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Abstract An associative ring R, not necessarily commutative and not necessarily with iden-
tity, is called a BN ring if every element of R is either idempotent or nilpotent. If the index of
nilpotency of the elements is bounded by k, then we call a BN ring R a BN(k) ring. A BN ring
is proper if it is neither Boolean nor nil. We show that any proper BN (k) ring is a BZS, that is
a BN (2), ring.

1 Introduction

This paper generalizes the study of Boolean-zero square or BZS rings, those rings in which
every element is either idempotent or nilpotent of index 2, initiated by the authors in [4] and
[5]. BZS rings generalize both the well-known class of Boolean rings, in which all elements
are idempotent, and zero square rings, in which every nonzero element is nilpotent of index two
(see [9] and [8] for more information about Boolean rings and zero square rings, respectively).
BZS rings are a special case of BZS near-rings, which are studied in [3]; BZS near-rings also
capture the Malone trivial near-rings introduced in [7] and studied, inter alia, in [1]. A proper
BZS ring is a BZ S ring that is neither a Boolean ring nor a zero square ring.

In this paper we investigate BN rings, which are rings in which each element is either idem-
potent or nilpotent. If the index of nilpotency of the elements in a BN ring is bounded by £, then
we call the ring a BN(k) ring. In this notation a BZS ring R is a BN (2) ring. A proper BN ring
is a BN ring which is neither Boolean nor nil. Note that a BN (k) ring is also a BN (k + 1) ring
by definition.

Throughout the paper, R denotes a BN ring, N denotes the set of nilpotent elements of R,
for any integer ¢ > 2 IV; denotes the set of elements of N having index of nilpotency at most
t, and E denotes the set of nonzero idempotent elements of R. We focus mainly on the case in
which R is a proper BN (k) ring.

2 Preliminary Results

In this section we extend two of the results of [4] from BZS rings to BN rings. The following
result is proven for BN (2) rings in [4, Proposition 2.1].

Proposition 2.1. Let (R, +, ) be a proper BN ring such that (R, +) is a cyclic group of order
n > 2. Then either R is isomorphic to the ring of integers modulo 2 or it is a ring with identically
zero multiplication.

Proof. Suppose that g generates R additively. Since R is a BN ring, either g* = 0 for some
k€Zorg-g=g. If g¢ =0, then for all integers 0 < o, 3 < n — 1 we have (ag?) - (Bg?) =
afgPt? since R is distributive; i.e., R is a nil ring. If g - g = g, then ((n — 1)g) - ((n — 1)g) =
(n—=10g-g=1g-g=g#0,50((n—1)g)-((n—1)g) = (n—1)g = —g implies g + g = 0,
so that n = 2 and R is the ring of integers modulo 2. O

The following result is proven for BN (2) rings in [4, Lemma 3.3] and is used extensively in
the sequel.

Lemma 2.2. If R is a BN ring and if e € E, then 2e = Q.
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Proof. Let ¢ € E. Then, for any integer n > 1, (—e)" = so that —e ¢ N.

e if n is even
—e if nis odd

Hence —e = (—¢)? =e. O

3 Proper BN (3) Rings are BZS

In this section we show that any proper BN (3) ring is BZS. In what follows, we use, for an
element a € R, the notation p(a) to indicate multiplication of both sides of an equation by a on
the right and A(a) to indicate multiplication of both sides of an equation by a on the left.

Lemma 3.1. Let R be a proper BN (3) ring, let 0 # e € E, and let © € N,. Then the element
e + x is idempotent.

Proof. If z = 0 then the result is trivial. Assume x # 0.

The proof is by contradiction. Suppose that e + x is nilpotent. Then we must have (e +z)? =
0.

Now by Lemma 2.2 and since x € N>,

e = ex + xe + ere + xex 3.1
Applying A(e) and p(z) to (3.1) we get

ex = ex? + exex + exex + exex?
= exex + exex (3.2)
=0

by Lemma 2.2. Substituting ez = 0 into (3.1) we get e = ze. But then e = e = x(ve) = 2%e =

0, contradiction! O

Lemma 3.2. Let R be a proper BN (3) ring, and let e € E,x € N,. Then
a) exe =0;
b) rex =0;
c) ex + xe = 1.
Proof. If x = O then the results are trivial. Otherwise, e + z is idempotent by Lemma 3.1, and
we get
et+exr+xze=ce+x,
yielding
er + e = . 3.3)
Applying p(e) to (3.3) and simplifying we get exe = 0. Applying A(z) to (3.3) and simpli-
fying we get xex = 0. O

In the next results we apply the preceding lemma to show that a proper BN (3) ring is actually
BZS.

Proposition 3.3. Let R be a proper BN (3) ring, ¢ € E,x € N3, and suppose x & N,. Then
et+x¢E.

Proof. The proof is by contradiction. Suppose e + = € E. Then (e + z)? = e + ex + e + 2% 50
that e + 2 = e + ex + xe + 22, yielding

T =ex+ e+ 2’ 3.4

Applying A(z) to (3.4) we get
22 = zex + z’e. 3.5
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Applying p(z) to (3.4) we get

22 = ex? + zex. 3.6)

From (3.5) and (3.6) we get z2¢ = ex?. But then by Lemma 3.2 ¢) (since 0 # 2% € N,), we have

2% = ex? + z%e = 0, contradiction! O

Proposition 3.4. Let R be a proper BN (3) ring, ¢ € E,x € N3, and suppose x & N,. Then

e+x¢N.

Proof. The proof is by contradiction.
Suppose that (e + x)* = 0. Expanding this equation we get

e = ex + ze + exe + vex + ex’ + z’e. 3.7
Applying both p(e) and A(e) to (3.7) we get

e = exe + exe + exe + erexe + ex’e + ex’e

3.8)
= exe + exexe,
by Lemma 2.2. Applying p(z) to (3.8) we get
ex = (ex)? + (ex)’. 3.9

If ex € N then (ex)? = 0 which implies ex = (ex)?. The only idempotent element in N is 0.
Hence ex = 0. From (3.8) we get e = 0, contradiction! If ez € F then by (3.9) we have that
ex = ex + ex = 0, contradiction! O

Theorem 3.5. If R is a proper BN(3) ring, then R is a BZS ring.

Proof. This follows from Propositions 3.3 and 3.4. O

4 Proper BN (k) Rings are BZS

In this section we complete the proof of our main result: that a proper BN (k) ring is BZ.S for
any integer k > 2.

Lemma 4.1. Let k > 2 be an integer. If R is a proper BN (k) ring, then R does not contain
identity.

Proof. The proof is by contradiction. Suppose R contains identity 1. Since for some ¢t > 2 N,
contains a nonzero element, we have that N, contains a nonzero element. So let 0 = z € N,. If
(1+ ;v)z = 1-+x, then 1 4+ 22 = 1+ =z, which implies « = 0, contradiction! Thus, we must have
(1 +xz)* =0. Since (1 + z)* = 1 + kz, it follows that —kz = 1, so that 0 = (—kz)*> = 12 = 1,
contradiction! O

Corollary 4.2. Let k > 2 be an integer. If R is a proper BN (k) ring and e € E, the ring eRe is
Boolean.

Proof. By the previous result we know that eRe is not a proper BN (k) ring. Since eRe C R,
eRe consists of idempotents and nilpotents. Since e Re has identity, e Re consists only of idem-
potents, and hence is Boolean. O

Lemma 4.3. Let a,b be two elements in a ring R, and m > 1 an integer. Then of the 2" sum-
mands in the formal expansion of (a+b)™, fu+2 do not have any consecutive b’s in them, where
fn is the n" Fibonacci number using the convention f| = f, = 1; of those f,, summands that
do not have any consecutive b’s in them, f,,+1 have a as their leftmost element and f,, have b as
their leftmost element.
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Proof. The proof is by induction. The basis case is m = 1, in which case (a +b)™ = a + b,
and f3 = 2 terms do not have any consecutive b’s in them, f, = 1 of which have leftmost
element a and f; = 1 of which have leftmost element b. For the inductive step, suppose
that the result is true for m = j > 1. Then the expansion of (a + b)7 can be written as
art+o -+ tap, 8+ b4+ By 2+ + Y2y, Where each oy
has leftmost element a and no consecutive b’s, each [; has leftmost element b and no con-
secutive b’s, and each ; contains consecutive b’s. Then (a + b)’*!' = (a + b)(a + b)7 =
aay + aay + -+ +aag,,, +afy +afy + -+ afy, + bay + bag + -+ + bay,, + [ay +
aya + - A ay@i—g,,) T 0B+ b8+ -+ 0By A byt +bya + - 4 byi—y,.,)]- The terms
in brackets will all have consecutive b’s while those not in brackets, f;+1 + f; = f;+2 of which
have leftmost element a and f;;; of which have leftmost element b, will not. Thus the proof is
complete. O

Proposition 4.4. Let R be a proper BN (k) ring, k > 3, e € E, v € Ny, © ¢ Ni_1. Then
e+azF~1¢ N.

Proof. The proof is by contradiction. Assume that e + 2%~ € N. Then both
(e+a*NHr =0 4.1)

and
(e + P hHE = 0. (4.2)

By the previous lemma, (at least) one of the expansions of the left-hand sides of (4.1) or (4.2)
contains an odd number of summands that do not contain consecutive products of z*~!. Ap-
plying A(e) and p(e) to that equation, and noting that terms containing consecutive products of
2#~1 equal zero when k > 3, we find by using Corollary 4.2 that the remaining terms are e and
products of the form

so that
e = AexF e,
where A is an even number. Since A is even, we obtain from Lemma 2.2 that
e=0,

contradiction! O

Proposition 4.5. Let R be a proper BN (k) ring, k > 4, ¢ € E, v € Ny, © ¢ Ni_1. Then
e+aF2¢ N.

Proof. The proof follows mutatis mutandis from the previous result since (z¥=2)? = 0 for k > 4.
O

Proposition 4.6. Let R be a proper BN (k) ring, k > 4, ¢ € E, v € Ny, © ¢ Ni_1. Then
e+axF1 ¢ E.

Proof. By the previous two results, we must have e + 2zF~! € E and e + 272 € E. So
(e + 2F 1?2 = e+ 2F~1, implying
2Pl = el 4 2h e “4.3)
and (e + 2F72)? = e + 22, implying
"7 = exk 72 4 2k 2. 4.4

(Note that here we use k¥ > 4 to conclude that (zF=2)2> = 0.) Applying p(x) and \(x)
separately to (4.3) yields, respectively,
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ez =0 4.5)
and

rex~1 = 0. (4.6)
Applying A(e) to (4.3) yields

exF~le=0 4.7

Now substituting (4.4) into (4.3) we find
kol = ex(eosk72 + xkfze) + 2P e = exexF? + e e + 2P e, 4.8)
so that by (4.7) we have
2" = exexh? 4 2P e, 4.9
whence comparison of this last equation to (4.3) implies that
exer® 2 = exk 1. (4.10)
Applying A(ex) to this last equation now gives
exerex" 2 = exer® 1 =0 4.11)

by (4.6), so that Corollary 4.2 and (4.10) give us

exer" 2 =0=ez" . “4.12)
Now combining (4.9) with (4.4) gives us
2P = exext % + (ea:k*2 + xkfze)xe = exex® 2 4 ex¥ e + 2F 2exe, (4.13)
so that (4.7) implies
2P = exex® % + 2F 2exe. 4.14)

Comparing (4.14) with (4.3) using (4.10) yields

zF2exe = 2F le. 4.15)
Applying p(ze) to this last equation implies
zF2erexe = ¥ lere = 0 (4.16)
by (4.5), so that Corollary 4.2 and (4.15) give us
" 2eze = 0 = 2" le. 4.17)
Finally, (4.3), (4.12), and (4.17) together imply 2*~! = 0, contradiction! O
We can now summarize our results in the following theorem.

Theorem 4.7. If R is a proper BN (k) ring for k > 2, then R is BZS,

Proof. This follows directly from Theorem 3.5, Proposition 4.4, and Proposition 4.6. O
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