Proper BN(k) **Rings are** BZS

Mark Farag and Ralph P. Tucci

Communicated by Madeleine Al-Tahan

MSC 2010 Classifications: Primary 16U99.

Keywords and phrases: BN, BN(k), Boolean - zero square, BZS ring.

Abstract An associative ring R, not necessarily commutative and not necessarily with identity, is called a *BN ring* if every element of R is either idempotent or nilpotent. If the index of nilpotency of the elements is bounded by k, then we call a *BN* ring R a *BN(k) ring*. A *BN* ring is *proper* if it is neither Boolean nor nil. We show that any proper BN(k) ring is a *BZS*, that is a *BN*(2), ring.

1 Introduction

This paper generalizes the study of *Boolean-zero square* or *BZS* rings, those rings in which every element is either idempotent or nilpotent of index 2, initiated by the authors in [4] and [5]. *BZS* rings generalize both the well-known class of Boolean rings, in which all elements are idempotent, and zero square rings, in which every nonzero element is nilpotent of index two (see [9] and [8] for more information about Boolean rings and zero square rings, respectively). *BZS* rings are a special case of *BZS* near-rings, which are studied in [3]; *BZS* near-rings also capture the Malone trivial near-rings introduced in [7] and studied, *inter alia*, in [1]. A *proper BZS* ring is a *BZS* ring that is neither a Boolean ring nor a zero square ring.

In this paper we investigate *BN rings*, which are rings in which each element is either idempotent or nilpotent. If the index of nilpotency of the elements in a *BN* ring is bounded by *k*, then we call the ring a *BN(k) ring*. In this notation a *BZS* ring *R* is a *BN(2)* ring. A *proper BN ring* is a *BN* ring which is neither Boolean nor nil. Note that a BN(k) ring is also a BN(k+1) ring by definition.

Throughout the paper, R denotes a BN ring, N denotes the set of nilpotent elements of R, for any integer $t \ge 2 N_t$ denotes the set of elements of N having index of nilpotency at most t, and E denotes the set of nonzero idempotent elements of R. We focus mainly on the case in which R is a proper BN(k) ring.

2 Preliminary Results

In this section we extend two of the results of [4] from BZS rings to BN rings. The following result is proven for BN(2) rings in [4, Proposition 2.1].

Proposition 2.1. Let $(R, +, \cdot)$ be a proper BN ring such that (R, +) is a cyclic group of order $n \ge 2$. Then either R is isomorphic to the ring of integers modulo 2 or it is a ring with identically zero multiplication.

Proof. Suppose that g generates R additively. Since R is a BN ring, either $g^k = 0$ for some $k \in \mathbb{Z}$ or $g \cdot g = g$. If $g^k = 0$, then for all integers $0 \le \alpha, \beta < n - 1$ we have $(\alpha g^p) \cdot (\beta g^q) = \alpha\beta g^{p+q}$ since R is distributive; i.e., R is a nil ring. If $g \cdot g = g$, then $((n-1)g) \cdot ((n-1)g) = (n-1)^2 g \cdot g = 1g \cdot g = g \neq 0$, so $((n-1)g) \cdot ((n-1)g) = (n-1)g = -g$ implies g + g = 0, so that n = 2 and R is the ring of integers modulo 2.

The following result is proven for BN(2) rings in [4, Lemma 3.3] and is used extensively in the sequel.

Lemma 2.2. If R is a BN ring and if $e \in E$, then 2e = 0.

Proof. Let $e \in E$. Then, for any integer $n \ge 1$, $(-e)^n = \begin{cases} e \text{ if } n \text{ is even} \\ -e \text{ if } n \text{ is odd} \end{cases}$ so that $-e \notin N$. Hence $-e = (-e)^2 = e$. \Box

3 Proper BN(3) Rings are BZS

In this section we show that any proper BN(3) ring is BZS. In what follows, we use, for an element $a \in R$, the notation $\rho(a)$ to indicate multiplication of both sides of an equation by a on the right and $\lambda(a)$ to indicate multiplication of both sides of an equation by a on the left.

Lemma 3.1. Let R be a proper BN(3) ring, let $0 \neq e \in E$, and let $x \in N_2$. Then the element e + x is idempotent.

Proof. If x = 0 then the result is trivial. Assume $x \neq 0$.

The proof is by contradiction. Suppose that e + x is nilpotent. Then we must have $(e + x)^3 = 0$.

Now by Lemma 2.2 and since $x \in N_2$,

$$e = ex + xe + exe + xex \tag{3.1}$$

Applying $\lambda(e)$ and $\rho(x)$ to (3.1) we get

$$ex = ex^{2} + exex + exex^{2}$$

= $exex + exex$
= 0 (3.2)

by Lemma 2.2. Substituting ex = 0 into (3.1) we get e = xe. But then $e = xe = x(xe) = x^2e = 0$, contradiction! \Box

Lemma 3.2. Let R be a proper BN(3) ring, and let $e \in E, x \in N_2$. Then

a) exe = 0;
b) xex = 0;
c) ex + xe = x.

Proof. If x = 0 then the results are trivial. Otherwise, e + x is idempotent by Lemma 3.1, and we get

$$e + ex + xe = e + x,$$

yielding

$$ex + xe = x. ag{3.3}$$

Applying $\rho(e)$ to (3.3) and simplifying we get exe = 0. Applying $\lambda(x)$ to (3.3) and simplifying we get xex = 0. \Box

In the next results we apply the preceding lemma to show that a proper BN(3) ring is actually BZS.

Proposition 3.3. Let R be a proper BN(3) ring, $e \in E, x \in N_3$, and suppose $x \notin N_2$. Then $e + x \notin E$.

Proof. The proof is by contradiction. Suppose $e + x \in E$. Then $(e + x)^2 = e + ex + xe + x^2$ so that $e + x = e + ex + xe + x^2$, yielding

$$x = ex + xe + x^2 \tag{3.4}$$

Applying $\lambda(x)$ to (3.4) we get

$$x^2 = xex + x^2e. aga{3.5}$$

Applying $\rho(x)$ to (3.4) we get

$$x^2 = ex^2 + xex. aga{3.6}$$

From (3.5) and (3.6) we get $x^2e = ex^2$. But then by Lemma 3.2 c) (since $0 \neq x^2 \in N_2$), we have $x^2 = ex^2 + x^2e = 0$, contradiction! \Box

Proposition 3.4. Let R be a proper BN(3) ring, $e \in E, x \in N_3$, and suppose $x \notin N_2$. Then $e + x \notin N$.

Proof. The proof is by contradiction.

Suppose that $(e + x)^3 = 0$. Expanding this equation we get

$$e = ex + xe + exe + xex + ex2 + x2e.$$
 (3.7)

Applying both $\rho(e)$ and $\lambda(e)$ to (3.7) we get

$$e = exe + exe + exe + exexe + ex2e + ex2e$$

= exe + exexe, (3.8)

by Lemma 2.2. Applying $\rho(x)$ to (3.8) we get

$$ex = (ex)^2 + (ex)^3.$$
 (3.9)

If $ex \in N$ then $(ex)^3 = 0$ which implies $ex = (ex)^2$. The only idempotent element in N is 0. Hence ex = 0. From (3.8) we get e = 0, contradiction! If $ex \in E$ then by (3.9) we have that ex = ex + ex = 0, contradiction! \Box

Theorem 3.5. If R is a proper BN(3) ring, then R is a BZS ring.

Proof. This follows from Propositions 3.3 and 3.4. \Box

4 Proper BN(k) Rings are BZS

In this section we complete the proof of our main result: that a proper BN(k) ring is BZS for any integer $k \ge 2$.

Lemma 4.1. Let $k \ge 2$ be an integer. If R is a proper BN(k) ring, then R does not contain identity.

Proof. The proof is by contradiction. Suppose R contains identity 1. Since for some $t \ge 2 N_t$ contains a nonzero element, we have that N_2 contains a nonzero element. So let $0 \ne x \in N_2$. If $(1+x)^2 = 1+x$, then 1+2x = 1+x, which implies x = 0, contradiction! Thus, we must have $(1+x)^k = 0$. Since $(1+x)^k = 1+kx$, it follows that -kx = 1, so that $0 = (-kx)^2 = 1^2 = 1$, contradiction! \Box

Corollary 4.2. Let $k \ge 2$ be an integer. If R is a proper BN(k) ring and $e \in E$, the ring eRe is Boolean.

Proof. By the previous result we know that eRe is not a proper BN(k) ring. Since $eRe \subseteq R$, eRe consists of idempotents and nilpotents. Since eRe has identity, eRe consists only of idempotents, and hence is Boolean. \Box

Lemma 4.3. Let a, b be two elements in a ring R, and $m \ge 1$ an integer. Then of the 2^m summands in the formal expansion of $(a+b)^m$, f_{m+2} do not have any consecutive b's in them, where f_n is the n^{th} Fibonacci number using the convention $f_1 = f_2 = 1$; of those f_{m+2} summands that do not have any consecutive b's in them, f_{m+1} have a as their leftmost element and f_m have b as their leftmost element.

Proof. The proof is by induction. The basis case is m = 1, in which case $(a + b)^m = a + b$, and $f_3 = 2$ terms do not have any consecutive b's in them, $f_2 = 1$ of which have leftmost element a and $f_1 = 1$ of which have leftmost element b. For the inductive step, suppose that the result is true for $m = j \ge 1$. Then the expansion of $(a + b)^j$ can be written as $\alpha_1 + \alpha_2 + \cdots + \alpha_{f_{j+1}} + \beta_1 + \beta_2 + \cdots + \beta_{f_j} + \gamma_1 + \gamma_2 + \cdots + \gamma_{(2^j - f_{j+2})}$, where each α_i has leftmost element a and no consecutive b's, each β_i has leftmost element b and no consecutive b's, and each γ_i contains consecutive b's. Then $(a + b)^{j+1} = (a + b)(a + b)^j =$ $a\alpha_1 + a\alpha_2 + \cdots + a\alpha_{f_{j+1}} + a\beta_1 + a\beta_2 + \cdots + a\beta_{f_j} + b\alpha_1 + b\alpha_2 + \cdots + b\alpha_{f_{j+1}} + [a\gamma_1 + a\gamma_2 + \cdots + a\gamma_{(2^j - f_{j+2})}] + b\beta_1 + b\beta_2 + \cdots + b\beta_{f_j} + b\gamma_1 + b\gamma_2 + \cdots + b\gamma_{(2^j - f_{j+2})}]$. The terms in brackets will all have consecutive b's while those not in brackets, $f_{j+1} + f_j = f_{j+2}$ of which have leftmost element a and f_{j+1} of which have leftmost element b, will not. Thus the proof is complete. \Box

Proposition 4.4. Let R be a proper BN(k) ring, $k \ge 3$, $e \in E$, $x \in N_k$, $x \notin N_{k-1}$. Then $e + x^{k-1} \notin N$.

Proof. The proof is by contradiction. Assume that $e + x^{k-1} \in N$. Then both

$$(e+x^{k-1})^k = 0 (4.1)$$

and

$$(e+x^{k-1})^{k+1} = 0. (4.2)$$

By the previous lemma, (at least) one of the expansions of the left-hand sides of (4.1) or (4.2) contains an odd number of summands that do not contain consecutive products of x^{k-1} . Applying $\lambda(e)$ and $\rho(e)$ to that equation, and noting that terms containing consecutive products of x^{k-1} equal zero when $k \ge 3$, we find by using Corollary 4.2 that the remaining terms are e and products of the form

 $ex^{k-1}e$,

so that

$$e = Aex^{k-1}e,$$

where A is an even number. Since A is even, we obtain from Lemma 2.2 that

e = 0,

contradiction! \Box

Proposition 4.5. Let R be a proper BN(k) ring, $k \ge 4$, $e \in E$, $x \in N_k$, $x \notin N_{k-1}$. Then $e + x^{k-2} \notin N$.

Proof. The proof follows *mutatis mutandis* from the previous result since $(x^{k-2})^2 = 0$ for $k \ge 4$. \Box

Proposition 4.6. Let R be a proper BN(k) ring, $k \ge 4$, $e \in E$, $x \in N_k$, $x \notin N_{k-1}$. Then $e + x^{k-1} \notin E$.

Proof. By the previous two results, we must have $e + x^{k-1} \in E$ and $e + x^{k-2} \in E$. So $(e + x^{k-1})^2 = e + x^{k-1}$, implying

$$x^{k-1} = ex^{k-1} + x^{k-1}e (4.3)$$

and $(e + x^{k-2})^2 = e + x^{k-2}$, implying

$$x^{k-2} = ex^{k-2} + x^{k-2}e. (4.4)$$

(Note that here we use $k \ge 4$ to conclude that $(x^{k-2})^2 = 0$.) Applying $\rho(x)$ and $\lambda(x)$ separately to (4.3) yields, respectively,

 $r^{k-1}ex = 0$

and

$$xex^{k-1} = 0.$$
 (4.6)

(4.5)

Applying $\lambda(e)$ to (4.3) yields

$$ex^{k-1}e = 0$$
 (4.7)

Now substituting (4.4) into (4.3) we find

$$x^{k-1} = ex(ex^{k-2} + x^{k-2}e) + x^{k-1}e = exex^{k-2} + ex^{k-1}e + x^{k-1}e,$$
(4.8)

so that by (4.7) we have

$$x^{k-1} = exex^{k-2} + x^{k-1}e, (4.9)$$

whence comparison of this last equation to (4.3) implies that

$$exex^{k-2} = ex^{k-1}.$$
 (4.10)

Applying $\lambda(ex)$ to this last equation now gives

$$exexex^{k-2} = exex^{k-1} = 0$$
 (4.11)

by (4.6), so that Corollary 4.2 and (4.10) give us

$$exex^{k-2} = 0 = ex^{k-1}.$$
 (4.12)

Now combining (4.9) with (4.4) gives us

$$x^{k-1} = exex^{k-2} + (ex^{k-2} + x^{k-2}e)xe = exex^{k-2} + ex^{k-1}e + x^{k-2}exe,$$
(4.13)

so that (4.7) implies

$$x^{k-1} = exex^{k-2} + x^{k-2}exe. (4.14)$$

Comparing (4.14) with (4.3) using (4.10) yields

$$x^{k-2}exe = x^{k-1}e. (4.15)$$

Applying $\rho(xe)$ to this last equation implies

$$x^{k-2}exexe = x^{k-1}exe = 0 (4.16)$$

by (4.5), so that Corollary 4.2 and (4.15) give us

$$x^{k-2}exe = 0 = x^{k-1}e. (4.17)$$

Finally, (4.3), (4.12), and (4.17) together imply $x^{k-1} = 0$, contradiction! \Box

We can now summarize our results in the following theorem.

Theorem 4.7. If R is a proper BN(k) ring for $k \ge 2$, then R is BZS,

Proof. This follows directly from Theorem 3.5, Proposition 4.4, and Proposition 4.6. □

References

- G. A. Cannon, M. Farag, L. Kabza, and K. M. Neuerburg, Centers and generalized centers of near-rings without identity defined via Malone-like multiplications, *Math. Pannonica*, 25/2, (2014 - 2015), pp. 3–23.
- [2] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, 2nd ed., Vol. 1, AMS Press, 1964.
- [3] M. Farag, BZS Near-rings, to appear, Southeast Asian Bull. of Math.
- [4] M. Farag, R. P. Tucci, BZS Rings, Palestinian J. of Math., 8(2) (2019), 8 14.
- [5] M. Farag, R. P. Tucci, BZS Rings II, J. of Algebra and Related Topics, Vol.9, No.2, (2021), pp 29 37.
- [6] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, 1995.
- [7] J. J. Malone, Jr., Near-rings with trivial multiplications, Amer. Math. Monthly, 74, No. 9, (1967) 1111 1112.
- [8] R. P. Stanley, Zero Square Rings, Pacific J. of Math., 30, No. 3, (1969), pp. 811 824.
- [9] M. H. Stone, The Theory of Representation for Boolean Algebras, *Trans. of the Amer. Math. Soc.*, 40, No. 1, (Jul., 1936), pp. 37 111.

Author information

Mark Farag, Department of Mathematics, Fairleigh Dickinson University, 1000 River Rd, Teaneck, NJ 07666, USA.

E-mail: mfarag@fdu.edu

Ralph P. Tucci, Department of Mathematics and Computer Science, Loyola University New Orleans, New Orleans, LA 70118, USA. E-mail: tucci@loyno.edu