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Abstract This paper investigates the use of quaternions in studying space curves and surfaces
in affine 3-space. First, we generate a large variety of rational space curves and rational surfaces
via quaternion multiplication by taking advantage the fact that quaternions represent space rota-
tions. Then, we prove that the curvature and the torsion of a space curve can be computed by a
quaternion function that is associated to this space curve. Finally, we show that the Gaussian and
the mean curvature of a surface can also be computed by a quaternion function that is associated
to this surface.

1 Introduction

Quaternions were discovered by Sir William Rowan Hamilton as an extension of the complex
numbers in 1843. The ring of quaternions over the real numbers is a noncommutative division
algebra. An important property of quaternions is that every unit quaternion represents a rotation
and this plays a special role in the study of rotations in three dimensional spaces. Quaternions are
used in both theoretical and applied mathematics, especially in the areas involving calculations
of three dimensional rotations, such as in three dimensional computer graphics, computer vision,
animations, and aerospace applications [1], [2], [4], [5], [7].

A quaternion implementation is usually simpler, cheaper, and better behaved when compared
to other alternatives, and the use of quaternions in various of applications has expanded. Many
interesting research projects such as [6], [8], and [10] utilize quaternions in geometric designs.
The majority of applications involve pure rotations, and the multiplications are used to represent
a combination of different rotations.

A vector-valued function in a single variable q(t) = (q0, q1, q2, q3) can be viewed as a quater-
nion function q(t) or a space curve q(t) = (q1, q2, q3)/q0; and similarly, a vector-valued function
in two variables q(s; t) can be viewed as a quaternion function or a surface in affine 3-space.
Taking advantages of this and the fact that quaternions represent space rotations, we generate
rational curves and surfaces by the quaternion multiplications of two rational space curves. The
multiplication of two quaternions corresponds to the composition of rotations. Therefore, chang-
ing quaternion curves (or surfaces) can be achieved by manipulating the two space curves (or
surfaces). In particular, the rotation of the curves will result in rotation of the quaternion curves
(or surfaces). Hence, a large varieties of curves and surfaces can be generated using quaternion
multiplications.

For a space curve, the curvature and the torsion of the curve are important subjects; and
similarly, for a surface, the Gaussian and the mean curvatures have fundamental geometrical
significance. Hence it is natural to ask:

1. how to relate the moving frames of a curve or a surface to a quaternion function?

2. how to compute the curvature and the torsion of a space curve using the corresponding
quaternion?

3. how to compute the Gaussian and the mean curvature of a surface using the corresponding
quaternion?

The goal of this paper is to answer these questions. In affine 3-space, a rotation matrix has three
orthonormal columns, which may be used to represent an orthonormal moving frame for a space
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curve or a surface. For a space curve (or a surface), we define an associated quaternion – a
quaternion is associated to this space curve (or surface) if the columns of the rotation matrix of
the quaternion form the moving frames of this space curve (or surface). Using the associated
quaternion as a bridge, we have affirmative and explicit answers, Theorems 3.10 and 3.14, to the
last two questions.

This paper is structured as follows: Section 3 contains our main results and discussions.
We start in Section 3.1 with a brief review of quaternions, and we generate rational curves and
rational surfaces via quaternion product of two rational space curves in Propositions 3.4 and 3.5.
In Section 3.2, we extend the Frenet - Serret frame of a space curve to a quaternion function in
a single variable. We prove in Theorem 3.10 that the curvature and the torsion of a space curve
can be computed by the associated quaternion. Finally, in Section 3.3, we generalize the moving
frames of a surface to a quaternion function in two variables. We show in Theorem 3.14 that
the Gaussian and the mean curvature of a surface can be computed by the associated quaternion.
We conclude in Section 4 a short summary of our findings. Throughout the paper, we provide
illustrative examples for our theorems.

2 Method

The method adopted in this paper is to associate a quaternion to a parametrizd space curve or a
parametrizd surface by taking advantage the fact that quaternions represent space rotations. The
key ingredient of the method is to create a quaternion whose matrix representation is exactly the
orthonomal moving frames of the parametrized space curve or the parametrized surface. All the
computations are verified by computer software package Mathematica Online [9].

3 Results and Discussion

3.1 Quaternion curves and Quaternion Surfaces

Quaternions

In this section, we review some basic facts about quaternions. An arbitrary quaternion has the
form q = sq +vq, where sq is a scalar and vq = v1i+ v2j+ v3k is a vector in R3. If p = sp+vp

and q = sq + vq are two quaternions, then quaternion multiplication has the simple form

pq = spsq − vp · vq + spvq + sqvp + vp × vq.

Note that the cross product can be expressed in terms of quaternion multiplications:

vp × vq =
pq − qp

2
. (3.1)

The conjugate of q is denoted by q∗ = sq−vq = sq−v1i−v2j−v3k. Notice that the product
qq∗ = s2

q + v2
1 + v2

2 + v2
3 = |q|2 is a scalar; |q| is called the norm of q. If |q| = 1, then q is called

a unit quaternion.
A pure quaternion is a quaternion q whose scalar part sq = 0. A pure quaternion vq =

v1i + v2j + v3k is interpreted geometrically as the vector from the origin to the point located
at (v1, v2, v3) in R3. If v is a vector in 3-space, we let (0,v) be the associated pure quaternion.
Then the above equation implies

v ×w =
(0,v)(0,w)− (0,w)(0,v)

2
.

It will be convenient to use quaternions to represent points in affine 3-space as well. The con-
vention is that the quaternion q = (sq, v1, v2, v3) = (q0, q1, q2, q3) represents the point ( q1

q0
, q2
q0
, q3
q0
)

if q0 ̸= 0. In other words, we regard affine 3-space as a subset of projective 4-space (x0, x1, x2, x3)
where x0 ̸= 0. We will distinguish between vectors in 3-space and 4-space (i.e., affine 3-space
and projective 3-space), by the convention that given x = (x0, x1, x2, x3) = (x0,x), if x0 ̸= 0,
then we get the point x/x0 in affine 3-space from the point x in projective 3-space. It is easy to
see that if (0,x) is a pure quaternion, and if q any quaternion, q(0,x)q∗ = (0,y) is also a pure
quaternion. We denote the resulting vector y = qxq∗.
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Theorem 3.1. (Quaternion Rotation, [3].) Let vq = v1i + v2j + v3k be a pure unit quaternion
and set

q = cos(θ/2) + sin(θ/2)vq.

Then q is a unit quaternion and the map x → qxq∗ rotates points and vectors in R3 by the angle
θ around the line through the origin in the direction of the vector vq in R3. Observe that both
±q give the same rotation.

If we write the unit quaternion q = cos(θ/2)+ sin(θ/2)vq = (q0, q1, q2, q3) where
∑3

i=0 q
2
i =

1, and set x = (0,x) with x = (x1, x2, x3) ∈ R3, then the image of the rotation in R3 can be
represented by

qxq∗ = qxq∗ =

[
1 0

0T R3×3

][
0
x

]
where 0 = [0, 0, 0] and

R3×3 = R3×3(q) =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q3q0) 2(q1q3 + q2q0)

2(q1q2 + q3q0) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q1q0)

2(q1q3 − q2q0) 2(q2q3 + q1q0) q2
0 − q2

1 − q2
2 + q2

3

(3.2)

is the rotation matrix representing the quaternion q with orthonormal columns (and rows).
We will extend this to an action of the nonzero quaternions on projective 3-space (x0,x).

qxq∗ =

[
q2

0 + q2
1 + q2

2 + q2
3 0

0T R3×3

][
x0

x

]
, where 0 = [0, 0, 0], R3×3 is given in Eq. (3.2).

Remark 3.2. Any orthonormal matrix M = {Mij}i,j={1,2,3} is a rotation matrix representing
some unit quaternion q = (q0, q1, q2, q3), where

q0 =

√
TraceM + 1

2
, q1 =

M32 −M23

4q0
, q2 =

M13 −M31

4q0
, q3 =

M21 −M12

4q0
. (3.3)

Remark 3.2 can be verified by observing R3×3 in Equation (3.2) with d2
0 + d2

1 + d2
2 + d2

3 = 1.
We will illustrate this remark by the following example.

Example 3.3. Given an orthogonal matrix

M =

− sin t/
√

2 − cos t sin t/
√

2
cos t/

√
2 − sin t − cos t/

√
2

1/
√

2 0 1/
√

2

 .

By Remark 3.2, a computation via Mathematica [9] yields a unit quaternion q = (q0, q1, q2, q3)
whose rotation matrix is M , where

q0 =
1
2

√
(1 +

√
2)(1 − sin t)√

2
, q1 =

cos t
4
√

2q0
, q2 =

sin t− 1
4
√

2q0
, q3 =

cos t+
√

2 cos t
4
√

2q0
.

Generate Rational Curves and Surfaces by Quaternions

A vector valued function in a single variable q(t) = (q0, q1, q2, q3) can be viewed as a quaternion
function or a space curve q(t) = (q1, q2, q3)/q0; and similarly, a vector valued function in two
variables q(s, t) can be viewed as a quaternion function or a surface in affine 3-space. Taking
advantages of this and the fact that quaternions represent space rotations, we shall generate a
large variety of rational curves and surfaces by the quaternion multiplications of two rational
space curves.
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We start with two rational space curves typically represented by two generically one-to-one
parametrizations in protective 3-space – the director curve d(t), and the radius curve r(t):

d(t) = (d0(t), d1(t), d2(t), d3(t)) = (d0,d), r(t) = (r0(t), r1(t), r2(t), r3(t)) = (r0, r), (3.4)

where dℓ, rℓ ∈ R[t], max{deg(dℓ)} = m, max{deg(rℓ)} = n, ℓ = 0, . . . , 3, and gcd(d0, . . . , d3) =
gcd(r0, . . . , r3) = 1.

Proposition 3.4. The rational curve

x(t) = (x0(t), x1(t), x2(t), x3(t)) = d(t) r(t) d∗(t) (3.5)

is the homogeneous form of a rational curve in affine 3-space generated by rotating the radius
r(t)/r0(t) about the director d(t)/d0(t). The quaternion curve x(t) has a matrix representation

x(t) = Rd(t) r(t), where Rd is the rotation matrix representing d = (d0, d1, d2, d3)

Rd =

[
d2

0 + d2
1 + d2

2 + d2
3 0

0T R3×3

]
(3.6)

where R3×3 is given in the form of Equation (3.2), det(Rd) = (d2
0 + d2

1 + d2
2 + d2

3)
4, and

RT
d Rd = RdR

T
d = (d2

0 + d2
1 + d2

2 + d2
3)

2I4×4, I4×4 is the identity matrix.

Proof. We consider the curve d(t) = (d0(t), d1(t), d2(t), d3(t)) as a quaternion, where

d(t) = (d0(t), d1(t), d2(t), d3(t)) = |d|

cos(θ/2) + sin(θ/2)
(d1, d2, d3)√
d2

1 + d2
2 + d2

3

 (3.7)

cos(θ/2) =
d0

|d|
, sin(θ/2) =

√
d2

1 + d2
2 + d2

3

|d|
, θ(t) = 2 tan−1

√
d2

1 + d2
2 + d2

3

d0
,

|d| =
√
d2

0 + d2
1 + d2

2 + d2
3.

Note that d
|d|(t) is a unit quaternion, and for each t-value, the map r(t) →

(
d
|d|(t)

)
r(t)

(
d
|d|(t)

)∗

rotates the radius r(t) by the angle θ(t) = 2 tan−1
√

d2
1+d2

2+d2
3

d0
(t), where cos(θ/2) = d0(t)

|d(t)| is
the scalar part of d

|d|(t), around the line in the direction of the vector part of d
|d|(t), that is

⟨d1(t),d2(t),d3(t)⟩
|d(t)| , which is the same as the direction of ⟨d1(t), d2(t), d3(t)⟩. Therefore we can

define a rational curve by setting x(t) =
(

d
|d|(t)

)
r(t)

(
d
|d|(t)

)∗
. Since we work with homoge-

neous coordinates, for any real parameter t the denominators in d
|d|(t) are scalars which can be

ignored. Thus these rational curves are generated by the formula x = d(t)r(t)d∗(t).

In affine 3-space, the curve x =
(

d
|d|

)
r
(

d
|d|

)∗
has a matrix expression

[
1 0

0 R3×3

][
1

r/r0

]
.

By clearing the denominator, the homogeneous form of the quaternion curve x = drd∗ = Rd r
T

where the matrix Rd is the rotation matrix representing the quaternion d in Equation (3.6).

Applying a similar argument as the proof of Proposition 3.4, we can generate a rational
surface by two space curves with two distinct parameters, that is, we set the radius curve as r(s)
in stead of r(t). With this manipulation, we derive the following result.

Proposition 3.5. The rational surface

x(s, t) = (x0(s, t), x1(s, t), x2(s, t), x3(s, t)) = d(t) r(s) d∗(t) (3.8)

is a homogeneous form rational tensor product surface generated by rotating the radius r(s)/r0(s)
about the director d(t)/d0(t). The rational surface x(s, t) has a matrix representation:

x(s, t) = Rd(t) r(s), where Rd is the rotation matrix representing d in Eq. (3.6). (3.9)



QUATERNIONS ASSOCIATED TO CURVES AND SURFACES 47

We illustrate Propositions 3.4 and 3.5 by Example 3.6, and the resulting rational space curve
and rational surface is shown in Figure 1.

Example 3.6. Given two space curve d(t) and r(t), where

d(t) = (t2 + 1, 0, t2 − 1, 2t), r(t) = (1, t, 1, 0), then we generate a rational curve x(t) where

x(t) = d(t)r(t)d∗(t) = Rd(t) r(t)

=


2(t2 + 1)2 0 0 0

0 0 −4t(t2 + 1) −2t4 + 2
0 4t(t2 + 1) 2(t2 − 1)2 4t(t2 − 1)
0 −2(t4 − 1) 4t(t2 − 1) 8t2




1
t

1
0

 = 2


(t2 + 1)2

−2t(t2 + 1)
3t4 + 1

−t(t2 − 1)2

 .

In Euclidean 3-space, the curve d(t) is a circle y2 + z2 = 1 (in red), the radius r(t) is the
intersection of the planes y = 1 and z = 0 (in green), and the curve x(t) = d(t)r(t)d∗(t) (in
blue) is generated by rotating the line r(t) about the director circle d(t) which is illustrated on
the left of the Figure 1.

Figure 1. A rational curve (left) and a rational surface (right) generated by rotating a line about
a circle.

Using the same two curves, and let s be the parameter for the curve r, then

d(t) = (t2 + 1, 0, t2 − 1, 2t), r(s) = (1, s, 1, 0), we generate a rational surface x(s, t) where

x(s, t) = d(t)r(s)d∗(t) = Rd(t) r(s)

=


2(t2 + 1)2 0 0 0

0 0 −4t(t2 + 1) −2t4 + 2
0 4t(t2 + 1) 2(t2 − 1)2 4t(t2 − 1)
0 −2(t4 − 1) 4t(t2 − 1) 8t2




1
s

1
0



=


2(t2 + 1)2

−4t(t2 + 1)
2(2t3s+ 2st+ t4 − 2t2 + 1)

−2t4s+ 2s+ 4t3 − 4t

 .

In Euclidean 3-space, the surface x = d(t)r(s)d∗(t) is generated by rotating the line r(s) (in
green) about the circle d(t) (in red), and the surface x(s, t) looks like a double fortune cookie
illustrated on the right of Figure 1.

3.2 Compute The Curvature and The Torsion of Space Curves via Quaternion

Quaternion Differentials

Suppose q(t) = (q0(t), q1(t), q2(t), q3(t)) is a quaternion function in t. Then the derivative of the
quaternion q(t) with respect to t is denoted as q′(t), and

q′(t) = (q′0(t), q
′
1(t), q

′
2(t), q

′
3(t)).
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If p(t) is another quaternion function in t, then the product rule for the derivative of the quater-
nion product is

(p(t)q(t))′ = p′(t)q(t) + p(t)q′(t).

Suppose q(t) = (q0,q) is a unit quaternion, then qq∗ = 1 and (qq∗)′ = q′q∗ + q(q∗)′ = 0.
Since

(qq∗)′ = q′q∗ + q(q∗)′

= [q′0q0 + q′ · q− q′0q+ q0q
′ + q′ × q] + [q0q

′
0 + q · q′ − q0q

′ + q′0q+ q× q′]

= 2(q′0q0 + q′ · q),

we must have that q′0q0 + q′ · q = 0.
Again, (qq∗)′ = q′q∗ + q(q∗)′ = 0 yields q′q∗ = −q(q∗)′. Right multiplying by q, or left

multiplying by q∗, to both sides of q′q∗ = −q(q∗)′, and setting q′0q0 + q′ · q = 0 yield

q′ = −q[(q∗)′q] = −q[q′0q0 + q′ · q+ q′0q− q0q
′ − q′ × q)]

= q[q0q
′ − q′0q− q× q′] = qk; (3.10)

(q∗)′ = −[q∗q′]q∗ = −[q0q
′
0 + q · q′ + q0q

′ − q′0q− q× q′]q∗

= −[q0q
′ − q′0q− q× q′]q∗ = −kq∗; (3.11)

where k = (0,k), k = q0q
′ − q′0q− q× q′. (3.12)

Quaternion and Frenet-Serret Frame

We start this section with a brief review of Frenet-Serret formulas for space curves. Let x(t) be
a curve in Euclidean space, representing the position vector of the particle as a function of time.
Then the arc length s(t) =

∫ t

0 |x′(σ)|dσ measures the length that the particle has moved along
the curve in time t. If x′(t) ̸= 0, then s(t) is a strictly monotonically increasing function, and it
is possible to solve for t as a function of s, and thus to write x(s) = x(t(s)). The curve is thus
parametrized its arc length.

If a curve x(s) with x′(s) ̸= 0 is parameterized by its arc length, then the unit tangent vector
T, the unit normal vector N, and the unit binormal vector B are defined as

T =
dx

ds
, N =

dT
ds

|dTds |
, B = T×N.

The curvature that measures the failure of a curve to be a straight line, and the torsion that
measures the failure of a curve to be planar are defined by

κ = |dT
ds

|, τ = |dB
ds

|,

Theorem 3.7. (Frenet-Serret Formula) Let x(t) : R → R3 be a regular space curve, not neces-
sarily parametrized by arc length. Then the curvature, the torsion, and the Frenet-Serret formula
can be computed by:

κ =
|x′(t)× x′′(t)|

|x′(t)|3
, τ = −(x′(t)× x′′(t)) · x′′′(t)

|x′(t)× x′′(t)|2
,

T′

N′

B′

 = |x′(t)|

 0 κ 0
−κ 0 τ

0 −τ 0


TN
B

.
For a quaternion function q(t) = (q0, q1, q2, q3) such that |q|2 = qq∗ =

∑3
i=0 q

2
i = 1, let R3×3

and Rq be the rotation matrix representing q in the forms of Equations (3.2) and (3.6). Let ei be
the standard basis in R3, and quaternion ei = (0, ei) for i = 1, 2, 3. It is easy to see that for each
i = 1, 2, 3, the quaternion product

qeiq
∗ = qeiq

∗ = Rqe
T
i = (0,R3×3ei) = R3×3ei = i-th column of the matrix R3×3

results a pure quaternion whose vector part corresponds to the three orthonormal columns of the
matrix R3×3.
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Definition 3.8. A unit quaternion function q(t) is associated to a space curve y(t) if the columns
of the rotation matrix R3×3 of q are the unit tangent vector T, the unit normal vector N, and the
unit binormal vector B of the curve y(t).

Remark 3.9. Example 3.3 computes a unit quaternion q that is associated to some space curve
y(t) although the parametrization of y(t) is unknown. In fact, by taking the anti-derivative, we
know that this unit quaternion is associated to a helix curve y(t) = (cos t, sin t, t).

If a unit quaternion q is associated to some parametric curve y(t) : R → R3, that is, the
columns of the rotation matrix R3×3 of q are the unit tangent vector T, the unit normal vector
N, and the unit binormal vector B of y(t), then one can write T, N, B in terms of matrix
multiplications, and express T′,N′,B′ in terms of q′ as:

T =

q2
0 + q2

1 − q2
2 − q2

3

2(q1q2 + q3q0)

2(q1q3 − q2q0)

 =

 q0 q1 −q2 −q3

q3 q2 q1 q0

−q2 q3 −q0 q1



q0

q1

q2

q3

 = Aq,

T′ =

2(q0q
′
0 + q1q

′
1 − q2q

′
2 − q3q

′
3)

2(q′1q2 + q1q
′
2 + q′3q0 + q3q

′
0)

2(q′1q3 + q1q
′
3 − q′2q0 − q2q

′
0)

 = 2Aq′,

N =

 2(q1q2 − q3q0)

q2
0 − q2

1 + q2
2 − q2

3

2(q2q3 + q1q0)

 =

−q3 q2 q1 −q0

q0 −q1 q2 −q3

q1 q0 q3 q2



q0

q1

q2

q3

 = Bq,

N′ =

2(q′1q2 + q1q
′
2 − q′3q0 − q3q

′
0)

2(q0q
′
0 − q1q

′
1 + q2q

′
2 − q3q

′
3)

2(q′2q3 + q2q
′
3 + q′1q0 + q1q

′
0)

 = 2Bq′,

B =

 2(q1q3 + q2q0)

2(q2q3 − q1q0)

q2
0 − q2

1 − q2
2 + q2

3

 =

 q2 q3 q0 q1

−q1 −q0 q3 q2

q0 −q1 −q2 q3



q0

q1

q2

q3

 = Cq,

B′ =

2(q′1q3 + q1q
′
3 + q′2q0 + q2q

′
0)

2(q′2q3 + q2q
′
3 − q′1q0 − q1q

′
0)

2(q0q
′
0 − q1q

′
1 − q2q

′
2 + q3q

′
3)

 = 2Cq′.

Applying Theorem 3.7, we have2Aq′

2Bq′

2Cq′

 =

T′

N′

B′

 = |y′(t)|

 0 κ 0
−κ 0 τ

0 −τ 0


TN
B

 = |y′(t)|

 0 κ 0
−κ 0 τ

0 −τ 0


Aq

Bq

Cq

. (3.13)

Next, we shall express q′ in terms of the product of a matrix with entries in κ, τ and the vector
q. To do so, let Ai, Bi, Ci be the i-th row of matrix A,B,C. We observe that Equation (3.13)
yields that

2(A1 + C3)q
′ = |y′(t)|(κB1 − τB3)q, and

2(A1 + C3)q
′ = 4[q0, 0,−q2, 0]q′ = 4(q0q

′
0 − q2q

′
2)

|y′(t)|(κB1 − τB3)q = |y′(t)|[−κq3 − τq1, κq2 − τq0, κq1 − τq3,−κq0 − τq2]q

= 2|y′(t)|[q0(−κq3 − τq1) + q2(κq1 − τq3)].

To equate 2(A1 + C3)q′ = |y′(t)|(κB1 − τB3)q, comparing the coefficients of q0 and q2 of both
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sides implies

[
q′0
q′2

]
=

|y′(t)|
2

[
−κq3 − τq1

−(κq1 − τq3)

]
=

|y′(t)|
2

[
0 −τ 0 −κ

0 −κ 0 τ

]
q0

q1

q2

q3

 . (3.14)

Similarly, Equation (3.13) yields that

2(A3 + C1)q
′ = |y′(t)|(κB3 − τB1)q, and

2(A3 + C1)q
′ = 4[0, q3, 0, q1]q

′ = 4(q3q
′
1 + q1q

′
3)

|y′(t)|(κB3 − τB1)q = |y′(t)|[κq1 + τq3, κq0 − τq2, κq3 − τq1, κq2 + τq0]q

= 2|y′(t)|[q3(κq2 + τq0) + q1(κq0 − τq2)].

Again, to equate 2(A3 + C1)q′ = |y′(t)|(κB3 − τB1)q, comparing the coefficients of q3 and q1
of both sides implies

[
q′1
q′3

]
=

|y′(t)|
2

[
κq2 + τq0

κq0 − τq2

]
=

|y′(t)|
2

[
τ 0 κ 0
κ 0 −τ 0

]
q0

q1

q2

q3

 . (3.15)

Finally, combining Equations (3.14) and (3.15), we derive q′(t) in terms of the torsion and
curvature of the curve y(t) as the following

q′(t) =


q′0
q′1
q′2
q′3

 =
|y′(t)|

2


0 −τ 0 −κ

τ 0 κ 0
0 −κ 0 τ

κ 0 −τ 0



q0

q1

q2

q3

 =
|y′(t)|

2


0 −τ 0 −κ

τ 0 κ 0
0 −κ 0 τ

κ 0 −τ 0

q(t). (3.16)

Compute Curvature and Torsion via Quaternion

In this section, we determine the curvature and the torsion of a space curve y(t) based on a unit
quaternion associated to y(t).

Theorem 3.10. Let y(t) ∈ R3 be a space curve such that |y′(t)| ≠ 0. Assume q(t) is a unit
quaternion that is associated to y(t). Then the curvature κ and the torsion τ of the curve y(t)
are given as

[
τ

κ

]
=

2

[
q0 − q1 q3 − q2

q2 − q3 q0 − q1

][
q′0 + q′1
q′2 + q′3

]
|y′(t)|[1 − 2(q0q1 + q2q3)]

, ∀ t ̸∈ {t | 1 − 2(q0q1 + q2q3)(t) = 0}.

Proof. By Equation (3.16)
q′0
q′1
q′2
q′3

 =
|y′(t)|

2


0 −τ 0 −κ

τ 0 κ 0
0 −κ 0 τ

κ 0 −τ 0



q0

q1

q2

q3

 =
|y′(t)|

2


−τq1 − κq3

τq0 + κq2

−κq1 + τq3

κq0 − τq2

 =⇒

[
q′0 + q′1
q′2 + q′3

]
=

|y′(t)|
2

[
(q0 − q1)τ + (q2 − q3)κ

(q3 − q2)τ + (q0 − q1)κ

]
=

|y′(t)|
2

q0 − q1 q2 − q3

q3 − q2 q0 − q1

[
τ

κ

]
.
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Therefore, for all t such that det

q0 − q1 q2 − q3

q3 − q2 q0 − q1

 = 1 − 2(q0q1 + q2q3) ̸= 0, we have

[
τ

κ

]
=

2
|y′(t)|

q0 − q1 q2 − q3

q3 − q2 q0 − q1


−1 [

q′0 + q′1
q′2 + q′3

]
=

2

[
q0 − q1 q3 − q2

q2 − q3 q0 − q1

][
q′0 + q′1
q′2 + q′3

]
|y′(t)|[1 − 2(q0q1 + q2q3)]

.

We will use the following example to illustrate Theorem 3.10.

Example 3.11. We continue with Example 3.3 where a unit quaternion q = (q0, q1, q2, q3) is
associated to a space curve y(t). If |y′(t)| =

√
2, then by Theorem 3.10, a direct computation

via Mathematica Online [9] gives the curvature and torsion of the curve y(t):[
τ

κ

]
=

2√
2[(q0 − q1)2 + (q2 − q3)2]

[
q0 − q1 q3 − q2

q2 − q3 q0 − q1

][
q′0 + q′1
q′2 + q′3

]
=

[
1
2
1
2

]
.

Remark 3.12. A vector valued function x(t) = (x0, x1, x2, x3) can be viewed as a curve in
affine 3-space, or as a quaternion. If x is considered as a space curve, then it is parametrized
as x(t) = (x1, x2, x3)/x0 in affine 3-space. The curvature and the torsion of the curve x(t) can
be computed directly by the derivatives of x(t). If viewed as a quaternion, x(t) is associated to
some curve y(t) in affine 3-space. Theorem 3.10 provides a mean to calculate the curvature and
the torsion of such curve y(t) given only |y′(t)|.

3.3 Compute the Gaussian and the Mean Curvature of Surfaces via Quaternion

Quaternion and Gaussian and Mean curvatures

We start this section by recalling the Gaussian curvature and the mean curvature of a surface in
R3. If x(s, t) : U → R3 is a regular patch, |xs × xt| ̸= 0, and N = xs×xt

|xs×xt| is the normal vector
of the surface, then the Gaussian curvature K and the mean curvature H are given by

K =
LM −N2

EG− F 2 , H =
EN − 2FM +GL

2(EG− F 2)
,

where

E = xs · xs, F = xs · xt, G = xt · xt; L = xuu ·N, M = xuv ·N, N = xvv ·N

are the coefficients of the first fundamental form E du2 + 2F du dv + Gdv2, and the second
fundamental form Ldu2 + 2M dudv +N dv2.

If xs = T1 and xt = T2 are orthonormal basis for the tangent space to the surface x(s, t) in
affine 3-space, then

[
Ns Nt

]
=

[
T1 T2

] [a11 a12

a21 a22

]
=

[
T1 T2

]
D, and

Ns ×Nt = (a11T1 + a21T2)× (a21T1 + a22T2) = a11a22T1 ×T2 + a21a12T2 ×T1

= det(D)T1 ×T2 = KN,

Ns ×T2 +T1 ×Nt = (a11T1 + a21T2)×T2 +T1 × (a21T1 + a22T2)

= Trace(D)T1 ×T2 = 2HN.

In the event that xs and xt do not form an orthonormal basis for the tangent space of the
surface, then the general formula is that

Ns ×Nt = K|xs × xt|N, and Ns ×T2 +T1 ×Nt = 2H|xs × xt|N. (3.17)
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We observe that in the frame of T1,T2,N, the Gaussian curvature is the scalar projection of
the vector Ns × Nt on N; and the mean curvature is half of the scalar projection of the vector
Ns ×T2 +T1 ×Nt on N.

Now, we shall see how to use a unit quaternion to compute the Gaussian and the mean cur-
vatures of a surface. To do so, we first introduce a definition below.

Definition 3.13. Let T1, T2, and N be a set of orthonormal moving frame of the surface x(s, t),
that is, T1, T2 form an orthonormal basis for the tangent space to a surface x(s, t), and N a unit
normal to the surface x(s, t). A unit quaternion q(s, t) is associated to a surface x(s, t) if the
columns of the rotation matrix R3×3 of q are the orthonormal moving frames T1, T2, and N of
the surface x(s, t).

It is easy to observe that if q(s, t) is a unit quaternion associated to a surface x(s, t), then
T1,T2,N are the orthonormal frame formed by the columns of the matrix R3×3 of q. In terms
of quaternion multiplication, the unit vectors

Ti = (0,Ti) = (0,R3×3ei) = q(0, ei)q∗ = qeiq
∗, for i = 1, 2,

N = (0,N) = (0,R3×3e3) = q(0, e3)q
∗ = qe3q

∗.

By Equations (3.10) and (3.12)

qs =
∂q

∂s
= q(0,a) where a = q0qs − q0sq− q× qs,

qt =
∂q

∂t
= q(0,b) where b = q0qt − q0tq− q× qt. (3.18)

Thus, taking partial derivative of N = qe3q
∗, replacing q∗s , q

∗
t by the expressions given in

Equation (3.11), and using the relationship between the cross product of the vectors and quater-
nions as in Equation (3.1) yield

Ns = qse3q
∗ + qe3q

∗
s = q(0,a)(0, e3)q

∗ − q(0, e3)(0,a)q∗

= q[(0,a)(0, e3)− (0, e3)(0,a)]q∗ = 2q(a× e3)q
∗;

Nt = qte3q
∗ + qe3q

∗
t = q(0,b)(0, e3)q

∗ − q(0, e3)(0,b)q∗

= q[(0,b)(0, e3)− (0, e3)(0,b)]q∗ = 2q(b× e3)q
∗;

Ns ×Nt = 4q[(a× b · e3)e3]q
∗ = 4(a× b · e3)(qe3q

∗) = 4(a× b)3N.

Hence Equation (3.17) implies

K =
4(a× b)3

|xs × xt|
. (3.19)

Furthermore,

Ns ×T2 +T1 ×Nt

=
(0,Ns)(0,T2)− (0,T2)(0,Ns)

2
+

(0,T1)(0,Nt)− (0,Nt)(0,T1)

2
= [q(a× e3)q

∗q(e2)q
∗ − q(e2)q

∗q(a× e3)q
∗] + [q(e1)q

∗q(b× e3)q
∗ − q(b× e3)q

∗q(e1)q
∗]

= q[(0,a× e3)(0, e2)− (0, e2)(0,a× e3)]q
∗ + q[(0, e1)(0,b× e3)− (0,b× e3)(0, e1)]q

∗

= 2q(a× e3)× e2q
∗ + 2qe1 × (b× e3)q

∗ = 2q[(a× e3)× e2 + e1 × (b× e3)]q
∗

= 2q[(a2 − b1)e3]q
∗ = 2(a2 − b1)(qe3q

∗) = 2(a2 − b1)N.

Hence Equation (3.17) implies

H =
a2 − b1

|xs × xt|
. (3.20)
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Compute the Gaussian and the Mean curvature via Quaternion

In this section, we compute the Gaussian curvature and the mean curvature of a surface x(s, t)
using the unit quaternion associated to x(s, t).

Theorem 3.14. Assume q(s, t) is a unit quaternion associated to a surface x(s, t) with |xs×xt| ≠
0. Let Rq be the rotation matrix representing q of the form in Equation (3.6). Then the Gaussian
and the mean curvatures of the surface x(s, t) are

K =
R−1

q (qsq∗t ) · (0, 0, 0,−4)
|xs × xt|

, H =
R−1

q (qe1q
∗
s + qe2q

∗
t ) · (0, 0, 0,−1)

|xs × xt|
.

Proof. First, we observe that

qsq
∗
t = q(0,a)(0,−b)q∗ by Eq. (3.18) and Eq. (3.11)

= −q(0,a)(0,b)q∗ = −q(−a · b,a× b)q∗

= −q[−a · b, (a× b)1e1 + (a× b)2e2 + (a× b)3e3]q
∗

= (a · b,−(a× b)1T1 − (a× b)2T2 − (a× b)3N)

= Rq (a · b,−(a× b)1,−(a× b)2,−(a× b)3)
T

=⇒ K =
R−1

q (qsq∗t ) · (0, 0, 0,−4)
|xs × xt|

since K =
4(a× b)3

|xs × xt|
by Eq. (3.19).

Furthermore,

qe1q
∗
s + qe2q

∗
t = q(0, e1)(0,−a)q∗ + q(0, e2)(0,−b)q∗ by Eq. (3.18) and Eq. (3.11)

= −q[(0, e1)(0,a) + (0, e2)(0,b)]q∗ = −q[(−e1 · a+ e1 × a) + (−e2 · b+ e2 × b)]q∗

= −q[(−a1, 0,−a3, a2) + (−b2, b3, 0,−b1)]q
∗ = −q[(−a1 − b2, b3,−a3, a2 − b1)]q

∗

= −q[(−a1 − b2, b3e1 − a3e2 + (a2 − b1)e3)]q
∗

= ((a1 + b2),−b3T1 + a3T2 − (a2 − b1)N)

= Rq ((a1 + b2),−b3, a3,−(a2 − b1))
T

=⇒ H =
R−1

q (qe1q
∗
s + qe2q

∗
t ) · (0, 0, 0,−1)

|xs × xt|
since H =

a2 − b1

|xs × xt|
by Eq. (3.20).

Remark 3.15. A vector valued function x(s, t) = (x0, x1, x2, x3) can be viewed as a surface
in affine 3-space or as a quaternion. If x is considered as a surface in affine 3-space, then
x(s, t) = (x1, x2, x3)/x0. The Gaussian and the mean curvature of the surface x(s, t) can be
computed directly by the first and second fundamental forms. If viewed as a quaternion, then
x(s, t) is associated to some parametrized surface y(s, t) : R2 → R3. Theorem 3.14 provides
a mean to calculate the Gaussian and the mean curvature of such surface y(s, t) given only
|ys × yt|.

We will use the following example to illustrate Theorem 3.14 and Remark 3.15.

Example 3.16. Suppose that an orthonormal moving frames for a surface x(s, t) are given by
the columns of the matrix:

M =


t sin s√

1+t2 cos s sin s√
1+t2

− t cos s√
1+t2 sin s − cos s√

1+t2

− 1√
1+t2 0 t√

1+t2

 , and |xs × xt| =
√

1 + t2.

By Equation (3.3), a computation via Mathematica Online [9] yields a unit quaternion q that is
associated to the surface x(s, t) where q is(
AB

2
,

cos s
2AB

√
1 + t2

,
A

2B
√

1 + t2
,

cos s
2A

√
1 + t2

)
, where A =

√
1 + sin s,B =

√
t+

√
1 + t2.
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In addition, computing the Gaussian and the mean curvature via Mathematica Online [9] by
Theorem 3.14 yield

K =
1

1 + t2 , H = 0.

Note, in this example, the surface parametrization is unknown. In fact, by solving partial dif-
ferential equations, we obtain a parametrization of this surface, which is a Helicoid x(s, t) =
(t cos s, t sin s, s). Computation of the Gaussian and the mean curvatures by the fundamental
forms of the parametrization give exactly the same result.

4 Conclusion

This paper investigates the use of quaternions in studying space curves and surfaces in affine
3-space. First, we generate a large variety of rational space curves and rational surfaces via
quaternion multiplication. Then, we prove that the curvature and the torsion of a space curve
can be computed by the quaternion associated to the curve; similarly, the Gaussian and the mean
curvature of a surface can be computed by the quaternion associated to the surface.
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