
Palestine Journal of Mathematics

Vol 13(Special Issue III)(2024) , 63–69 © Palestine Polytechnic University-PPU 2024

NON-COMMUTATIVITY OF CONDITION SPECTRUM

Arindam Ghosh and Sukumar Daniel

Communicated by Harikrishnan Panackal

MSC 2020 Classifications: Primary 47A08, 47A10; Secondary 47B01, 47B02.

Keywords and phrases: Banach algebra, Spectrum, Condition spectrum, Linear operators.

Abstract For a general complex unital Banach algebra A, the spectrum always commutes :

for all a, b ∈ A, σ(ab) \ {0} = σ(ba) \ {0}.

In this paper, we prove that the above commutative property is not true if we replace the usual
spectrum by condition spectrum. Further we study the similar question for more general spec-
trum called Ransford spectrum.

1 Introduction

For a complex unital Banach algebra A, the spectrum of an element a ∈ A is given by

σ(a) := {λ ∈ C : (λ− a) /∈ G(A)},

where G(A) is the group of invertible elements in A. In fact, it is well known that the spectrum
σ(a) is a non-empty compact set [1]. It is to be observed that in the definition of σ(a) above,
(λ− a) means (λ.1 − a), where 1 is the multiplicative unit of A.

The following is a well known property [4] of the spectrum that, for all a, b ∈ A,

σ(ab) \ {0} = σ(ba) \ {0}. (1.1)

This property (1.1) is called the commutativity of spectrum. The proof of (1.1) comes from a
simple agebraic fact that if (1−ab)−1 = u, then (1−ba)−1 = 1+bua. There are various notions
of spectra. One would like to see the property (1.1) for those spectra. For example, in [5], a
counter-example was furnished, which demonstrates that the exponential spectrum [3] does not
commute. In this paper, we would like to consider the same for condition spectrum [6], which is
a special Ransford spectrum in the context of operator algebras. In fact, in Section 3, we produce
examples to show the non-commutativity of condition spectrum in Examples 3.5, 3.6, 3.9, 3.12
and 3.13 in the algebra of bounded linear operators on Banach space ℓp, 1 ≤ p < ∞. Moreover
in Section 4, in Example 4.3, we have also shown non-commutativity of the specific Ransford
spectrum with the corresponding Ransford set Ω := A \ {0} in operator algebra.

2 Preliminaries

Let us start with the definitions of Ransford set and Ransford spectrum.

Definition 2.1 (Ransford Set). [8, 9] Let X be a complex Normed Linear space and let 1 ∈
X \ {0} be fixed. A set Ω(⊆ X) is a Ransford set if the following holds

(i) Ω is open,

(ii) 0 /∈ Ω,
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(iii) 1 ∈ Ω,

(iv) λ ∈ C \ {0}, a ∈ Ω ⇒ λa ∈ Ω.

Example 2.2. The following are some examples of Ransford sets [8, 9].

(i) A \ {0}, for a complex Banach algebra A containing a non-zero element 1,

(ii) G(A), the set of invertible elements in a Banach algebra A,

(iii) Exp(A), the set of exponential elements [3, 5] for any complex unital Banach algebra A,
given by

Exp(A) = {ea1 · · · ean : a1, . . . , an ∈ A, n ≥ 1},

(iv) Ωϵ := {a ∈ G(A) : ∥a∥∥a−1∥ < 1
ϵ}, where 0 < ϵ < 1.

Definition 2.3 (Ransford Spectrum). [9] The Ransford spectrum of an element x ∈ A is given
by

σΩ(x) = {λ ∈ C : (x− λ1) /∈ Ω}.

Some basic properties of Ransford spectrum are given in [8, 9]. It is to be observed that σΩ(x)
is compact set in C [8].

The usual spectrum and exponential spectrum are also Ransford spectra with the corresponding
Ransford sets G(A) and Exp(A) respectively. One of them satifies the commutative property
while the other does not. So it is natural to ask whether the Ransford spectra other than these
spectra commute or not, i.e., whether for all a, b ∈ A,

σΩ(ab) \ {0} = σΩ(ba) \ {0}? (2.1)

We shall show, in Section 3, the failure of (2.1) for condition spectrum. In the Section 4, we shall
show that even the Ransford spectrum corresponding to the simplest Ransford set Ω(= A\ {0})
fails to commute in the Banach algebra A = B(ℓp), 1 ≤ p < ∞.

The following simple lemma regarding invariance of Ransford sets under non-zero scalar multi-
plication is needed for our results. We give the proof for convenience.

Lemma 2.4. The equation (2.1) is equivalent to the following:

for all a, b ∈ A, 1 ∈ σΩ(ab) if and only if 1 ∈ σΩ(ba).

Proof. In order to verify (2.1), we need to check that for some λ ∈ C\{0} and for some arbitrary
x, y ∈ A, the following holds

λ ∈ σΩ(xy) if and only if λ ∈ σΩ(yx).

That is, we need to check (λ−xy) /∈ Ω if and only if (λ−yx) /∈ Ω. But since Ω is a Ransford set,
it is invariant under nonzero scalar multiplication. So, dividing by λ, we get that it is equivalent
to check

(1 − x

λ
y) /∈ Ω if and only if (1 − y

x

λ
) /∈ Ω.

Since x, y ∈ A are arbitrary, replacing x
λ and y by general elements a, b respectively, it is

equivalent to check
(1 − ab) /∈ Ω if and only if (1 − ba) /∈ Ω.

That is, we need to check for all a, b ∈ A, 1 ∈ σΩ(ab) if and only if 1 ∈ σΩ(ba).

In view of Lemma 2.4, in order to check (2.1), it is enough to check for all a, b ∈ A, (1−ab) ∈ Ω

if and only if (1− ba) ∈ Ω. Also it goes without saying that for getting counterexample to (2.1),
we need to consider non-commutative Banach algebras.
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3 Non-commutativity of condition spectrum

The following well known easy-to-prove lemma regarding non-invertible but left (or right) in-
vertible elements [7] is necessary for our discussion. We prove it for convenience.

Lemma 3.1. For a, b ∈ A, if b is non-invertible but left invertible with left inverse a, that is,
ab = 1 but ba ̸= 1 then ba ̸= λ1 for any λ ∈ C.

Proof. Given ab = 1. Let if possible, for some λ ∈ C, ba = λ1. Then multiplying a on the left
side of both, we get a(ba) = λa which gives (ab)a = λa, i.e., a = λa. But according to the
given condition, a ̸= 0. So λ = 1, which is a contradiction to the assumption that ba ̸= 1.

Remark 3.2. From Lemma 3.1, replacing a and b ∈ A by a
µ and b, we can get a general statement

that, if ab = µ1 but ba ̸= µ1 for some µ ∈ C \ {0}, then ba ̸= λ1 for any λ ∈ C.

We will now discuss about the non-commutativity of condition spectrum [6]. We start with its
definition.

Definition 3.3. [6] (ϵ−condition spectrum) Let 0 < ϵ < 1. The ϵ−condition spectrum of an
element a ∈ A is defined by

σϵ(a) := {λ ∈ C : (λ− a) /∈ G(A) or ∥λ− a∥∥(λ− a)−1∥ ≥ 1
ϵ
}.

Note that for any ϵ ∈ (0, 1), σ(a) ⊆ σϵ(a). In the definition of ϵ−condition spectrum, ϵ ∈ (0, 1)
is considered intentionally, otherwise for ϵ ≥ 1, we get σϵ(a) = C. In [6], ϵ−condition spectrum
is shown as a Ransford spectrum with the corresponding Ransford set defined by

Ωϵ := {a ∈ G(A) : ∥a∥∥a−1∥ <
1
ϵ
}.

ϵ−condition spectrum is a compact subset of C [6]. If a ∈ A is a scalar multiple of identity, i.e.,
a = µ1 for some µ ∈ C, then σϵ(a) = {µ} [6]. From now onwards, we consider ϵ ∈ (0, 1) and
write simply condition spectrum instead of ϵ−condition spectrum, trusting that it will not create
any confusion. The following theorem is crucial for our arguments to prove some results. We
state it for the sake of convenience.

Theorem 3.4. [6, Theorem 3.1] Let A be complex unital Banach algebra and a ∈ A be such that
a ̸= λ1 for any λ ∈ C. Then σϵ(a) has no isolated points.

By the statement of Theorem 3.4, we have that if a ∈ A be such that a ̸= λ1 for any λ ∈ C, then
σϵ(a) has infinitely many points as it is a non-empty compact subset of C. By this fact, we will
show that condition spectrum fails to commute by the following examples.

Example 3.5. Let us consider the Banach algebra A = B(ℓp), 1 ≤ p < ∞ and the left shift
operator L and right shift operator R in A. So RL = 1 − P and LR = 1. So by [6], σϵ(LR) =
{1}. Again RL = 1 − P ̸= 1, where P is the projection onto the first component given by
P(x1, x2, x3, . . .) = (x1, 0, 0, . . .). So by Lemma 3.1, RL = 1 − P ̸= λ1 for any λ ∈ C. So by
Theorem 3.4, σϵ(RL) has no isolated points, i.e., it has infinitely many points. Hence

σϵ(RL) \ {0} ≠ σϵ(LR) \ {0}.

Example 3.6. In A = B(ℓp), 1 ≤ p < ∞, let T2 ∈ A be defined by

T2(x1, x2, x3, . . .) = (x1, x1, x2, x3, . . .).

It can be checked that LT2 = 1, but T2L ̸= 1, where L is the left shift operator. So by [6],
σϵ(LT2) = {1}. Again by Lemma 3.1, T2L ̸= λ1 for any λ ∈ C. So by Theorem 3.1 of [6],
σϵ(T2L) has infinitely many points. Hence

σϵ(LT2) \ {0} ≠ σϵ(T2L) \ {0}.
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The following theorem regarding left invertible but non-invertible elements is a generalization
of Examples 3.5 and 3.6.

Theorem 3.7. If there exist a, b ∈ A such that ab = 1 and ba ̸= 1, then σϵ(ab) \ {0} ≠ σϵ(ba) \
{0}.

Proof. Since ab = 1 and ba ̸= 1, by [6], we have that σϵ(ab) = {1} and by virtue of Theorem
3.4, σϵ(ba) contains infinitely many points. So we have that σϵ(ab) \ {0} ≠ σϵ(ba) \ {0}.

Remark 3.8. From the statement of Lemma 3.1 and Theorem 3.7, in a general sense, replacing
a and b ∈ A by a

µ and b, we get that, if there exist a, b ∈ A such that ab = µ1 and ba ̸= µ1 for
some µ ∈ C \ {0}, then by [6], σϵ(ab) = {µ} and by virtue of Theorem 3.4, σϵ(ba) contains
infinitely many points. So we have that σϵ(ab)\{0} ≠ σϵ(ba)\{0}. So condition spectrum does
not commute in those Banach algebras which contain one sided invertible but singular elements.

The following example shows failure of commutativity of condition spectrum in B(ℓp) and as
well as in its corresponding Calkin algebra C = Cal(ℓp) = B(ℓp)/B0(ℓp)(see [2]).

Example 3.9. For 1 ≤ p < ∞, let A = B(ℓp) and C = Cal(ℓp) be the corresponding Calkin
algebra. Let π : A → C be the natural map and x = (x1, x2, x3, . . .) ∈ ℓp be arbitrary. Let us
define S, T ∈ A by

S(x) = S(x1, x2, . . .) = (x1, x3, x5, . . .)

and
T (x) = T (x1, x2, . . .) = (x1, 0, x2, 0, x3, 0, . . .).

So
ST (x) = S(x1, 0, x2, 0, x3, 0, . . .) = (x1, x2, . . .) = x,

TS(x) = T (x1, x3, x5, . . .) = (x1, 0, x3, 0, x5, 0, . . .) = x− (0, x2, 0, x4, 0, . . .).

So ST = 1 and TS = 1 −W , where W (x) = (0, x2, 0, x4, 0, . . .). So TS ̸= 1 and by virtue of
Theorem 3.7, we have

σϵ(ST ) \ {0} ≠ σϵ(TS) \ {0}.

Again W is not a compact operator because it is an infinite dimensional projection. So in the
Calkin algebra, π(S)π(T ) = π(ST ) = π(1) but since W is not compact operator, we get
π(T )π(S) = π(TS) = π(1 −W ) ̸= π(1). So again by Theorem 3.7, we conclude that

σϵ(π(S)π(T )) \ {0} ≠ σϵ(π(T )π(S)) \ {0}.

The following simple lemma regarding one sided, non-zero zero-divisors (see [7]) is recorded
for future references. We prove it for convenience.

Lemma 3.10. If there exist a, b ∈ A such that ab = 0 and ba ̸= 0, then ba ̸= λ1 for any λ ∈ C.

Proof. Let ab = 0 and ba ̸= 0. Let if possible, ba = λ1 for some λ(̸= 0) ∈ C. Then (ba)b = λb
which gives b(ab) = λb, i.e., λb = 0. Since λ ̸= 0, we get b = 0 which gives ba = 0, which is a
contradiction. Hence ba ̸= λ1 for any λ ∈ C.

Remark 3.11. If there exist a, b ∈ A such that ab = 0 and ba ̸= 0, then σϵ(ab) \ {0} ̸= σϵ(ba) \
{0}. Because σϵ(ab) = {0} by [6] and by Lemma 3.10, we have ba ̸= λ1 for any λ ∈ C. So by
Theorem 3.4, we have that σϵ(ba) has infinitely any points and hence σϵ(ab)\{0} ≠ σϵ(ba)\{0}.

The following is an another example of non-commutativity of condition spectrum in the operator
algebra B(ℓp) and also in the corresponding Calkin algebra.
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Example 3.12. For 1 ≤ p < ∞, let us define T1, T2 ∈ B(ℓp) by

T1(x) = (x1, x3, x5, x7, . . .),

T2(x) = (0, x1, 0, x2, 0, x3, 0, x4, . . .)

which gives
T1T2(x) = T1(0, x1, 0, x2, 0, x3, 0, . . .) = (0, 0, 0, . . .)

and
T2T1(x) = T2(x1, x3, x5, . . .) = (0, x1, 0, x3, 0, x5, 0, . . .) = W1(x)(say).

So we get T1T2 = 0, which is a compact operator and T2T1 = W1, which is not compact
operator because W1 is an infinite dimensional projection. Also in the Calkin algebra, we get
π(T1)π(T2) = π(T1T2) = π(0) and π(T2)π(T1) = π(T2T1) = π(W1) ̸= π(0), since W1 is not
a compact operator. So σϵ(T1T2) = σϵ(π(T1)π(T2)) = {0}, which is a finite set. By the same
argument of Theorem 3.7 and Remark 3.11,

σϵ(T1T2) \ {0} ≠ σϵ(T2T1) \ {0}

and
σϵ(π(T1)π(T2)) \ {0} ≠ σϵ(π(T2)π(T1)) \ {0}.

Next, we shall show that for n(> 1) ∈ N, in A = Mn(C), the Banach algebra of n× n complex
matrices, the condition spectrum fails to commute. In the following example, we shall show it
for 2 × 2 matrices by considering one sided zero-divisors in A.

Example 3.13. Let in A = M2(C), let A =

(
0 0
0 1

)
and B =

(
0 1
0 0

)
∈ A. Then AB =(

0 0
0 0

)
and BA =

(
0 1
0 0

)
̸=

(
0 0
0 0

)
. By Remark 3.11, we get that,

σϵ(AB) \ {0} ≠ σϵ(BA) \ {0}.

Remark 3.14. The fact of non-commutativity of condition spectrum in Example 3.13 can be
easily generalised for matrices of order n > 2.

4 Non-commutativity of Ransford spectrum corresponding to Ransford set
Ω = A \ {0}

This section is mainly devoted to some counterexamples to (2.1) for Ransford spectrum, corre-
sponding to the Ransford set Ω := A \ {0} along with some related theoritical facts. So for
a ∈ A, the corresponding Ransford spectrum is

σΩ(a) = {λ ∈ C : (λ− a) /∈ Ω} = {λ ∈ C : (λ− a) = 0}.

We state the following remark to begin with.

Remark 4.1. For the Ransford set Ω = A \ {0}, to check (2.1), in view of Lemma 2.4, it is
enough to check that for all a, b ∈ A, 1 − ab = 0 if and only if 1 − ba = 0.

The following lemma provides an example of (2.1) corresponding to the Ransford set Ω =
A \ {0} in the non-commutative Banach algebra A = Mn(C), for n(> 1) ∈ N.

Lemma 4.2. For n(> 1) ∈ N, let us consider the Ransford set Ω = A \ {0} in the Banach
algebra A = Mn(C) of n× n complex matrices. Then (2.1) holds in A.
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Proof. By Remark 4.1, it is enough to show that for all B,C ∈ A,

BC = In if and only if CB = In,

where In denotes n× n identity matrix.

Let B,C ∈ A be arbitrary and BC = In. Then taking determinant on both sides, we get
det(BC) = 1 which gives det(B)det(C) = 1. So det(B) ̸= 0 and det(C) ̸= 0, i.e., both B,C
are invertible matrices. Now

(CB)−1 = B−1C−1 = B−1 · In ·C−1 = B−1 · (BC) ·C−1 = (B−1B) · (CC−1) = In · In = In.

So we get CB = ((CB)−1)−1 = (In)−1 = In. We have shown one way implication, the other
way can be derived similarly by swapping the roles of B and C.

The failure of (2.1) for the Ransford set Ω(= A \ {0}) is exemplified by the following exam-
ple:

Example 4.3. Let us consider the Banach algebra A = B(ℓp), 1 ≤ p < ∞ and the Ransford
set Ω = A \ {0}. Let us consider the left shift operator L and right shift operator R in A. So
RL = 1 − P and LR = 1, which gives 1 − RL = P ∈ Ω and 1 − LR = 0 /∈ Ω, where P
denotes the projection operator onto the first component. So

1 ∈ σΩ(LR) but 1 /∈ σΩ(RL)

and hence
σΩ(LR) \ {0} ≠ σΩ(RL) \ {0}.

Remark 4.4. From the discussion of Example 4.3, we can conclude that if a Ransford set Ω1
of B(ℓp) contains P , then the corresponding Ransford spectrum will not commute because 1 −
RL = P ∈ Ω1 and 1 − LR = 0 /∈ Ω1 and hence

σΩ1(LR) \ {0} ≠ σΩ1(RL) \ {0}.

The following remark is a generalization of Example 4.3.

Remark 4.5. For the Ransford set Ω = A \ {0}, if there exist a, b ∈ A such that ab = 1 but
ba ̸= 1, then (1 − ab) = 0 /∈ Ω but (1 − ba) ̸= 0, which gives (1 − ba) ∈ Ω. So we have
σΩ(ab) \ {0} ̸= σΩ(ba) \ {0}. More generally, we can say that, if there exist a, b ∈ A such that
ab = λ1 and ba ̸= λ1, for some λ ∈ C \ {0}, then σΩ(ab) \ {0} ≠ σΩ(ba) \ {0}.

5 Conclusion

We conclude by recording our findings in a formal way as follows.

If there exist a, b ∈ A, such that ab = µ1 for some µ ∈ C and ba ̸= µ1. Then we have the
following:

• ba ̸= λ1, for any λ ∈ C (by Remark 3.2),

• σϵ(ab) \ {0} ≠ σϵ(ba) \ {0} (by Remark 3.8),

• σΩ(ab) \ {0} ≠ σΩ(ba) \ {0}, if µ ̸= 0 where Ω = A \ {0} (by Remark 4.5),

• if there is a Ransford set Ω(⊆ A), such that (µ1− ba) ∈ Ω and µ ̸= 0, then the correspond-
ing Ransford spectrum does not commute, i.e.,

σΩ(ab) \ {0} ≠ σΩ(ba) \ {0}.

It would be interesting to investigate sufficient conditions on Ransford sets to satisfy (2.1) in
various non-commutative Banach algebras. So in this context, as an immediate offshoot, we
would like to end with the following question.
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Question 5.1. For a non-commutative Banach algebra A, does there exist any Ransford set Ω(⊆
A), other than G(A), for which the corresponding Ransford spectrum always commute, i.e.,

∀a, b ∈ A, σΩ(ab) \ {0} = σΩ(ba) \ {0}?
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