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Abstract Let R be a commutative ring with unity and M be an R-module. The aim of this
article is to introduce and investigate certain properties of a new class of submodules namely
e-secondary submodules. A submodule N of M is said to be e-secondary if the endomorphism
given by multiplication by a, a ∈ R, that is, f : N → N such that f(N) = aN, then either aN ≤e M
or atN = 0, for some t ∈ N . This notion is then further extended to introduce fully e-secondary
submodules of a module.

1 Introduction

Let R be a ring with unity and M be an R-module. A non-zero submodule N of M is called
essential if N ∩ L ̸= {0} for every non-zero submodule L of M [4]. A non-zero submodule S
of M is said to be secondary if for each a ∈ R, the endomorphism of S given by multiplication
by a is either surjective or nilpotent [12]. A non-zero submodule S of M is said to be second if
for each a ∈ R, the homomorphism of S given by multiplication by a is either surjective or zero
[17]. A submodule N of M is called closed if N has no proper essential extention in M, i.e, if N
≤e K ≤ M then N = K [4]. A module M is called uniform if the intersection of any two non-zero
submodules of M is non-zero [18]. The R-module M is called faithful if rM = 0 (r ∈ R) implies
r = 0 [6].
The first section of this article investigates various properties of e-secondary submodules and
its relation with other classes of modules. The second section further extends the notion of e-
secondary submodules to fully e-secondary submodules. The intersection and direct sum of fully
e-secondary submodules have been discussed. A module M is called a multiplication module if
every submodule N of M can be expressed as N = IM for some ideal I of R [7]. The third sec-
tion of this paper deals with the behaviour of e-secondary submodules in multiplication modules.

Throughout this article, R will denote a commutative ring with unity and Z , Q , R denotes
the set of integers, rationals and reals respectively.

2 e-secondary submodules of a module

In this section we define e-secondary submodules of a module. Certain properties of this class
of modules is studied and its connection with other types of modules is investigated.

Definition 2.1. Let M be an R-module. A submodule N of M is said to be e-secondary if the
endomorphism given by multiplication by a, a ∈ R, that is, f : N → N such that f(N) = aN, then
aN ≤e M or atN = 0, for some t ∈ N .

Examples:
1) R = Z ; M = Z ; N = nZ where n ∈ Z . Consider f : nZ→ nZ such that f(nZ ) = anZ ,(a ∈ Z ).
When a = 0, we get anZ = 0 and anZ ≤e Z when a ̸= 0.

2) Consider the Z module Z4 . Submodules of Z4 are : {0} = I, {0, 2} = N, Z4 . Consider f :
N → N such that f(N) = aN, (a ∈ Z ). When a = 2m, m ∈ Z , we have aN = 0 and when a = 2m
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+ 1, m ∈ Z , we get aN = {0, 2} ≤e Z4 .

3) Let M be a divisible R-module. Then M is an e-secondary submodule of itself. This fol-
lows from the definition that if M is a divisible module then rM = M for every non-zero r ∈ R
and the fact that M is always an essential submodule of itself.

4) The R-module (0) = M is trivially considered as e-secondary as for any a ∈ R and any
endomorphism f : M → M such that f(M) = aM, then we get atM = 0, t ∈ N .

Remark 2.2. Submodule of e-secondary need not be e-secondary in general.
For example : Let us consider the Z module R .Then R is a submodule of itself. Consider f :

R → R such that f(R) = aR , (a ∈ Z ). Then for a non-zero a ∈ Z, aR ≤e R and aR = 0 when a
= 0. But the submodule Q of R is not e-secondary as the intersection of submodule aQ with the
submodule Qc ∪ {0} of R is zero, that is, aQ ∩ (Qc ∪ {0}) = 0 .

Proposition 2.3. Every non-zero e-secondary submodule of a module is essential.

Proof. Let M be an R-module and N be a non-zero e-secondary submodule of M. Since aN ⊆ N
and aN ∩ L ̸= {0}, for all L ≤ M, this implies N ∩ L ̸= {0}. Thus, N is essential in M.
Note: Here we have used the fact that aN ≤e M for atleast one a ∈ R. Since aN ≤e M or atN =
0 holds for every a ∈ R, so for a = 1(unity of R), we get atN = 1tN = N ̸= 0. Therefore 1.N ≤e M.

Theorem 2.4. Let M and X be R-modules and N be a non-zero e-secondary submodule of M. Let
g: M → X be a homomorphism and f be the restriction of g on N. If f is a monomorphism, then
so is g.

Proof. As N is e-secondary, by previous result N is also essential. Given that f is the restriction
of g on N, i.e, f: N → X. Let x ∈ N ∩ Kerg. This implies x ∈ N and x ∈ Kerg. Therefore, x ∈
N and g(x) = 0, which ultimately gives f(x) = 0 (since f is the restriction of g on N). As f is a
monomorphism, so f(x) = 0 implies x = 0. Therefore, N ∩ Kerg = (0). Since N ≤e M and Kerg
≤ M, we get Kerg = {0}. Thus, g is a monomorphism.

Remark 2.5. Essential submodule need not be e-secondary.

For example : Consider the Z module Z6 .The submodules are: {0}, {0, 2, 4}, {0, 3}, Z6
.Then Z6 ≤e Z6 . But consider the endomorphism f : Z6 → Z6 such that f(x) = 2x , (x ∈ Z6 ).
Then 2Z6 = {0, 2, 4} and {0, 2, 4} ∩ {0, 3} = {0}. Therefore, 2Z6 is not essential in Z6 and
also 2tZ6 ̸= 0 for any t ∈ N . Thus, Z6 is an essential submodule of Z6 but is not an e-secondary
submodule.

Proposition 2.6. Let M be an R-module where R is a field. Let N be a cyclic submodule of M
such that N is also essential in M. Then N is an e-secondary submodule of M.

Proof. Since N is cyclic, so by definition there exists some m ∈ M such that N is of the form N
= {rm : r ∈ R}. Consider the endomorphism f: N → N given by multiplication by a, a ∈ R, i.e,
f(N) = aN. Now aN = a(Rm)= (aR)m = Rm = N and since N is essential in M, so aN ≤e M.

Remark 2.7. There are submodules which are both essential and e-secondary.

Example:
1) A simple module is both an essential as well as an e-secondary submodule (of itself).
2) Submodule N = {0, 2} of Z4 is both essential and e-secondary.
3) Every uniform module is both essential and e-secondary.

In [21] Heuberger gave an equivalent definition of an essential submodule as : The submodule
N of the right R-module M is essential in M if for all 0 ̸= x ∈ M, r ∈ R and n ∈ Z exists, such
that 0 ̸= xr + nx ∈ N.
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Theorem 2.8. Let K, N be submodules of an R-module M such that N ≤ K ≤ M. If K is an e-
secondary submodule of M, then the submodule K

N is an e-secondary submodule of the quotient
module M

N .

Proof. Consider the endomorphism f from K
N to K

N given by multiplication by a, a ∈ R, ie, f
(x+N) = a(x+N), x ∈ K.
Case 1: aK ≤e M
Then using the above mentioned definition, we get for all non-zero x in M, r ∈ R and n ∈ Z
exists, such that 0 ̸= xr + nx ∈ aK. This implies (xr + nx) + N ∈ aK + N. Thus, a(KN ) ≤e

M
N

Case 2: If atx = 0, then at(x+N) = atx + atN = 0 + N = N. Therefore, at(x+N) = 0 in M
N .

Remark 2.9. The concept of secondary and e-secondary need not imply each other.

Example: (i) Z as a Z module is e-secondary but not secondary as nZ ≤e Z for all n ∈ Z but
nZ ̸= Z for any n ̸= 1, -1 and nZ = 0 only when n = 0.
(ii) Consider the Z module Z6 .The submodule N = {0, 3} of Z6 is secondary as for every a ∈ Z
, aN = N or atN = 0 but N is not e-secondary.

Proposition 2.10. Let N be a non-zero secondary submodule of M. Then N is an e-secondary
submodule of M if and only if N is essential in M.

Proof. Let M be an R module and N be a secondary submodule of M. Then for any endomor-
phism f : N → N such that f(N) = aN (a ∈ R), we have either aN = N (i.e surjective) or atN = 0.
Suppose N is an essential submodule of M. If atN = 0 then result holds trivially. If aN = N, then
N being essential, we get aN ≤e M. Thus, N is an e-secondary submodule of M.
Conversely, let N be an e-secondary submodule of M. Result follows from prop 2.3.

Corollary 2.11. Let N be a non-zero second submodule of M. Then N is an e-secondary submod-
ule of M if and only if N is essential in M.

Proof. Since every second submodule is also a secondary submodule, so result follows from the
previous proposition.

Proposition 2.12. Let M be an R-module and N be an e-secondary submodule of M. If every
submodule of N is a closed submodule of N, then N is a secondary submodule of M.

Proof. Consider the endomorphism from N to N given by multiplication by a, for any a ∈ R, i.e,
f : N → N such that f(N) = aN. Since N is e-secondary, if atN = 0, then result holds trivially. If
not, then aN ≤e M. This implies aN ≤e N. But aN being a closed submodule of N, aN ≤e N ≤
M implies that aN = N. Thus, N is a secondary submodule of M.

Theorem 2.13. Let M1, M2 be R-modules and g: M1 → M2 be an isomorphism. If N is an
e-secondary submodule of M1, then g(N) is an e-secondary submodule of M2.

Proof. Since N is an e-secondary submodule of M1, so for any endomorphism f : N → N
such that f(N) = aN, a ∈ R, then aN ≤e M1 or atN = 0. Suppose atN = 0. As g is one-one
homomorphism, g(atN) = g(0) = 0, i.e atg(N) = 0. Now, suppose aN ≤e M1. This implies aN ∩
L ̸= {0} for any non-zero submodule L of M1. As g is an isomorphism, so g(aN ∩ L) ̸= g(0) =
{0}. This implies g(aN) ∩ g(L) ̸= {0}. Since g is a homomorphism, this gives ag(N) ∩ g(L) ̸=
{0}. As g(L) is an arbitrary submodule of M2, thus we get g(N) is an e-secondary submodule of
M2.

Recall that any monomorphism f : A → B is said to be an essential monomorphism if Imf ≤e

B [4].

Lemma 2.14. Let M be an R module and f be an endomorphism from M to M given by multiplica-
tion by a, for any a ∈ R. If f is an essential monomorphism, then M is an e-secondary submodule
of itself.

Proof. Follows from the definition.
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Recall that a module M is called a Quasi-dedekind module if for each endomorphism f of M,
f ̸= 0, then kerf = 0 [19].

Proposition 2.15. Let M be an R-module, where R is a boolean ring. If M is a quasi dedekind
module, then M is also e-secondary.

Proof. Consider an endomorphism f : M → M given by multiplication by a, a ∈ R. Claim: f2

= f . Let x ∈ M. Consider f2(x) = f (f (x)) = f (ax) = a.(ax) = a2x = ax (since R is a boolean ring
so a2 = a). Also, f (x) = ax. This implies f2(x) = f (x) ⇒ f2 = f . Let x ∈ M; then f (x) ∈ M. Let
y = x - f (x) ⇒ f (y) = f (x - f (x)) = f (x) - f2(x) = f (x) - f (x) (since f2 = f ). Thus f (y) = 0 ⇒ y
∈ Kerf . Since Kerf = 0, we get y = 0 ⇒ x - f (x) = 0 ⇒ f (x) = x ⇒ f is an identity mapping and
therefore f(m) = m for every m ∈ M which implies f(M) = aM = M ≤e M.

Corollary 2.16. If M is a finitely generated quasi-dedekind module, then M is e-secondary.

Proof. Follows from the fact that if M is a finitely generated quasi-dedekind module then M is
uniform and every uniform submodule is e-secondary.

Theorem 2.17. Let M be an R-module and N be a submodule of M. The following are equivalent:
(1) N is an e-secondary submodule of M.
(2) For every ideal I of R, either ItN = 0 for some t ∈ N or IN ≤e M where It = {it : i ∈ I}.

Proof. (1) ⇒ (2) : If ItN = 0, then result holds trivially. If not, then there exists some a ∈ I such
that atN ̸= 0. This implies aN ̸= 0 ⇒ aN ≤e M ⇒ aN ≤e IN. Thus, we get IN ≤e M (using
Lemma 2.3 [20]).
(2) ⇒ (1) : Clearly.

3 Fully e-secondary submodules

In this section we study a particular case of e-secondary submodule and name it as fully e-
secondary submodule of a module. Various properties exhibited by this class of modules is
explored along with its interaction with other types of modules.

Definition 3.1. Let M be an R-module. A submodule N of M is said to be fully e-secondary if
the endomorphism given by multiplication by a, a ∈ R, that is, f : N → N such that f(N) = aN,
then aN ≤e M and if atN = 0 for any t ∈ N, then a = 0.
Example: Z as a Z module is fully e-secondary.

Proposition 3.2. Let M be an R-module. If N is a fully e-secondary submodule of M, then every
submodule of M containing N is also fully e-secondary.

Proof. Let N be a fully e-secondary submodule of M and K be a submodule of M containing N.
So N ≤ K implies aN ≤ aK (a ∈ R). As aN ≤e M, so aN ∩ L ̸= {0}, for all L ≤ M. Since aN ≤
aK, therefore aK ∩ L ̸= {0}. Thus aK ≤e M.

Remark 3.3. Every fully e-secondary submodule is e-secondary. However, the converse need
not be true in general.
Example: Consider the submodule N = {0, 2} of the Z module Z4 . Then N is e-secondary but
not fully e-secondary as 2N = 0 but 2 ̸= 0.

Lemma 3.4. Every fully e-secondary submodule is faithful.

Proof. Since N is fully-secondary, so ann(N) = {0} which implies N is faithful.

The converse need not be true in general.
Example: The submodule Q of the Z -module R is faithful but it is not e-secondary and thus is
not fully e-secondary.

Theorem 3.5. Let M be an R-module where R is a reduced ring. Then every e-secondary sub-
module N of M is fully e-secondary if and only if N is faithful.
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Proof. Let N be fully e-secondary. Then N is faithful by Prop 3.4.
Conversely, let N be a faithful submodule of M. Since N is e-secondary, so either aN ≤e M or
atN = 0 for any a ∈ R. If aN ≤e M for all non-zero a ∈ R, then result is true. Suppose for some
a ∈ R, atN = 0. As N is faithful so atN = 0 ⇒ at = 0 ⇒ a = 0 (as R is a reduced ring). Thus, N
is fully e-secondary.

Remark 3.6. Intersection of two non-zero submodules of a module may be fully e-secondary
even if the submodules themselves are not fully e-secondary.
Example: Consider the Z module Z6 . Intersection of its submodule N1 = {0, 2, 4} and N2 =
{0, 3} is N1 ∩ N2 = {0} which is fully e-secondary (trivially) but neither N1 nor N2 is fully
e-secondary.

Theorem 3.7. Direct sum of fully e-secondary submodules is again fully e-secondary.

Proof. Let M be an R-module and N1 and N2 be two fully e-secondary submodules of M. Then
aN1 ≤e M and aN2 ≤e M. Since direct sum of essential is again essential, we get aN1

⊕
aN2

≤e M. This implies a(N1
⊕

N2) ≤e M.

In [5], Ahmed introduced the notion of essential second modules and defined it as: Let M be
an R-module. Then M is said to be essential second when for any a ∈ R, either Ma = 0 or Ma ≤e

M.

Proposition 3.8. Every fully e-secondary submodule of M is essential second.

Proof. Consider a fully e-secondary submodule N of an R-module M. Then for any non-zero a
∈ R, aN ≤e M which implies aN ≤e N.

The converse however need not be true in general.
Example: The submodule N = {0, 3} of the Z module Z6 is essential second as aN ≤e N for
every a ∈ Z . Now consider the submodule K = {0, 2, 4} of Z6 . Since N ∩ K = {0}, so 1.N ≰e

M. Thus, N is not e-secondary and therefore, not fully e-secondary.

4 e-secondary submodules in multiplication modules

This section is dedicated to the study of e-secondary submodules and its behaviour in multipli-
cation modules. The following two propositions discusses its relation with the essential ideals of
the ring.

Proposition 4.1. Let M be a faithful multiplication R-module. Let N be a submodule of M such
that N = IM. If N is fully e-secondary then I is an essential ideal of R.

Proof. Let if possible I is not an essential ideal of R. Then there exists some ideal S of R such
that I ∩ S = 0. Since M is a faithful multiplication module, so (0) = (I ∩ S)M = IM ∩ SM = N ∩
SM [22, Th. 1.7]. As N is fully e-secondary, so N is essential and thus N ∩ SM = 0 implies SM
= 0 which implies S = 0 (as M is faithful).

Proposition 4.2. Let M be a faithful multiplication R-module. If every ideal of R is essential in
R then M is fully e-secondary.

Proof. Suppose M is not fully e-secondary. Then there exists a submodule S of M such that aM
∩ S = 0 for some non-zero a ∈ R, which implies < a > M ∩ S = 0. Denoting the ideal < a > = I,
we get IM ∩ S = 0. Since M is a multiplication module, there exists some ideal K such that S =
KM. Therefore, we get IM ∩ KM = 0 ⇒ (I ∩ K)M = 0 ⇒ I ∩ K = 0 as M is faithful. But I being
an essential ideal, I ∩ K = 0 implies K = 0. Thus, S = 0 and so aM ≤e M.

Theorem 4.3. Let M be a non-zero multiplication R-module having a unique maximal submodule
N. If N is secondary, then N is also e-secondary.
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Proof. Let N be a secondary submodule of M and a be any arbitrary element of ring R.
Case 1: If atN = 0 for some t ∈ N, then result holds clearly.
Case 2: If atN ̸= 0, then aN = N.
Suppose N is not e-secondary. Then there exists a submodule K of M such that aN ∩ K = 0
⇒ N ∩ K = 0. Since M is a multiplication module, so by [4] K is contained in some maximal
submodule of M. But N is the only maximal submodule of M and so K ⊆ N. Therefore N ∩ K =
0 ⇒ K = 0 ⇒ N is essential in M. Using Prop 2.10, N is an e-secondary submodule of M.
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