SOME ASPECTS OF E-SECONDARY SUBMODULES

Hiya Saharia and Helen K. Saikia

Communicated by Madeleine Al-Tahan

MSC 2020 Classifications: 13C05, 13C13, 13C99.

Keywords and phrases: Essential submodules, Secondary submodules, Multiplication modules, Essential ideals.

Abstract Let R be a commutative ring with unity and M be an R-module. The aim of this article is to introduce and investigate certain properties of a new class of submodules namely e-secondary submodules. A submodule N of M is said to be e-secondary if the endomorphism given by multiplication by a, $a \in R$, that is, $f : N \to N$ such that f(N) = aN, then either $aN \leq_e M$ or $a^t N = 0$, for some $t \in \mathbb{N}$. This notion is then further extended to introduce fully e-secondary submodules of a module.

1 Introduction

Let R be a ring with unity and M be an R-module. A non-zero submodule N of M is called essential if $N \cap L \neq \{0\}$ for every non-zero submodule L of M [4]. A non-zero submodule S of M is said to be secondary if for each $a \in R$, the endomorphism of S given by multiplication by a is either surjective or nilpotent [12]. A non-zero submodule S of M is said to be second if for each $a \in R$, the homomorphism of S given by multiplication by a is either surjective or zero [17]. A submodule N of M is called closed if N has no proper essential extention in M, i.e, if N $\leq_e K \leq M$ then N = K [4]. A module M is called uniform if the intersection of any two non-zero submodules of M is non-zero [18]. The R-module M is called faithful if rM = 0 (r \in R) implies r = 0 [6].

The first section of this article investigates various properties of e-secondary submodules and its relation with other classes of modules. The second section further extends the notion of e-secondary submodules to fully e-secondary submodules. The intersection and direct sum of fully e-secondary submodules have been discussed. A module M is called a multiplication module if every submodule N of M can be expressed as N = IM for some ideal I of R [7]. The third section of this paper deals with the behaviour of e-secondary submodules in multiplication modules.

Throughout this article, R will denote a commutative ring with unity and \mathbb{Z} , \mathbb{Q} , \mathbb{R} denotes the set of integers, rationals and reals respectively.

2 e-secondary submodules of a module

In this section we define e-secondary submodules of a module. Certain properties of this class of modules is studied and its connection with other types of modules is investigated.

Definition 2.1. Let M be an R-module. A submodule N of M is said to be e-secondary if the endomorphism given by multiplication by a, $a \in R$, that is, $f : N \to N$ such that f(N) = aN, then $aN \leq_e M$ or $a^t N = 0$, for some $t \in \mathbb{N}$.

Examples:

1) $R = \mathbb{Z}$; $M = \mathbb{Z}$; $N = n\mathbb{Z}$ where $n \in \mathbb{Z}$. Consider $f : n\mathbb{Z} \to n\mathbb{Z}$ such that $f(n\mathbb{Z}) = an\mathbb{Z}$, $(a \in \mathbb{Z})$. When a = 0, we get $an\mathbb{Z} = 0$ and $an\mathbb{Z} \leq_e \mathbb{Z}$ when $a \neq 0$.

2) Consider the \mathbb{Z} module \mathbb{Z}_4 . Submodules of \mathbb{Z}_4 are : $\{0\} = I$, $\{0, 2\} = N$, \mathbb{Z}_4 . Consider $f : N \to N$ such that f(N) = aN, $(a \in \mathbb{Z})$. When a = 2m, $m \in \mathbb{Z}$, we have aN = 0 and when a = 2m

+ 1, m $\in \mathbb{Z}$, we get aN = {0, 2} $\leq_e \mathbb{Z}_4$.

3) Let M be a divisible R-module. Then M is an e-secondary submodule of itself. This follows from the definition that if M is a divisible module then rM = M for every non-zero $r \in R$ and the fact that M is always an essential submodule of itself.

4) The R-module (0) = M is trivially considered as e-secondary as for any $a \in R$ and any endomorphism $f : M \to M$ such that f(M) = aM, then we get $a^tM = 0$, $t \in \mathbb{N}$.

Remark 2.2. Submodule of e-secondary need not be e-secondary in general.

For example : Let us consider the \mathbb{Z} module \mathbb{R} . Then \mathbb{R} is a submodule of itself. Consider f : $\mathbb{R} \to \mathbb{R}$ such that $f(\mathbb{R}) = a\mathbb{R}$, $(a \in \mathbb{Z})$. Then for a non-zero $a \in \mathbb{Z}$, $a\mathbb{R} \leq_e \mathbb{R}$ and $a\mathbb{R} = 0$ when a = 0. But the submodule \mathbb{Q} of \mathbb{R} is not e-secondary as the intersection of submodule $a\mathbb{Q}$ with the submodule $\mathbb{Q}^c \cup \{0\}$ of \mathbb{R} is zero, that is, $a\mathbb{Q} \cap (\mathbb{Q}^c \cup \{0\}) = 0$.

Proposition 2.3. Every non-zero e-secondary submodule of a module is essential.

Proof. Let M be an R-module and N be a non-zero e-secondary submodule of M. Since $aN \subseteq N$ and $aN \cap L \neq \{0\}$, for all $L \leq M$, this implies $N \cap L \neq \{0\}$. Thus, N is essential in M. Note: Here we have used the fact that $aN \leq_e M$ for atleast one $a \in R$. Since $aN \leq_e M$ or $a^tN = 0$ holds for every $a \in R$, so for a = 1 (unity of R), we get $a^tN = 1^tN = N \neq 0$. Therefore $1.N \leq_e M$.

Theorem 2.4. Let M and X be R-modules and N be a non-zero e-secondary submodule of M. Let $g: M \to X$ be a homomorphism and f be the restriction of g on N. If f is a monomorphism, then so is g.

Proof. As N is e-secondary, by previous result N is also essential. Given that f is the restriction of g on N, i.e, f: $N \rightarrow X$. Let $x \in N \cap$ Kerg. This implies $x \in N$ and $x \in$ Kerg. Therefore, $x \in N$ and g(x) = 0, which ultimately gives f(x) = 0 (since f is the restriction of g on N). As f is a monomorphism, so f(x) = 0 implies x = 0. Therefore, $N \cap$ Kerg = (0). Since $N \leq_e M$ and Kerg $\leq M$, we get Kerg = {0}. Thus, g is a monomorphism.

Remark 2.5. Essential submodule need not be e-secondary.

For example : Consider the \mathbb{Z} module \mathbb{Z}_6 . The submodules are: $\{0\}$, $\{0, 2, 4\}$, $\{0, 3\}$, \mathbb{Z}_6 . Then $\mathbb{Z}_6 \leq_e \mathbb{Z}_6$. But consider the endomorphism $f : \mathbb{Z}_6 \to \mathbb{Z}_6$ such that f(x) = 2x, $(x \in \mathbb{Z}_6)$. Then $2\mathbb{Z}_6 = \{0, 2, 4\}$ and $\{0, 2, 4\} \cap \{0, 3\} = \{0\}$. Therefore, $2\mathbb{Z}_6$ is not essential in \mathbb{Z}_6 and also $2^t\mathbb{Z}_6 \neq 0$ for any $t \in \mathbb{N}$. Thus, \mathbb{Z}_6 is an essential submodule of \mathbb{Z}_6 but is not an e-secondary submodule.

Proposition 2.6. Let M be an R-module where R is a field. Let N be a cyclic submodule of M such that N is also essential in M. Then N is an e-secondary submodule of M.

Proof. Since N is cyclic, so by definition there exists some $m \in M$ such that N is of the form N = {rm : $r \in R$ }. Consider the endomorphism f: N \rightarrow N given by multiplication by a, a $\in R$, i.e, f(N) = aN. Now aN = a(Rm)= (aR)m = Rm = N and since N is essential in M, so aN $\leq_e M$. \Box

Remark 2.7. There are submodules which are both essential and e-secondary.

Example:

- 1) A simple module is both an essential as well as an e-secondary submodule (of itself).
- 2) Submodule N = $\{0, 2\}$ of \mathbb{Z}_4 is both essential and e-secondary.
- 3) Every uniform module is both essential and e-secondary.

In [21] Heuberger gave an equivalent definition of an essential submodule as : The submodule N of the right R-module M is essential in M if for all $0 \neq x \in M$, $r \in R$ and $n \in \mathbb{Z}$ exists, such that $0 \neq xr + nx \in N$.

Theorem 2.8. Let K, N be submodules of an R-module M such that $N \le K \le M$. If K is an e-secondary submodule of M, then the submodule $\frac{K}{N}$ is an e-secondary submodule of the quotient module $\frac{M}{N}$.

Proof. Consider the endomorphism f from $\frac{K}{N}$ to $\frac{K}{N}$ given by multiplication by a, $a \in \mathbb{R}$, ie, $f(x+N) = a(x+N), x \in \mathbb{K}$.

Case 1: $aK \leq_e M$ Then using the above mentioned definition, we get for all non-zero x in M, $r \in R$ and $n \in \mathbb{Z}$ exists, such that $0 \neq xr + nx \in aK$. This implies $(xr + nx) + N \in aK + N$. Thus, $a(\frac{K}{N}) \leq_e \frac{M}{N}$ Case 2: If $a^tx = 0$, then $a^t(x+N) = a^tx + a^tN = 0 + N = N$. Therefore, $a^t(x+N) = 0$ in $\frac{M}{N}$. \Box

Remark 2.9. The concept of secondary and e-secondary need not imply each other.

Example: (i) \mathbb{Z} as a \mathbb{Z} module is e-secondary but not secondary as $n\mathbb{Z} \leq_e \mathbb{Z}$ for all $n \in \mathbb{Z}$ but $n\mathbb{Z} \neq \mathbb{Z}$ for any $n \neq 1$, -1 and $n\mathbb{Z} = 0$ only when n = 0. (ii) Consider the \mathbb{Z} module \mathbb{Z}_6 . The submodule $N = \{0, 3\}$ of \mathbb{Z}_6 is secondary as for every $a \in \mathbb{Z}$, aN = N or $a^tN = 0$ but N is not e-secondary.

Proposition 2.10. Let N be a non-zero secondary submodule of M. Then N is an e-secondary submodule of M if and only if N is essential in M.

Proof. Let M be an R module and N be a secondary submodule of M. Then for any endomorphism $f: N \to N$ such that f(N) = aN ($a \in R$), we have either aN = N (i.e surjective) or $a^tN = 0$. Suppose N is an essential submodule of M. If $a^tN = 0$ then result holds trivially. If aN = N, then N being essential, we get $aN \leq_e M$. Thus, N is an e-secondary submodule of M. Conversely, let N be an e-secondary submodule of M. Result follows from prop 2.3.

Corollary 2.11. Let N be a non-zero second submodule of M. Then N is an e-secondary submodule of M if and only if N is essential in M.

Proof. Since every second submodule is also a secondary submodule, so result follows from the previous proposition. \Box

Proposition 2.12. Let *M* be an *R*-module and *N* be an *e*-secondary submodule of *M*. If every submodule of *N* is a closed submodule of *N*, then *N* is a secondary submodule of *M*.

Proof. Consider the endomorphism from N to N given by multiplication by a, for any $a \in R$, i.e, $f: N \to N$ such that f(N) = aN. Since N is e-secondary, if $a^t N = 0$, then result holds trivially. If not, then $aN \leq_e M$. This implies $aN \leq_e N$. But aN being a closed submodule of N, $aN \leq_e N \leq M$ implies that aN = N. Thus, N is a secondary submodule of M.

Theorem 2.13. Let M_1 , M_2 be *R*-modules and $g: M_1 \to M_2$ be an isomorphism. If N is an *e*-secondary submodule of M_1 , then g(N) is an *e*-secondary submodule of M_2 .

Proof. Since N is an e-secondary submodule of M_1 , so for any endomorphism $f : N \to N$ such that f(N) = aN, $a \in R$, then $aN \leq_e M_1$ or $a^tN = 0$. Suppose $a^tN = 0$. As g is one-one homomorphism, $g(a^tN) = g(0) = 0$, i.e. $a^tg(N) = 0$. Now, suppose $aN \leq_e M_1$. This implies $aN \cap L \neq \{0\}$ for any non-zero submodule L of M_1 . As g is an isomorphism, so $g(aN \cap L) \neq g(0) = \{0\}$. This implies $g(aN) \cap g(L) \neq \{0\}$. Since g is a homomorphism, this gives $ag(N) \cap g(L) \neq \{0\}$. As g(L) is an arbitrary submodule of M_2 , thus we get g(N) is an e-secondary submodule of M_2 .

Recall that any monomorphism f : A \rightarrow B is said to be an essential monomorphism if Imf \leq_e B [4].

Lemma 2.14. Let M be an R module and f be an endomorphism from M to M given by multiplication by a, for any $a \in R$. If f is an essential monomorphism, then M is an e-secondary submodule of itself.

Proof. Follows from the definition.

Recall that a module M is called a Quasi-dedekind module if for each endomorphism f of M, $f \neq 0$, then kerf = 0 [19].

Proposition 2.15. Let M be an R-module, where R is a boolean ring. If M is a quasi dedekind module, then M is also e-secondary.

Proof. Consider an endomorphism $f : M \to M$ given by multiplication by a, $a \in R$. Claim: $f^2 = f$. Let $x \in M$. Consider $f^2(x) = f(f(x)) = f(ax) = a.(ax) = a^2x = ax$ (since R is a boolean ring so $a^2 = a$). Also, f(x) = ax. This implies $f^2(x) = f(x) \Rightarrow f^2 = f$. Let $x \in M$; then $f(x) \in M$. Let $y = x - f(x) \Rightarrow f(y) = f(x - f(x)) = f(x) - f^2(x) = f(x) - f(x)$ (since $f^2 = f$). Thus $f(y) = 0 \Rightarrow y \in Kerf$. Since Kerf = 0, we get $y = 0 \Rightarrow x - f(x) = 0 \Rightarrow f(x) = x \Rightarrow f$ is an identity mapping and therefore f(m) = m for every $m \in M$ which implies $f(M) = aM = M \leq_e M$.

Corollary 2.16. If M is a finitely generated quasi-dedekind module, then M is e-secondary.

Proof. Follows from the fact that if M is a finitely generated quasi-dedekind module then M is uniform and every uniform submodule is e-secondary. \Box

Theorem 2.17. Let M be an R-module and N be a submodule of M. The following are equivalent: (1) N is an e-secondary submodule of M. (2) For every ideal I of R, either $I^t N = 0$ for some $t \in \mathbb{N}$ or $IN \leq_e M$ where $I^t = \{i^t : i \in I\}$.

Proof. (1) \Rightarrow (2) : If $I^t N = 0$, then result holds trivially. If not, then there exists some $a \in I$ such that $a^t N \neq 0$. This implies $aN \neq 0 \Rightarrow aN \leq_e M \Rightarrow aN \leq_e IN$. Thus, we get $IN \leq_e M$ (using Lemma 2.3 [20]). (2) \Rightarrow (1) : Clearly.

3 Fully e-secondary submodules

In this section we study a particular case of e-secondary submodule and name it as fully esecondary submodule of a module. Various properties exhibited by this class of modules is explored along with its interaction with other types of modules.

Definition 3.1. Let M be an R-module. A submodule N of M is said to be fully e-secondary if the endomorphism given by multiplication by a, $a \in R$, that is, $f : N \to N$ such that f(N) = aN, then $aN \leq_e M$ and if $a^tN = 0$ for any $t \in \mathbb{N}$, then a = 0. Example: \mathbb{Z} as a \mathbb{Z} module is fully e-secondary.

Proposition 3.2. *Let M be an R-module. If N is a fully e-secondary submodule of M, then every submodule of M containing N is also fully e-secondary.*

Proof. Let N be a fully e-secondary submodule of M and K be a submodule of M containing N. So $N \leq K$ implies $aN \leq aK$ ($a \in R$). As $aN \leq_e M$, so $aN \cap L \neq \{0\}$, for all $L \leq M$. Since $aN \leq aK$, therefore $aK \cap L \neq \{0\}$. Thus $aK \leq_e M$.

Remark 3.3. Every fully e-secondary submodule is e-secondary. However, the converse need not be true in general.

Example: Consider the submodule $N = \{0, 2\}$ of the \mathbb{Z} module \mathbb{Z}_4 . Then N is e-secondary but not fully e-secondary as 2N = 0 but $2 \neq 0$.

Lemma 3.4. *Every fully e-secondary submodule is faithful.*

Proof. Since N is fully-secondary, so $ann(N) = \{0\}$ which implies N is faithful.

The converse need not be true in general.

Example: The submodule \mathbb{Q} of the \mathbb{Z} -module \mathbb{R} is faithful but it is not e-secondary and thus is not fully e-secondary.

Theorem 3.5. Let *M* be an *R*-module where *R* is a reduced ring. Then every e-secondary submodule *N* of *M* is fully e-secondary if and only if *N* is faithful.

Proof. Let N be fully e-secondary. Then N is faithful by Prop 3.4.

Conversely, let N be a faithful submodule of M. Since N is e-secondary, so either aN \leq_e M or a^t N = 0 for any a \in R. If aN \leq_e M for all non-zero a \in R, then result is true. Suppose for some a \in R, a^t N = 0. As N is faithful so a^t N = 0 \Rightarrow a^t = 0 \Rightarrow a = 0 (as R is a reduced ring). Thus, N is fully e-secondary.

Remark 3.6. Intersection of two non-zero submodules of a module may be fully e-secondary even if the submodules themselves are not fully e-secondary.

Example: Consider the \mathbb{Z} module \mathbb{Z}_6 . Intersection of its submodule $N_1 = \{0, 2, 4\}$ and $N_2 = \{0, 3\}$ is $N_1 \cap N_2 = \{0\}$ which is fully e-secondary (trivially) but neither N_1 nor N_2 is fully e-secondary.

Theorem 3.7. Direct sum of fully e-secondary submodules is again fully e-secondary.

Proof. Let M be an R-module and N_1 and N_2 be two fully e-secondary submodules of M. Then $aN_1 \leq_e M$ and $aN_2 \leq_e M$. Since direct sum of essential is again essential, we get $aN_1 \bigoplus aN_2 \leq_e M$. \Box

In [5], Ahmed introduced the notion of essential second modules and defined it as: Let M be an R-module. Then M is said to be essential second when for any $a \in R$, either Ma = 0 or $Ma \leq_e M$.

Proposition 3.8. Every fully e-secondary submodule of M is essential second.

Proof. Consider a fully e-secondary submodule N of an R-module M. Then for any non-zero a $\in \mathbb{R}$, aN $\leq_e \mathbb{N}$ which implies aN $\leq_e \mathbb{N}$.

The converse however need not be true in general. Example: The submodule $N = \{0, 3\}$ of the \mathbb{Z} module \mathbb{Z}_6 is essential second as aN $\leq_e N$ for every $a \in \mathbb{Z}$. Now consider the submodule $K = \{0, 2, 4\}$ of \mathbb{Z}_6 . Since $N \cap K = \{0\}$, so $1.N \leq_e M$. Thus, N is not e-secondary and therefore, not fully e-secondary.

4 e-secondary submodules in multiplication modules

This section is dedicated to the study of e-secondary submodules and its behaviour in multiplication modules. The following two propositions discusses its relation with the essential ideals of the ring.

Proposition 4.1. Let M be a faithful multiplication R-module. Let N be a submodule of M such that N = IM. If N is fully e-secondary then I is an essential ideal of R.

Proof. Let if possible I is not an essential ideal of R. Then there exists some ideal S of R such that $I \cap S = 0$. Since M is a faithful multiplication module, so $(0) = (I \cap S)M = IM \cap SM = N \cap SM$ [22, Th. 1.7]. As N is fully e-secondary, so N is essential and thus $N \cap SM = 0$ implies SM = 0 which implies S = 0 (as M is faithful).

Proposition 4.2. Let *M* be a faithful multiplication *R*-module. If every ideal of *R* is essential in *R* then *M* is fully e-secondary.

Proof. Suppose M is not fully e-secondary. Then there exists a submodule S of M such that aM \cap S = 0 for some non-zero a \in R, which implies < a > M \cap S = 0. Denoting the ideal < a > = I, we get IM \cap S = 0. Since M is a multiplication module, there exists some ideal K such that S = KM. Therefore, we get IM \cap KM = 0 \Rightarrow (I \cap K)M = 0 \Rightarrow I \cap K = 0 as M is faithful. But I being an essential ideal, I \cap K = 0 implies K = 0. Thus, S = 0 and so aM \leq_e M.

Theorem 4.3. Let *M* be a non-zero multiplication *R*-module having a unique maximal submodule *N*. If *N* is secondary, then *N* is also e-secondary.

Proof. Let N be a secondary submodule of M and a be any arbitrary element of ring R.

Case 1: If $a^t N = 0$ for some $t \in N$, then result holds clearly.

Case 2: If $a^t N \neq 0$, then aN = N.

Suppose N is not e-secondary. Then there exists a submodule K of M such that $aN \cap K = 0$ $\Rightarrow N \cap K = 0$. Since M is a multiplication module, so by [4] K is contained in some maximal submodule of M. But N is the only maximal submodule of M and so $K \subseteq N$. Therefore $N \cap K =$ $0 \Rightarrow K = 0 \Rightarrow N$ is essential in M. Using Prop 2.10, N is an e-secondary submodule of M.

References

- [1] Wisbauer, R. Foundations of Module and Ring Theory, Gordon and Breach Science Publishers.
- [2] Ansari-Toroghy, H., Farshadifar, F. (2007). The dual notion of multiplication modules. Taiwanese J. Math.11(4):1189–1201. DOI: 10.11650/twjm/1500404812.
- [3] Atiyah, M., MacDonald, I.G. Introduction to Commutative Algebra.
- [4] Goodearl, K. R., "Ring theory" Marcel Dekker, New York, 1972.
- [5] Ahmed, G., Essential Second Modules; Iraqi Journal of Science, 2019, Vol. 60, No. 3, pp: 633-637 DOI: 10.24996/ijs.2019.60.3.21.
- Shahad,H., Al-Mothafar,N., On P-Essential Submodules; Iraqi Journal of Science, 2021, Vol. 62, No. 12, pp: 4916-4922 DOI: 10.24996/ijs.2021.62.12.29.
- Barnard, A. (1981). Multiplication modules. J. Algebra 71(1):174–178. DOI: 10.1016/0021-8693(81)90112-5.
- [8] Farshadifar,F. S-secondary submodules of a module, Communications in Algebra, 49:4, 1394-1404, DOI: 10.1080/00927872.2020.1836189.
- [9] Farshadifar, F. (2000). S-second submodules of a module. Algebra Discret. Math. (in press).
- [10] Ahmed, M., Ibrahiem, T., H-essential Submodules and Homessential Modules; Iraqi Journal of Science -June 2019 DOI: 10.24996/ijs.2019.60.6.22.
- [11] Ahmed, M., Weak essential submodules, Um-Salama Science Journal Vol.6(1)2009.
- [12] Macdonald, I. G. (1973). Secondary representation of modules over a commutative ring. Symp. Math. 11:23–43.
- [13] Yousef A. Qasim, Sahira M. Yaseen; Annihilator Essential Submodules; Iraqi Academics Syndicate International Conference for Pure and Applied Sciences Journal of Physics: Conference Series 1818 (2021) 012213 IOP Publishing doi:10.1088/1742-6596/1818/1/012213.
- [14] Ansari-Toroghy, H., Farshadifar, F., Pourmortazavi, S.S., and Khaliphe, F., On Secondary Modules; International Journal of Algebra, Vol. 6, 2012, no. 16, 769 - 774.
- [15] Matsumura H, Commutative ring theory, Cambridge University Press (2002).
- [16] Wang, F., Kim, H. (2016). Foundations of Commutative Rings and Their Modules, Singapore: Springer.
- [17] Yassemi, S. (2001). The dual notion of prime submodules. Arch. Math. (Brno). 37:273–278.
- [18] Abdullah, N.K. "Semi-essential submodules and semi-uniform modules" M. Sc. Thesis. University of Tikrit, 2005.
- [19] Diallo,A., Diop,P., Barry,M., On S-quasi-Dedekind Modules, Journal of Mathematics Research; Vol. 9, No. 5; October 2017 ISSN 1916-9795 E-ISSN 1916-9809.
- [20] Dungh, N. V., Huynh, D. V., Smith P. F. and Wisbauer, R. 2008. Extending Modules. Pitman Research Notes in Math Serie, longman, Harlow.
- [21] Heuberger, D.A., New proofs of some properties of essential submodules, CARPATHIAN J. MATH 29(2013) No.1, 19-26, Online edition ISSN 1843-4401.
- [22] El-Bast, Z. A. and Smith, P. F., (1988), Multiplication modules, Comm. In Algebra, 16:755-779.

Author information

Hiya Saharia, Department of Mathematics, Gauhati University, Guwahati-781014, INDIA. E-mail: hiyasaharia123@gmail.com

Helen K. Saikia, Department of Mathematics, Gauhati University, Guwahati-781014, INDIA. E-mail: hsaikia@yahoo.com