dual if and only if g†(y)g(y) is divisible by yn − 1 from the right.

Theorem 6.4. Let C =
⊕

i1i2...ir
ηi1i2...irCi1i2...ir be a skew Θt-cyclic code of length n over T such

that ord(Θt) | n and fi1i2...ir(y) is the generator polynomial of Ci1i2...ir and gi1i2...irfi1i2...ir(y) =
yn − 1,∀ij ∈ {1, 2, 3}.

(i) C contains its dual if and only if g†i1i2...ir
(y)gi1i2...ir(y) is divisible by yn − 1 from right,

∀ ij ∈ {1, 2, 3}.

(ii) If g†i1i2...ir
(y)gi1i2...ir(y) is divisible by yn − 1 from right, ∀ ij ∈ {1, 2, 3} then there exist a

quantum code of dimension [[N,K, d]]q, where K = 3rn−2
∑

i1i2...ir
deg(fi1i2...ir(y)), N =

3rn and D = dL, the Lee distance of C.

Proof. Proof of part(i) follows from part(iii) of Theorem 4.1 and Lemma 6.3. Combining part
(i) and Lemma 6.2, part(ii) follows.

Example 6.5. Let q = 25 and r = 1 then T = F25/⟨u3
1 − u1⟩. Let θ1 be the Frobenius automor-

phism and γ1 = id the identity permutation. So Θ : T → T defined as

w1η1 + w2η2 + w3η3 7−→ w5
1η1 + w5

2η2 + w5
3η3

is an automorphism. Let n = 8. Consider two factorisations of yn − 1 ∈ F25[y; θ1] as:
y8 −1 = (y+3w+3)(y+3w+4)(y+w+2)2(y+4w+2)(y+4w+4)(y+4w+1)(y+4w) =
(y+ 2w+ 1)(y+ 2w+ 2)(y+ 2w)(y+ 2w+ 3)(y+ 4w+ 1)(y+w+ 1)(y+ 2w+ 4)(y+ 3),
where w is a primitive of F25.
Let us take f1(y) = y+4w, f2(y) = 1 and f3(y) = (y+2w+4)(y+3) = y2+(2w+2)y+w+2
and yn − 1 = gi(y)fi(y). Then g∗i (y)gi(y) is divisible by yn − 1 for all i = 1, 2, 3. Take

M =

3 3 1
1 3 3
2 4 2
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then MMT = 4I3. Let Ci = ⟨fi(y)⟩ and C =
⊕3

i=1 ηiCi then Φ(C) is a dual-containing
[24, 21, 3]25 code. Hence by Theorem 6.4, there exists a [[24, 18, 3]]25 quantum code which
is a new code as per database [4].

7 LCD Codes

In this section, our focus is on LCD codes over T . We begin by reviewing essential criteria
established by Boulanour et al. [7] that identify when a skew cyclic code over a finite field is
LCD. We then present a technique for deriving LCD codes from skew cyclic codes over T , based
on these criteria and a decomposition method for skew cyclic codes. The section concludes with
illustrative examples.

Definition 7.1. ([20]) A linear code C whose Hull is trivial, is called a Linear Complementary
Dual (LCD) code.

In [7], Boulanour et al. provided a criterion for skew constacyclic codes to be LCD. We state
a particular case (λ = 1) of Theorem 2 from [7].

Lemma 7.2. ([7]) Let θt be an automorphism of Fq and C be an skew θt-cyclic code of length n
over Fq such that f ∈ Fq[y; θt] is generator polynomial of C. Further assume that g ∈ Fq[y; θt]
is such that θnt (g).f = yn − 1.

(i) C is Euclidean LCD if and only if GCRD(f, g†) = 1.

(ii) C is Hermitian LCD if and only if GCRD(f, ḡ†) = 1.

Theorem 7.3. Let C =
⊕

i1i2...ir
ηi1i2...irCi1i2...ir be a linear code of length n over T then C is an

LCD code if and only if Ci1i2...ir are LCD codes of length n over Fq ∀ij ∈ {1, 2, 3}.

Proof. Since, C⊥ =
⊕

i1i2...ir
ηi1i2...irC⊥

i1i2...ir
, we have

C ∩ C⊥ = (
⊕

i1i2...ir

ηi1i2...irCi1i2...ir) ∩ (
⊕

i1i2...ir

ηi1i2...irCi1i2...ir)
⊥

= (
⊕

i1i2...ir

ηi1i2...irCi1i2...ir) ∩ (
⊕

i1i2...ir

ηi1i2...irC⊥
i1i2...ir

)

=
⊕

i1i2...ir

ηi1i2...ir(Ci1i2...ir ∩ C⊥
i1i2...ir

)

Thus Hull(C) = {0} if and only if Hull(Ci1i2...ir) = {0} ∀ij ∈ {1, 2, 3}. Hence the result
follows.

Theorem 7.4. Let order of Θt divides n and C =
⊕

i1i2...ir
ηi1i2...irCi1i2...ir be a skew Θt-cyclic

code of length n over T and fi1i2...ir(y) be the generator polynomial of Ci1i2...ir , for ij ∈ {1, 2, 3}.
Further assume that gi1i2...ir ∈ Fq[y; θt] is such that gi1i2...ir(y).fi1i2...ir(y) = yn − 1.

(i) C is Euclidean LCD if and only if GCRD(fi1i2...ir , g
†
i1i2...ir

) = 1.

(ii) C is Hermitian LCD if and only if GCRD(fi1i2...ir , ḡ
†
i1i2...ir

) = 1.

Proof. Combining Lemma 7.2 and Theorem 7.3, the proof follows.

Lemma 7.5. For a linear code C of length n over T , Φ(Hull(C)) = Hull(Φ(C)).

Proof. Let w ∈ Φ(Hull(C)). Since Φ is onto, ∃ v ∈ Hull(C) such that Φ(v) = w). As v ∈
Hull(C), v ∈ C and v ∈ C⊥. Therefore, w ∈ Φ(C), and w ∈ Φ(C⊥) and so w ∈ Φ(C) ∩ Φ(C⊥).
Since, w ∈ Φ(C ∩ C⊥) is arbitrary, we have, Φ(Hull(C)) ⊆ Hull(Φ(C)).

Again let w ∈ Hull(Φ(C)), i.e. w ∈ Φ(C), and w ∈ Φ(C⊥). Then ∃ u ∈ C and ∃ v ∈ C⊥

such that Φ(u) = w) and Φ(v) = w). Since, Φ is one-one as well, we have, u = v and so
u(= v) ∈ C ∩ C⊥. Therefore, w ∈ Φ(C ∩ C⊥). Since, w ∈ Φ(C) ∩ Φ(C⊥) is arbitrary, we have,
Hull(Φ(C)) ⊆ Φ(Hull(C)). Hence, Φ(Hull(C)) = Hull(Φ(C))..
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Theorem 7.6. A linear code of length n over T is LCD code if and only if its Gray image is a
q-ary LCD code of length 3rn.

Proof. Suppose that C is an LCD code of length n over the ring T . Then by definition, Hull(C =
{0}. By Lemma 7.5, we get Hull(Φ(C)) = Φ(Hull(C)) = Φ({0}) = {0} which concludes that
Φ(C) is an LCD of length 3rn over T . Conversely, suppose that Φ(C) is an LCD of length
3rn over Fq then Hull(Φ(C)) = {0}. Therefore, by Lemma 7.5, we have Φ(Hull(C)) =
Hull(Φ(C)) = {0} which implies that C ∩C⊥ = {0}, as Φ is one-one. Hence, C is an LCD code
of length n over T .

Now, we utilize the results obtained in this section to provide some examples of LCD codes
over T . For computation purposes, SageMath [28] and MAGMA [3] software are used.

Example 7.7. Let q = 25 and r = 2 then T = F25/⟨u3
1 − u1, u

3
2 − u2, u1u2 − u1u2⟩. Let θ1 be

the Frobenius automorphism and γ1 = id the identity permutation. So Θ1 : T → T defined as∑
i1i2

wi1i2ηi1i2 7−→
∑
i1i2

w5
i1i2

ηi1i2

is an automorphism. Let n = 4. Factorisation of yn − 1 ∈ F25[y; θ1] is given as:

yn − 1 = (y + 1)(y + 4)(y + 3)(y + 2)

Let us take f11(y) = y + 1 and fi1i2(y) = 1 if (i1, i2) ̸= (1, 1) and yn − 1 = gi1i2(y)fi1i2(y).
Then GCRD(g†i1i2

(y), fi1i2(y)) = 1. Take

M =



2 1 1 2 1 1 4 2 2
4 3 4 4 3 4 3 1 3
1 1 2 1 1 2 2 2 4
4 2 2 2 1 1 2 1 1
3 1 3 4 3 4 4 3 4
2 2 4 1 1 2 1 1 2
3 4 4 1 3 3 3 4 4
1 2 1 2 4 2 1 2 1
4 4 3 3 3 1 4 4 3


then MMT = I9. Let Ci = ⟨fi(y)⟩ and C =

⊕3
i=1 ηiCi then C is an LCD code of length n = 4

and dL = 2 over T . Hence Φ(C) is a [36, 35, 2] LCD code over F25 which is optimal.

Example 7.8. Let q = 9 then F9 = F3[X]/⟨X2 − X − 1⟩ = F3(α), where α2 = α + 1. Let
θ1 : b 7→ b3, which is Frobenius automorphism. Further take r = 1 so that T = F9[u1]/⟨u3

1−u1⟩.
Then Θ1 : T → T defined as:

Θ1(η1w1 + η2w2 + η3w3) = η1θ1(w1) + η2θ1(w2) + η3θ1(w3)

is an automorphism of T . Take n = 6 and consider the factorisation in F9[y] as

y6 − 1 = (y + 2α+ 2)(y + 2)(y + 2α+ 2)(y + 2α+ 2)(y + 1)(y + 2α+ 2).

Take

f1(y) = f2(y) = f3(y) = (y + 2α+ 2)(y + 1)(y + 2α+ 2)

= y3 + (α+ 2)y2 + y + 2

so that

g1(y) = g2(y) = g3(y) = (y + 2α+ 2)(y + 2)(y + 2α+ 2)

= y3 + αy2 + y + 1

Then g†i (y) = y3 +y2 +α3y+1 and ḡ†i (y) = y3 +y2 +αy+1. Since GCRD(fi(y), ḡ
†
i (y)) = 1,

for all i = 1, 2, 3. Hence by Theroem 7.2, C =
⊕3

i=1 ηiCi is a Hermitian LCD code of length 6
with dL = 4 over T .
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8 Conclusion

We discussed the structural properties of skew cyclic codes over a class of finite commutative
rings T = Tr. We provided a Gray map on T and used the decomposition method to study skew
cyclic codes. Moreover, we provided a formula to find the number of skew-cyclic codes under
a particular situation. We derived methods to obtain LCD codes and quantum codes from skew
cyclic codes over T .
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