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Abstract Let R be a commutative ring with unity and M be an R-module. The aim of this
article is to introduce and investigate certain properties of a new class of submodules namely
e-secondary submodules. A submodule N of M is said to be e-secondary if the endomorphism
given by multiplication by a, a € R, that is, f : N — N such that f(N) = aN, then either aN <. M
or a*N = 0, for some t € N . This notion is then further extended to introduce fully e-secondary
submodules of a module.

1 Introduction

Let R be a ring with unity and M be an R-module. A non-zero submodule N of M is called
essential if N N L # {0} for every non-zero submodule L of M [4]. A non-zero submodule S
of M is said to be secondary if for each a € R, the endomorphism of S given by multiplication
by a is either surjective or nilpotent [12]. A non-zero submodule S of M is said to be second if
for each a € R, the homomorphism of S given by multiplication by a is either surjective or zero
[17]. A submodule N of M is called closed if N has no proper essential extention in M, i.e, if N
<. K <M then N =K [4]. A module M is called uniform if the intersection of any two non-zero
submodules of M is non-zero [18]. The R-module M is called faithful if rM = 0 (r € R) implies
r=01[6].

The first section of this article investigates various properties of e-secondary submodules and
its relation with other classes of modules. The second section further extends the notion of e-
secondary submodules to fully e-secondary submodules. The intersection and direct sum of fully
e-secondary submodules have been discussed. A module M is called a multiplication module if
every submodule N of M can be expressed as N = IM for some ideal I of R [7]. The third sec-
tion of this paper deals with the behaviour of e-secondary submodules in multiplication modules.

Throughout this article, R will denote a commutative ring with unity and Z , Q , R denotes
the set of integers, rationals and reals respectively.

2 e-secondary submodules of a module

In this section we define e-secondary submodules of a module. Certain properties of this class
of modules is studied and its connection with other types of modules is investigated.

Definition 2.1. Let M be an R-module. A submodule N of M is said to be e-secondary if the
endomorphism given by multiplication by a, a € R, that is, f : N — N such that f(N) = aN, then
aN <, Mora!N=0, forsomete N .

Examples:
1DR=Z;M=7%;N=nZwheren € Z . Consider f : nZ — nZ such that f(nZ ) = anZ ,(a € Z).
When a =0, we get anZ =0 and anZ <. Z when a # 0.

2) Consider the Z module Z4 . Submodules of Z4 are : {0} =1, {0, 2} =N, Z4 . Consider f :
N — N such that f(N) = aN, (a € Z ). When a=2m, m € Z , we have aN = 0 and when a = 2m
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+1,meZ,wegetaN={0,2} <., Z4.

3) Let M be a divisible R-module. Then M is an e-secondary submodule of itself. This fol-
lows from the definition that if M is a divisible module then rM = M for every non-zero r € R
and the fact that M is always an essential submodule of itself.

4) The R-module (0) = M is trivially considered as e-secondary as for any a € R and any
endomorphism f : M — M such that f(M) = aM, then we geta’'M =0,t € N,

Remark 2.2. Submodule of e-secondary need not be e-secondary in general.

For example : Let us consider the Z module R .Then R is a submodule of itself. Consider f :
R — R such that f(R) = aR , (a € Z ). Then for a non-zero a € Z, aR <, R and aR = 0 when a
= (. But the submodule Q of R is not e-secondary as the intersection of submodule aQQ with the
submodule Q¢ U {0} of R is zero, that is, aQ N (Q° U {0}) =0.

Proposition 2.3. Every non-zero e-secondary submodule of a module is essential.

Proof. Let M be an R-module and N be a non-zero e-secondary submodule of M. Since aN C N
and aN N L # {0}, for all L < M, this implies N N L # {0}. Thus, N is essential in M.

Note: Here we have used the fact that aN <. M for atleast one a € R. Since aN <. M or a!N =
0 holds for every a € R, so for a = 1(unity of R), we get aN = 1*N =N # 0. Therefore 1.N <, M.

O

Theorem 2.4. Let M and X be R-modules and N be a non-zero e-secondary submodule of M. Let
g: M — X be a homomorphism and f be the restriction of g on N. If f is a monomorphism, then
S0 s g.

Proof. As N is e-secondary, by previous result N is also essential. Given that f is the restriction
of gon N, i.e, f: N — X. Let x € N N Kerg. This implies x € N and x € Kerg. Therefore, x €
N and g(x) = 0, which ultimately gives f(x) = 0 (since f is the restriction of g on N). As fis a
monomorphism, so f(x) = 0 implies x = 0. Therefore, N N Kerg = (0). Since N <. M and Kerg
<M, we get Kerg = {0}. Thus, g is a monomorphism. O

Remark 2.5. Essential submodule need not be e-secondary.

For example : Consider the Z module Z¢s .The submodules are: {0}, {0, 2, 4}, {0, 3}, Z¢
.Then Z¢ <. Z¢ . But consider the endomorphism f : Z¢s — Zg¢ such that f(x) = 2x , (x € Zg¢ ).
Then 2Z¢ = {0, 2, 4} and {0, 2, 4} N {0, 3} = {0}. Therefore, 2Z¢ is not essential in Zg and
also 2¢Z¢ # 0 for any t € N . Thus, Zg is an essential submodule of Zg but is not an e-secondary
submodule.

Proposition 2.6. Let M be an R-module where R is a field. Let N be a cyclic submodule of M
such that N is also essential in M. Then N is an e-secondary submodule of M.

Proof. Since N is cyclic, so by definition there exists some m € M such that N is of the form N
= {rm : r € R}. Consider the endomorphism f: N — N given by multiplication by a, a € R, i.e,
f(N) = aN. Now aN = a(Rm)= (aR)m = Rm = N and since N is essential in M, so aN <, M. O

Remark 2.7. There are submodules which are both essential and e-secondary.

Example:
1) A simple module is both an essential as well as an e-secondary submodule (of itself).
2) Submodule N = {0, 2} of Z4 is both essential and e-secondary.
3) Every uniform module is both essential and e-secondary.

In [21] Heuberger gave an equivalent definition of an essential submodule as : The submodule
N of the right R-module M is essential in M if for all 0 # x € M, r € R and n € Z exists, such
that 0 £ xr + nx € N.
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Theorem 2.8. Let K, N be submodules of an R-module M such that N < K < M. If K is an e-
secondary submodule of M, then the submodule % is an e-secondary submodule of the quotient
module % .

Proof. Consider the endomorphism f from % to % given by multiplication by a, a € R, ie, f
(x+N) = a(x+N), x € K.

Case 1: aK <, M

Then using the above mentioned definition, we get for all non-zero x in M, r € R and n € Z
exists, such that 0 # xr + nx € aK. This implies (xr + nx) + N € aK + N. Thus, a(% ) <e %
Case 2: If a'x = 0, then a’(x+N) = a'x + a’N = 0 + N = N. Therefore, a’(x+N) =0 in & . o

Remark 2.9. The concept of secondary and e-secondary need not imply each other.

Example: (i) Z as a Z module is e-secondary but not secondary as nZ <. Z for all n € Z but
nZ # 7Z for any n # 1, -1 and nZ = 0 only when n = 0.
(i1) Consider the Z module Zg .The submodule N = {0, 3} of Zg is secondary as for every a € Z
,aN =N or a*N = 0 but N is not e-secondary.

Proposition 2.10. Let N be a non-zero secondary submodule of M. Then N is an e-secondary
submodule of M if and only if N is essential in M.

Proof. Let M be an R module and N be a secondary submodule of M. Then for any endomor-
phism f : N — N such that f(N) = aN (a € R), we have either aN = N (i.e surjective) or a’!N = 0.
Suppose N is an essential submodule of M. If a’N = 0 then result holds trivially. If aN = N, then
N being essential, we get aN <., M. Thus, N is an e-secondary submodule of M.

Conversely, let N be an e-secondary submodule of M. Result follows from prop 2.3. O

Corollary 2.11. Let N be a non-zero second submodule of M. Then N is an e-secondary submod-
ule of M if and only if N is essential in M.

Proof. Since every second submodule is also a secondary submodule, so result follows from the
previous proposition. O

Proposition 2.12. Let M be an R-module and N be an e-secondary submodule of M. If every
submodule of N is a closed submodule of N, then N is a secondary submodule of M.

Proof. Consider the endomorphism from N to N given by multiplication by a, for any a € R, i.e,
f: N — N such that f(N) = aN. Since N is e-secondary, if a’N = 0, then result holds trivially. If
not, then aN <, M. This implies aN <, N. But aN being a closed submodule of N, aN <, N <
M implies that aN = N. Thus, N is a secondary submodule of M. O

Theorem 2.13. Let M, M, be R-modules and g: M, — M, be an isomorphism. If N is an
e-secondary submodule of M, then g(N) is an e-secondary submodule of M,.

Proof. Since N is an e-secondary submodule of Mj, so for any endomorphism f : N — N
such that f(N) = aN, a € R, then aN <., M; or a!N = 0. Suppose a!N = 0. As g is one-one
homomorphism, g(a'N) = g(0) = 0, i.e a’g(N) = 0. Now, suppose aN <, M. This implies aN N
L # {0} for any non-zero submodule L of M. As g is an isomorphism, so g(aN N L) # g(0) =
{0}. This implies g(aN) N g(L) # {0}. Since g is a homomorphism, this gives ag(N) N g(L) #
{0}. As g(L) is an arbitrary submodule of M, thus we get g(N) is an e-secondary submodule of
Mz. O

Recall that any monomorphism f: A — B is said to be an essential monomorphism if Imf <,
B [4].

Lemma 2.14. Let M be an R module and f be an endomorphism from M to M given by multiplica-
tion by a, for any a € R. If f is an essential monomorphism, then M is an e-secondary submodule

of itself.

Proof. Follows from the definition. O
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Recall that a module M is called a Quasi-dedekind module if for each endomorphism f of M,
f £ 0, then kerf =0 [19].

Proposition 2.15. Let M be an R-module, where R is a boolean ring. If M is a quasi dedekind
module, then M is also e-secondary.

Proof. Consider an endomorphism f : M — M given by multiplication by a, a € R. Claim: f>
= f . Let x € M. Consider f%(x) = f(f(x)) = f(ax) = a.(ax) = a’x = ax (since R is a boolean ring
so a? = a). Also, f(x) = ax. This implies f2(x) = f(x) = f? = f. Let x € M; then f(x) € M. Let
y=x- f0 = f(y) = f(x- f()) = fX) - f2(x) = f(X) - fx) (since f2 = f). Thus f(y)=0=y
€ Kerf. Since Kerf =0, we gety =0 = x - f(x) =0 = f(x) =x = fis an identity mapping and
therefore f(m) = m for every m € M which implies f{(M) =aM =M <, M. O

Corollary 2.16. If M is a finitely generated quasi-dedekind module, then M is e-secondary.

Proof. Follows from the fact that if M is a finitely generated quasi-dedekind module then M is
uniform and every uniform submodule is e-secondary. O

Theorem 2.17. Let M be an R-module and N be a submodule of M. The following are equivalent:
(1) N is an e-secondary submodule of M.
(2) For every ideal I of R, either I'N = 0 for some t € N or IN <, M where I'* = {it : i € I}.

Proof. (1) = (2) : If I'N = 0, then result holds trivially. If not, then there exists some a € I such
that a’N # 0. This implies aN # 0 = aN <, M = aN <. IN. Thus, we get IN <, M (using
Lemma 2.3 [20]).

(2) = (1) : Clearly. O

3 Fully e-secondary submodules

In this section we study a particular case of e-secondary submodule and name it as fully e-
secondary submodule of a module. Various properties exhibited by this class of modules is
explored along with its interaction with other types of modules.

Definition 3.1. Let M be an R-module. A submodule N of M is said to be fully e-secondary if
the endomorphism given by multiplication by a, a € R, that is, f : N — N such that f(N) = aN,
then aN <, M and if !N =0 for any t € N, then a = 0.

Example: Z as a Z module is fully e-secondary.

Proposition 3.2. Let M be an R-module. If N is a fully e-secondary submodule of M, then every
submodule of M containing N is also fully e-secondary.

Proof. Let N be a fully e-secondary submodule of M and K be a submodule of M containing N.
So N < K implies aN < aK (a € R). As aN <. M, so aN N L # {0}, for all L < M. Since aN <
aK, therefore aK N L ## {0}. Thus aK <, M.

|

Remark 3.3. Every fully e-secondary submodule is e-secondary. However, the converse need
not be true in general.

Example: Consider the submodule N = {0, 2} of the Z module Z4 . Then N is e-secondary but
not fully e-secondary as 2N = 0 but 2 # 0.

Lemma 3.4. Every fully e-secondary submodule is faithful.
Proof. Since N is fully-secondary, so ann(N) = {0} which implies N is faithful. O

The converse need not be true in general.
Example: The submodule QQ of the Z -module R is faithful but it is not e-secondary and thus is
not fully e-secondary.

Theorem 3.5. Let M be an R-module where R is a reduced ring. Then every e-secondary sub-
module N of M is fully e-secondary if and only if N is faithful.
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Proof. Let N be fully e-secondary. Then N is faithful by Prop 3.4.

Conversely, let N be a faithful submodule of M. Since N is e-secondary, so either aN <., M or
a'N =0 for any a € R. If aN <, M for all non-zero a € R, then result is true. Suppose for some
a € R, a'N=0. As N is faithful so a!N =0 = o’ =0 = a =0 (as R is a reduced ring). Thus, N
is fully e-secondary. O

Remark 3.6. Intersection of two non-zero submodules of a module may be fully e-secondary
even if the submodules themselves are not fully e-secondary.

Example: Consider the Z module Z¢ . Intersection of its submodule N; = {0, 2, 4} and N, =
{0, 3} is N; N N, = {0} which is fully e-secondary (trivially) but neither N; nor N, is fully
e-secondary.

Theorem 3.7. Direct sum of fully e-secondary submodules is again fully e-secondary.

Proof. Let M be an R-module and N; and N, be two fully e-secondary submodules of M. Then
aN; <. M and aN, <. M. Since direct sum of essential is again essential, we get aN; @ aN,
<. M. This implies a(N; @ N,) <. M. O

In [5], Ahmed introduced the notion of essential second modules and defined it as: Let M be
an R-module. Then M is said to be essential second when for any a € R, either Ma = 0 or Ma <,
M.

Proposition 3.8. Every fully e-secondary submodule of M is essential second.

Proof. Consider a fully e-secondary submodule N of an R-module M. Then for any non-zero a
€ R, aN <. M which implies aN <. N. O

The converse however need not be true in general.
Example: The submodule N = {0, 3} of the Z module Z¢ is essential second as aN <. N for
every a € Z . Now consider the submodule K = {0, 2, 4} of Z¢ . Since NN K = {0}, so 1.N ﬁe
M. Thus, N is not e-secondary and therefore, not fully e-secondary.

4 e-secondary submodules in multiplication modules

This section is dedicated to the study of e-secondary submodules and its behaviour in multipli-
cation modules. The following two propositions discusses its relation with the essential ideals of
the ring.

Proposition 4.1. Let M be a faithful multiplication R-module. Let N be a submodule of M such
that N = IM. If N is fully e-secondary then I is an essential ideal of R.

Proof. Let if possible I is not an essential ideal of R. Then there exists some ideal S of R such
that I N S = 0. Since M is a faithful multiplication module, so (0)=(INSM=IMNSM=NnN
SM [22, Th. 1.7]. As N is fully e-secondary, so N is essential and thus N N SM = 0 implies SM
= 0 which implies S = 0 (as M is faithful). O

Proposition 4.2. Let M be a faithful multiplication R-module. If every ideal of R is essential in
R then M is fully e-secondary.

Proof. Suppose M is not fully e-secondary. Then there exists a submodule S of M such that aM
N S =0 for some non-zero a € R, which implies < a > M N S = 0. Denoting the ideal <a > =1,
we get IM N S =0. Since M is a multiplication module, there exists some ideal K such that S =
KM. Therefore, we get IMN KM =0 = (INK)M =0 = 1N K =0 as M is faithful. But I being
an essential ideal, I N K = 0 implies K = 0. Thus, S =0 and so aM <, M. O

Theorem 4.3. Let M be a non-zero multiplication R-module having a unique maximal submodule
N. If N is secondary, then N is also e-secondary.
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Proof. Let N be a secondary submodule of M and a be any arbitrary element of ring R.

Case 1: If a*N = 0 for some t € N, then result holds clearly.

Case 2: If a!'N # 0, then aN = N.

Suppose N is not e-secondary. Then there exists a submodule K of M such that aN N K =0
= N N K =0. Since M is a multiplication module, so by [4] K is contained in some maximal
submodule of M. But N is the only maximal submodule of M and so K C N. Therefore N N K =
0 = K=0= Nis essential in M. Using Prop 2.10, N is an e-secondary submodule of M. O
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