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Abstract In this study, we address the complexities of multi-objective optimization by for-
mulating a mathematical model for the multi-objective linear plus linear fractional programming
problem (MOL+LFPP). Multi-objective optimization is crucial in various real-world applica-
tions, including economics, engineering, and decision sciences, where multiple conflicting ob-
jectives must be optimized simultaneously. Integrating linear and fractional programming within
a unified framework enhances the problem’s applicability, particularly in trade-offs between ef-
ficiency and resource allocation scenarios. The objective functions presented in this problem
are in linear and fractional forms, both critical in optimization, with linear programming be-
ing foundational for solving many real-world problems. In contrast, fractional programming
is essential for optimizing ratios and efficiency measures. We proposed three different types
of approaches, viz., fuzzy programming approach (FPA), weighted sum approach (WSA), and
neutrosophic goal programming approach (NGPA), that generate the set of efficient solutions of
the MOL+LFPP. Two numerical illustrations are solved to demonstrate the problem’s efficiency
and feasibility and get a compromise solution using LINGO 20.0 optimization software. The
results reveal that each approach provides distinct compromise solutions, with the fuzzy goal
programming approach (FGPA-I) and NGPA offering particularly efficient results in terms of
the objective values. Managerial and practical implications are also discussed.

1 Introduction

Linear programming (LP) and fractional programming problems (FPP) are fundamental ar-
eas of optimization problems that have been extensively studied and applied various discipline
[2, 3, 96], including operations research [4, 5], economics [6, 7, 80], engineering [8, 9, 1, 93],
and supply chain management [10, 11]. These methodologies provide powerful tools for solv-
ing complex decision-making problems that involve optimizing certain objective functions to
a set of constraints. The linear programming approach obtains a compromise solution for the
mathematical programming problem whose requirements are represented by linear relationships
[12, 81]. The standard form of a linear programming (LP) problem consists of an objective func-
tion linear expression involving decision variables that must be either maximized or minimized
while adhering to a set of linear constraints [13, 14]. These constraints represent the limitations
or requirements that the solution must satisfy. This feasible region, defined by these constraints,
is a convex polyhedron, and the optimal solution lies at one of the vertices of this polyhedron
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[15, 89].

Fractional programming (FP) is a branch of mathematical programming that deals with op-
timization problems. The objective function is a ratio of two functions, typically linear or non-
linear [16, 17]. These problems arise naturally in many practical applications, where the ob-
jective is to maximize or minimize the ratio of two quantitates, such as cost-to-benefit ratios,
efficiency ratios, and return-on-investment ratios. The general form of an FPP can be expressed
as the optimization ratio of two functions, subject to the set of constraints. Specifically, the

objective is to maximize or minimize the ratio
f(y)

g(y)
where f(y) and g(y) are functions of the

decision variables y [18, 19]. When both f(y) and g(y) are linear functions, the problem is
referred to as the linear fractional programming problem [20]. Solving FPP is more complex
than solving the LP problem due to the non-linearity introduced by the ratio. However, several
methods have been developed to tackle these problems, such as Charnes-cooper transformation,
which converts the fractional programming into an equivalent LP problem, and Dinkelbach’s
algorithm, which iteratively solves a series of parametric LP problems to find the optimal solu-
tion [21]. FP is particularly useful in various fields where efficiency and productivity measures
are crucial. It provides a robust framework for optimizing ratios, enabling decision-makers to
achieve more balanced and efficient outcomes in complex scenarios [22, 23, 90].

In mathematical optimization, linear fractional programming problem (LFPP) extends the
scope of linear programming [24, 25, 26]. In LP, the objective functions are linear, and the
objective functions of LFPP are ratios of two linear functions. Consequently, LFPP is a partic-
ular case of linear programming problems [27, 28, 29, 30], where the denominator is a constant
function equal to one. The simplicity and versatility of LP make it a popular choice for a wide
range of optimization problems. The multi-objective linear plus linear fractional programming
problem (MOL+LFPP) encompasses multiple objectives that combine linear and linear frac-
tional programming elements. The MOL+LFPP is crucial for decision-making and utilized in
diverse scenarios with multiple objectives that are subject to a set of constraints. This type is
also applicable to solving various real-world problems across different fields. The versatility and
effectiveness of multi-objective linear fractional programming problems (MOLFPP) make it an
indispensable tool in addressing complex, multi-objective decision-making problems. Given the
practical importance of MOL+LFPP, researchers have developed various solution approaches,
i.e., goal programming approach, fuzzy programming approach, evolutionary algorithm, genetic
algorithm, and neutrosophic goal programming approach, to tackle these problems. Each of
these methods has its advantages and limitations, and their effectiveness can vary depending on
the specific characteristics of the problem. Therefore, this research undertakes a detailed com-
parison and evaluation of these methods to guide their application and identify the conditions
under which each method performs best.

The remaining sections of the manuscript are arranged as follows: The literature review is
discussed in Section 2. Section 3 presents a mathematical model of the multi-objective linear
plus linear fractional programming problem, and Section 4 presents the methodology of the pro-
posed FPA, WSA, and NGPA. Section 5 presents the two numerical examples of a proposed
mathematical model. Finally, Section 6 discusses the conclusion and the managerial and practi-
cal implications.

2 Literature review

Fractional programming was introduced by Charnes & Cooper [31]. After that, Zoints [32] and
Schaible [33] produced some valuable ideas in the field of FP. The Fractional Transportation
Problem (FTP) represents a variant of the classical transportation problem where the objective
function is fractional type [34]. It means that instead of minimizing or maximizing a linear com-
bination of transportation costs, the objective is to optimize a fractional expression involving
these costs. [35] introduced a stochastic programming model to address the issue of uncer-
tainty in transportation problems.This model combines expected and variance considerations to
achieve a balance. It introduces a mean-variance approach, which optimizes profit while con-
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sidering shipping costs in uncertain scenarios with varying demands [82]. Liu [36] and Bas
et al.[37] presented a linear fractional mathematical transportation problem. They constructed
supply demand and iterative constraints of the proposed problem and solved this model using
a fuzzy goal programming approach to find the optimal solution. Agrawal & Ganesh [38] and
Chauhan et al.[39] introduced a new method for tackling linear fractional programming prob-
lems that involve fuzzy variables and parameters without constraints. They used a technique
called -cut to solve these problems and provided both upper and lower bounds, giving a range of
possible solutions. They demonstrated how their new approach works by applying it to a fuzzy
linear fractional transportation problem and pointed out flaws in an existing method by showing
an example. Joshi et al.[40] presented a novel method for optimizing transportation systems with
multiple objectives under uncertain conditions. This method is beneficial for decision-making
in manufacturing [83, 94, 95]. They introduced the MOLFPP as an essential tool for managing
various operations in unpredictable environments.

Mekawy [41] presented a mathematical model of fuzzy MOLFPP and converted it into a pre-
cise problem. Edalatpanah [42] and Borza et al.[43] presented a novel approach for resolving
fuzzy linear fractional programming problems. The approach utilizes horizontal membership
functions and multi-dimensional relative-distance-measure fuzzy interval arithmetic. Sheikhi
Ebadi [79] proposed a method for resolving linear fractional programming transportation prob-
lems utilizing fuzzy numbers. They focused on linear fractional programming, a specialized area
within non-linear programming. Sheikhi Ebadi [4] presented a novel approach to solving linear
interval fractional transportation problems (ILFTPs) with interval objective functions by trans-
forming the ILFTP into a non-linear programming problem and then converting it into a linear
programming problem with additional constraints and variables. Alburaikan et al.[44] presented
an innovative approach to addressing multi-objective neutrosophic linear fractional program-
ming problems. This approach involves representing parameters as neutrosophic numbers. They
transformed these problems into equivalent crisp MOLPP using a variable transformation tech-
nique and a ranking function.

Given this importance, the potential research study of Farnam Darehmiraki [45] developed
a solution approach for MOFPP in a hesitant fuzzy decision environment. The utilization of
linguistic variables, interactive methods, and goal planning has enabled the creation of effective
strategies, which have significantly enhanced decision-making methodologies in this context
[84]. Akram et al. [46] developed a multi-objective fractional transportation problem (MOFTP)
mathematical model under a fermatean fuzzy environment. They transformed this mathemati-
cal model into crisp mathematical form using the Trapezoidal fermatean fuzzy parameters and
LR fully Pythagorean fuzzy programming approach [85]. They also provided some numerical
examples to justify this approach. Veeramani et al. [47] presented the compromise solutions
framework for the MOFTP using a neutrosophic goal programming approach. The framework
addresses complex transportation scenarios by considering multiple objectives: cost, time, and
environmental and social concerns. Pourofoghi and Darvishi Salokolaei [48] addressed the chal-
lenge of linear fractional programming problems with a linear fractional objective subject to a set
of uncertain or grey constraints. They proposed a new method inspired by the variable change
technique developed by Charnes and Cooper. They also merged Charnes and Cooper’s variable
change technique with the concept of convex intervals to solve this problem.

Multi-objective fractional programming (MOFP) presents a valuable framework for address-
ing complex transportation planning challenges with conflicting objectives [49, 50, 91]. Cetin et
al. [51] introduced a new type of MOFTP mathematical model, which had yet to be explored.
They proposed a fuzzy approach to finding a compromise solution that is Pareto-optimal. Bhur-
jee Panda [52] addressed a broad mathematical problem involving multiple objectives and sub-
ject to constraints using uncertain parameters. The objective was to explore whether efficient so-
lutions existed for this model and to devise a method to identify these efficient solutions. Lachh-
wani [53] introduced an innovative approach for addressing complex multi-level MOLFPP using
a fuzzy goal programming approach. Instead, it utilizes individual linear membership functions
for each objective function’s numerator and denominator. The goal is to maximize the attain-
ment of fuzzy goals by minimizing negative deviational variables. Sadia et al.[54] developed
a mathematical multi-objective capacitated fractional transportation model with different mem-
bership function types: linear, exponential, hyperbolic, and mixed constraints. They applied a
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lexicographic goal programming approach to solve this mathematical model and obtained com-
promised solutions to the proposed problem. Pramyj [55] presented a technique to address fuzzy
MOLFP. Subsequently, they transformed this MOLFP problem into a single objective LPP. By
applying the regular simplex method, they also solved the simplified problem and derived an
efficient solution for the original fuzzy MOLFP. Arya et al.[56] proposed a mathematical model
of MOLFP using a fully fuzzy programming approach. They created computational techniques
specifically designed for solving single-objective linear fractional optimization problems within
fuzzy environments [86]. Additionally, they demonstrated how their algorithm could transform
traditional numerical problems into fully fuzzy MOLFP.

Furthermore, Saini et al. [57] developed a multi-objective fractional capacitated linear trans-
portation problem mathematical model using rough programming involving multiple objectives
and fixed charges constraints. In essence, they explored various ways to balance different fac-
tors and find the optimal outcome for the transportation problem they were studying. El Sayed
Abo-Sinna [58] and Midya et al.[59] developed the mathematical model to tackle complex trans-
portation problems involving multiple objectives and fuzzy logic. Using different mathematical
functions, they demonstrated how to connect this fuzzy model with a simpler, crisp (non-fuzzy)
version. By doing this, they showed that even though the problem seems complicated with fuzzy
logic involved, it is still possible to solve it effectively [87, 90]. Furthermore, they presented a
solution approach that employs various mathematical functions to address the fuzziness inherent
in the problem.

3 Mathematical model of multi-objective linear plus linear fractional
programming problem

The formulation of the mathematical model MOL+LFPP is as follows;

Minimize Fi (ȳ) =
(
C̄T

i ȳ + di
)
+

ᾱT
i ȳ + γi

β̄T
i ȳ + δi

, i = 1, 2, 3...., p (3.1)

S.t ȳ ∈ S = {ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ ≥ 0̄}

where, C̄T
i , ᾱ

T
i , β̄i ∈ R̄N ; i = 1, 2, ...p. and Ā ∈ R̄N ×M, b̄ ∈ R̄M , and S represent the non

empty, convex, and compact in R̄Nand further, it is assumed that ȳ ∈ S and β̄T
i + δi > 0, i =

1, 2, 3...p. The objective function Fi(ȳ) represents in Eq. 3.1 combines two terms; the first term
is linear form, and the second is fractional form.

4 Solution methodology

The mathematical optimization of MOL+LFPP can be tacked using various solution methodolo-
gies to achieve a balanced trade-off among the objective functions.

(i) Fuzzy programming approach
(ii) Weighted sum approach

(iii) Neutrosophic goal programming approach

The mathematical optimization of the multi-objective linear plus linear fractional program-
ming problem (MOL+LFPP) can be tackled using various solution methodologies to achieve a
balanced trade-off among the objective functions. Firstly, the fuzzy programming approach in-
corporates uncertainty by using fuzzy sets and membership functions to represent the objectives
and constraints, allowing for the consideration of satisfaction levels in decision-making. Sec-
ondly, the weighted sum approach involves assigning weights to each objective and summing
them into a single objective function, thus converting the multi-objective problem into a single
objective problem. Lastly, the neutrosophic goal programming approach focuses on minimizing
the maximum deviation from the set goals for each objective, providing a way to handle compet-
ing objectives by finding a compromise solution. Each of these methodologies offers a unique
way to address the complexities inherent in MOL+LFPP, enabling the identification of optimal
solutions that balance the different objectives effectively.
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4.1 Fuzzy programming approach (FPA)

In the proposed mathematical model to formulate the fuzzy programming approach of a MOL+LFPP,
the objective functions Fi(ȳ), i = 1, 2, ..., p are converted into fuzzy goals by assigning aspira-
tion levels to each. According to Zimmermann [70], fuzzy programming is a robust approach to
handling uncertainty in multi-objective optimization problems. Let F b

i = max
ȳ∈S

Fi(ȳ) and FW
i =

min
ȳ∈S

Fi(ȳ), i = 1, 2...p represent the best and worst values of the objective functions, respectively.

The fuzzy goal can be expressed as Fi(ȳ) ≥ F b
i , i = 1, 2, ..., p. The membership function of the

ith fuzzy objective goal can be constructed as follows:

µi(ȳ) =


1, if Fi(ȳ) ≥ F b

i

Fi(ȳ) ≥ FW
i

F b
i − FW

i

, if FW
i ≤ Fi(ȳ) ≤ F b

i

0, if Fi(ȳ) ≤ F b
i

(4.1)

Where FW
i and F b

i are the lower and upper bounds of the ith fuzzy objective goal, This math-
ematical programming problem reduces to maximizing the membership functions µi(ȳ), i =
1, 2..., p subject to the constraints ȳ ∈ S =

{
ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ > 0̄ i = 1, 2, ..., pright}.

We assume that the objective function Fi(ȳ) and all the partial derivatives of the order less
than equal to N + 1 are continuous on the feasible region S. So, the membership function
µi(ȳ), i = 1, 2, .., p, corresponding to the objective function Fi(ȳ), i = 1, 2, .., p has the same
property in the feasible region S.

Linear approximation for membership functions of MOL+LFPP

Let ȳ∗i = y∗i1, y
∗
i2, ...., y

∗
iN be the individual best solutions of membership function µi(ȳ) corre-

sponding to the objective function Fi(ȳ) [60].The membership function µi(ȳ) can be approxi-
mated linearly using the first-order Taylor series around ȳ∗i :

µi(ȳ) ≈ µi(ȳi)
∗ + (ȳ1 − y∗i1)

( ∂

∂ȳ1
µi(ȳ)

)
atȳ=ȳi

∗ + (ȳ2 − y∗i2)
( ∂

∂ȳ2
µi(ȳ)

)
atȳ=ȳi

∗ + .....,+

(N − y∗iN )
(

∂
∂ȳN

µi(ȳ)
)
atȳ=ȳi

∗ = µ̄i(ȳ), i = 1, 2, ...., p. (4.2)

Fuzzy goal programming formulation of MOL+LFPP

The problem reduces to maximizing the linearized membership function;

Maximize µ̂i(ȳ), i = 1, 2...., p (4.3)

S.t ȳ ∈ S =
{
ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ > 0̄

}
Given that the maximum value of a membership function is one, in Eq. 4.3, the flexible

membership goal with an aspired level of one can be formulated as follows;

µ̂i(ȳ) + d−i − d+i = 1, i = 1, 2...., p (4.4)

where, d−i and d+i are negative and positive deviation variables, respectively. According to [61,
62], the Eq. 4.4 can be rewritten as;

µ̂i(ȳ) + d−i = 1, i = 1, 2...., p (4.5)

The fuzzy goal programming approach -I can be formulated as follows:

Minimize λ



1020 Wajaha,Sheema, Naseem, Mohammad Sheihan, Ayesha

S.t µ̂i(ȳ) + d−i = 1 (4.6)

ȳ ∈ S =
{
ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ > 0̄

}
λ ≥ d−i , 0 ≤ d−i ≤ 1, d−i ≥ 0, i = 1, 2, ..., p.

Alternatively, the fuzzy goal programming approach -I can be explicitly as:

Minimize λ

S.t µi(ȳ) ≈ µi(ȳi
∗) + (ȳ1 − y∗i1)

(
∂

∂y1
µi(ȳ)

)
atȳ=ȳi

∗
+ (ȳ2 − y∗i2)

(
∂

∂y2
µi(ȳ)

)
atȳ=ȳi

∗
+, ....,+

( ¯yN − y∗iN )

(
∂

∂yN
µi(ȳ)

)
atȳ=ȳi

∗
+ d−i = 1 (4.7)

ȳ ∈ S =
{
ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ > 0̄

}
λ ≥ d−i , 0 ≤ d−i ≤ 1, d−i ≥ 0, i = 1, 2, ..., p.

The fuzzy goal programming approach -II for solving the MOL+LFPP can be represented as;

Minimize ξ =
p∑

i=1

wid
−
i

S.t µ̂i(ȳ) + d−i = 1
(4.8)

ȳ ∈ S =
{
ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ > 0̄

}
0 ≤ d−i ≤ 1, d−i ≥ 0, i = 1, 2, ..., p.

Alternatively, the fuzzy goal programming approach -II can be explicitly formulated as follows;

Minimize ξ =
p∑

i=1

wid
−
i

S.t

µi(ȳ) ≈ µi(ȳi
∗) + (ȳ1 − y∗i1)

(
∂

∂y1
µi(ȳ)

)
atȳ=ȳi

∗
+ (ȳ2 − y∗i2)

(
∂

∂y2
µi(ȳ)

)
atȳ=ȳi

∗
+, ....,+

( ¯yN − y∗iN )

(
∂

∂yN
µi(ȳ)

)
atȳ=ȳi

∗
+ d−i = 1 (4.9)

ȳ ∈ S =
{
ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ > 0̄

}
λ ≥ d−i , 0 ≤ d−i ≤ 1, d−i ≥ 0, i = 1, 2, ..., p.

Here, the decision-makers can take the normalized weights such that
∑p

i=1 wi = 1,with wi =
1
p or any preference weight in the decision-making situations. This approach provides flexibility
in reflecting the decision-maker’s preferences and priorities.

Selection of optimal compromise solutions

The concept of the ideal point and the use of distance functions for group decision-making prob-
lems were initially explored by Yu [63]. This approach has been extensively applied in various
multi-objective decision-making problems to achieve satisfactory solutions [64, 2]. Given that
different fuzzy goal programming approaches yield distinct optimal solutions, the Euclidean
distance function is employed to select the FGPA-I and FGPA-II that provide the best optimal
solutions. The Euclidean distance function is represented as follows:

E2 =
p∑

i=1

[(1 − µ̂i(ȳ))
2]

1
2 (4.10)

where, µ̂i(ȳ) represents the membership function of the ith fuzzy objective functions, the
solution for which E2 is minimal is considered the best optimal solution.
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Fuzzy goal programming algorithms for MOL+LFPP

The proposed FGPA algorithm for solving the MOL+LFPP is outlined as follows:

Step 1: Determine the best and worst solutions for each objective function Fi(ȳ) and subject
to constraints.

Step 2: Construct the membership function µi(ȳ), i = 1, 2..., p for each objective goal, as
previously defined in Eq. 4.1

Step 3: Find the individual best solution for each membership function µi(ȳ), i = 1, 2..., p
and subject to the set of constraints.

Step 4: Transform the µi(ȳ), i = 1, 2..., p, into the equivalent linear membership function
µi(ȳ), i = 1, 2..., p using the first order Taylor series approximation at the best solution points
ȳ∗i = y∗i1, y

∗
i2, ...., y

∗
iN .

Step 5: Construct the FGPA-I and FGPA-II as Eq represents. 4.7 and 4.9.

Step 6: Solve the mathematical model of FGPA-I and FGPA-II.

Step 7: Compute E2 for solutions obtained from the mathematical model of the FGPA-I and
FGPA-II.

Step 8: Select the solution in which E2 is minimal as the best optimal compromise solution.

4.2 Weighted sum approach (WSA)

The weighted sum approach [65, 66, 67] is a widely used technique for solving multi-objective
optimization problems, including multi-objective linear plus linear fractional programming prob-
lems (MOL+LFPP) [47]. This method converts a multi-objective problem into a single-objective
optimization problem by assigning weights to each objective and summing them to form a com-
posite objective function. The solution is obtained by optimizing these single composite func-
tions.

The formulation of WSA for MOL+LFPP is represented as follows:

Minimize F =
p∑

i=1

wiFi(ȳ) =
p∑

i=1

wi

(
C̄T

i ȳ + di +
ᾱT
i ȳ + γi

β̄T
i ȳ + δi

)
, i = 1, 2, 3...., p (4.11)

S.t ȳ ∈ S =
{
ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ > 0̄

}
In the WSA, weights wi are assigned to each objective such that

∑p
i=1 wi = 1, and wi ≥

0, i = 1, 2..., p.

Algorithm of the proposed weighted sum approach:

To achieve the best compromise solution for multi-objective optimization problems [68], the
problem is transformed into a single-objective optimization problem using the following ap-
proach [69].

Let the successive resolution of the mathematical model of the MOL+LFPP be represented
as:

Minimize Fi(ȳ) = [F1(ȳ), F2(ȳ), ..., Fp(ȳ), i = 1, 2, ..., p] (4.12)

S.t ȳ ϵ S

Where ȳ represents the decision variables, and S is the feasible set. The goal is to find the
balance, not necessarily the optimal one, for each objective function. The multi-objective opti-
mization problem can be transformed into a single objective optimization problem by selecting
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the objective function as;
Minimize λ̄ =

∑
λ(1 − wi) (4.13)

Where, wi is the weight assigned to the pth objective function, and λ shows the general devi-
ation variable. Here, F ∗

i + λ(1 −wi) represents the upper class of every objective function. The
ideal objective F ∗

i for each objective Fi can be obtained independently of the other objectives.

The multi-objective optimization problem is represented by the following single-objective
optimization problem;

Minimize λ̄ =
p∑

i=1

λ(1 − wi) (4.14)

S.t Fi ≤ F ∗
i + (1 − wi)

ȳ ∈ S and ȳ ≥ 0̄

In this model, rather than using the deviation variable directly, we established a deviation func-
tion λ(1−wi). Furthermore, by multiplying the λ, we assume the weight wi of the pth objective
is assigned a priority, reducing the value of the deviation function and yielding a solution closer
to the ideal objectives. When preferences are defined, this approach provides a compromise so-
lution suitable for all types of multi-objective optimization problems, including MOL+LFPP.

The proposed approach for MOL+LFPP is represented as follows:

Minimize λ̄ =
p∑

i=1

λ(1 − wi)

S.t
(
C̄T

i ȳ + di +
ᾱT
i ȳ + γi

β̄T
i ȳ + δi

)
≤ F ∗

i + λ(1 − wi) (4.15)

0 ≤ wi ≤ 1, ȳ ∈ S =
{
ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ > 0̄

}
, i = 1, 2, ..., p.

4.3 Neutrosophic goal programming approach

This section introduces a novel strategy for solving the multi-objective linear plus linear frac-
tional programming problem (MOL+LFPP) using the neutrosophic goal programming approach.
This method builds on Zimmermann’s [70] neutrosophic extension. The proposed neutrosophic
compromise technique provides a fresh way to handle uncertainty in mathematical optimization
problems [71].It aims to optimize three aspects of a neutrosophic decision: the degree of truth
(satisfaction), the degree of falsity (dissatisfaction), and the degree of indeterminacy (partial sat-
isfaction).Bellman & Zadeh [72] worked on three critical methodologies for fuzzy sets: the fuzzy
decision, the fuzzy goal, and the fuzzy constraints. This methodology has been widely applied
in decision-making scenarios involving fuzziness. Here is a brief explanation: Fuzzy decision
(Fd): A decision that incorporates the fuzziness of the problem’s parameters. Fuzzy goal (Fg):
The desired outcome expressed in fuzzy terms. Fuzzy constraints (Fc): The limitations or re-
strictions of the problem are described using fuzzy sets. This new methodology leverages these
foundational concepts to enhance decision-making where indeterminacy is a significant factor.
The fuzzy decision is defined as follows:

Fd = (Fg ∩ Fc) (4.16)

Accordingly, the neutrosophic decision set(Fd)N which represents a combination of neutro-
sophic objectives and is subject to the constraints, is defined as follows;

(Fd)N =

(
p⋂

i=1

(Fg)i

)(
T⋂
t=1

(Fc)t

)
= (y, φFd(y), θFd(y), ϕFd(y)) (4.17)
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where,

φFd(y) = min

{
φ1
Fg, φ

2
Fg, ..., φ

t
Fg ∀y ∈ Y

φ1
Fc, φ

2
Fc, ..., φ

t
Fc

θFd(y) = min

{
θ1
Fg, θ

2
Fg, ..., θ

t
Fg ∀y ∈ Y

θ1
Fc, θ

2
Fc, ..., θ

t
Fc

ϕFd(y) = min

{
ϕ1
Fg, ϕ

2
Fg, ..., ϕ

t
Fg ∀y ∈ Y

ϕ1
Fc, ϕ

2
Fc, ..., ϕ

t
Fc

(4.18)

where ϕFd(y) represents the truth membership function, θFd(y) denotes the indeterminacy
membership function, and ϕFd(y) signifies the falsity membership function of neutrosophic de-
cision set (Fd)N .

To formulate the membership functions for the MOL+LFPP, we start by determining the
bounds for each objective function. Each objective’s lower and upper bounds are F l

i and FU
i ,

respectively. These bounds are calculated by optimizing each objective as a single objective
function and subject to the relevant constraints. Solving each p objective independently means
we obtain p solutions, y1, y2, ..., yp. These solutions are then substituted into each objective func-
tion to determine the bounds for each objective as follows;

F l
i = min {Fi(ȳ)}pi=1

FU
i = max {Fi(ȳ)}pi=1 (4.19)

Next, the bounds within the neutrosophic environment are determined as follows:

F l
i (φ) = F l

i , F
U
i (φ) = FU

i , for the truth membershipF l
i (θ) = F l

i (θ), F
U
i (θ) =

FU
i (φ) + Si(F

U
i (φ))− F l

i (φ), for the indeterminacy membership, F l
i (ϕ) = F l

i (φ) +

ti(F
U
i (φ)− F l

i (φ)), F
U
i (ϕ) = FU

i (φ), for the falsity membership (4.20)

Where, ti and si are predetermined real members within the interval (0, 1). Based on these
bounds, the membership function can be defined as follows:

φi(Fi(ȳ)) =


1, if Fi(ȳ) < F l

i (φ)

1 − Fi(ȳ)− F l
i (φ)

FU
i (φ)− F l

i (φ)
, if F l

i (φ) ≤ Fi(ȳ) ≤ FU
i (φ)

0, if Fi(ȳ) > FU
i (φ)

(4.21)

θi(Fi(ȳ)) =


1, if Fi(ȳ) < F l

i (θ)

1 − Fi(ȳ)− F l
i (θ)

FU
i (θ)− F l

i (θ)
, if F l

i (θ) ≤ Fi(ȳ) ≤ FU
i (θ)

0, if Fi(ȳ) > FU
i (θ)

(4.22)

ϕi(Fi(ȳ)) =


1, if Fi(ȳ) < F l

i (ϕ)

1 − Fi(ȳ)− F l
i (ϕ)

FU
i (ϕ)− F l

i (ϕ)
, if F l

i (ϕ) ≤ Fi(ȳ) ≤ FU
i (ϕ)

0, if Fi(ȳ) > FU
i (ϕ)

(4.23)

where,FU
i (∗) ̸= F l

i (∗) for all objectives. FU
i (∗) = F l

i (∗) for any membership function, then
the value of this membership is set to 1. Utilizing Eq. (4.21 - 4.23) and following the princi-
ple outlined by Bellman & Zadeh [72], the neutrosophic optimization mathematical model for
MOL+LFPP can be expressed as follows:

Max Min
∑

i=1,2,..,p

φi(Fi(ȳ))
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Max Min
∑

i=1,2,..,p

θi(Fi(ȳ))

Max Min
∑

i=1,2,..,p

ϕi(Fi(ȳ)) (4.24)

S.t

ȳ ∈ S =
{
ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ > 0̄

}
, i = 1, 2, ..., p.

Through the utilization of auxiliary parameters, the mathematical problem (4.24) can be refor-
mulated as the following:

Max ζ,Max η,Max δ

φFi(y) ≥ ζ, θFi(y) ≥ η, ϕFi(y) ≥ δ (4.25)

S.t

ȳ ∈ S =
{
ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ > 0̄

}
, ζ ≥ η, ζ ≥ δ, ζ + η + δ ≤ 3, ζ, η, δ ∈ [0, 1]

i = 1, 2, ..., p.

The problem presented in (4.25) can be depicted as follows:

Max ζ − δ + η

Fi(ȳ) +

(
FU
i (φ)− F l

i (φ)

)
ζ ≤ FU

i (φ)

Fi(ȳ) +

(
FU
i (θ)− F l

i (θ)

)
η ≤ FU

i (θ) (4.26)

Fi(ȳ) +

(
FU
i (ϕ)− F l

i (ϕ)

)
δ ≤ FU

i (ϕ)

S.t

ȳ ∈ S =
{
ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ > 0̄

}
, ζ ≥ η, ζ ≥ δ, ζ + η + δ ≤ 3, ζ, η, δ ∈ [0, 1]

i = 1, 2, ..., p.

The problem presented in (4.26) can be written as follows:

Max ζ − δ + η

Fi(ȳ) +

(
FU
i (φ)− F l

i (φ)

)
ζ − FU

i (φ) ≤ 0

Fi(ȳ) +

(
FU
i (θ)− F l

i (θ)

)
η − FU

i (θ) ≤ 0 (4.27)

Fi(ȳ) +

(
FU
i (ϕ)− F l

i (ϕ)

)
δ − FU

i (ϕ) ≤ 0

S.t

ȳ ∈ S =
{
ȳ ∈ R̄|Āȳ ≤=≥ b̄, ȳ > 0̄

}
, ζ ≥ η, ζ ≥ δ, ζ + η + δ ≤ 3, ζ, η, δ ∈ [0, 1]

i = 1, 2, ..., p
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5 Numerical illustrations

5.1 Numerical example 1

Consider the numerical example with three objective functions as follows;

Maximize F1(ȳ) = (−y2 − 1) +
(−5y1 + 4y2)

(2y1 + y2 + 5)

Maximize F2(ȳ) = (y2 + 1) +
(9y1 + 2y2)

(7y1 + 3y2 + 1)

Maximize F3(ȳ) = (y1 + 1) +
(3y1 + 8y2)

(4y1 + 5y2 + 3)

S.t

y1 − y2 ≥ 2, 4y1 + 5y2 ≤ 25, y1 + 9y2 ≤ 9, y1 ≥ 5 and y1, y2 ≥ 0.

Now, we apply the LINGO 20.0 optimization software in this numerical example and obtain the
solution of each objective function individually using the fuzzy goal programming approach.
Each objective function’s best and worst solution was identified and summarized in the follow-
ing pay-off matrix.

Pay-off matrix=

F1 F2 F3 ȳ1(5, 1) −7.3125 3.2051 6.8214
ȳ2(5, 1) −7.3125 3.2051 6.8214

ȳ3(5.804, 0.3548) −8.4333 2.5950 7.5299

Solutions by the FGPA

First, we determine the individual best and worst solutions. The solutions are represented here,
The individual best and worst solutions are obtained as follows: F b

1 = −7.312 at (5,1), F b
2 =

3.205 at (5,1), and F b
3 = 7.53 at (5.806, 0.3550), Fw

1 = −8.433 at (5.806, 0.355), Fw
2 = 2.595 at

(5.806, 0.355) and Fw
3 = 6.736 at (5, 0.444). Then, the fuzzy goal appears in the following form:

F1(ȳ) ≥ −7.312, F1(ȳ) ≥ 3.205, F3(ȳ) ≥ 7.53. The membership function of the problem is
represented as follows;

µ1(ȳ) =
F1(ȳ) + 8.43

1.121
=

(−y2 − 1) +
(−5y1 + 4y2)

(2y1 + y2 + 5)
+ 8.433

1.121

µ1(ȳ) =
F2(ȳ)− 2.595

0.610
=

(y2 + 1) +
(9y1 + 2y2)

(7y1 + 3y2 + 1)
− 2.595

0.610

µ1(ȳ) =
F3(ȳ)− 6.736

0.794
=

(y1 + 1) +
(3y1 + 8y2)

(4y1 + 5y2 + 3)
− 6.736

0.794

The membership functions µ1(ȳ), µ2(ȳ), µ3(ȳ) are maximal at the points (5, 1), (5, 1), (5.806,
0.355). The membership functions are transformed into equivalent linear membership functions
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at the best solution points by the first-order Taylor series as follows;

µ̂1(ȳ) = µ1(5, 1) + (y1 − 5)

(
∂

∂ȳ1
µ1(ȳ)

)
at ȳ=(5,1)

+ (y2 − 1)

(
∂

∂ȳ2
µ2(ȳ)

)
at ȳ=(5,1)

µ̂1(ȳ) = 1 − 1.024(y1 − 5) + 0.192(y2 − 1), similarly other membership function

µ̂2(ȳ) = 1+1.024(y1 −5)+1.571(y2 −1), µ̂3(ȳ) = 1−1.115(y1 −5.806)+0.197(y2 −0.355)

The fuzzy goal programming approach -I can be represented as

Minimize λ

S.t

1 − 1.024(y1 − 5) + 0.192(y2 − 1) + d−1 = 1

1 + 1.024(y1 − 5) + 1.571(y2 − 1) + d−2 = 1

1 − 1.115(y1 − 5.806) + 0.197(y2 − 0.355) + d−3 = 1 (5.1)

y1 − y2 ≥ 2, 4y1 + 5y2 ≤ 25, y1 + 9y2 ≤ 9, y1 ≥ 5 and y1, y2 ≥ 0

λ ≥ d−i , 0 ≤ d−i ≤ 1, d−i ≥ 0, i = 1, 2, 3.

This approach provides the best compromise solutions using LINGO 20.0 optimization software
F1 = −7.807, F2 = 2.939, F3 = 7.131 at the points y1 = 5.352 and y2 = 0.718

The fuzzy goal programming approach -II can be represented as:

Minimize ξ =
1
3
(d−1 + d−2 + d−3 )

S.t

1 − 1.024(y1 − 5) + 0.192(y2 − 1) + d−1 = 1

1 + 1.024(y1 − 5) + 1.571(y2 − 1) + d−2 = 1

1 − 1.115(y1 − 5.806) + 0.197(y2 − 0.355) + d−3 = 1 (5.2)

y1 − y2 ≥ 2, 4y1 + 5y2 ≤ 25, y1 + 9y2 ≤ 9, y1 ≥ 5 and y1, y2 ≥ 0

λ ≥ d−i , 0 ≤ d−i ≤ 1, d−i ≥ 0, i = 1, 2, 3.

Now, we solve the above mathematical model using LINGO 20.0 optimization software and
provide the best compromise solutions F1 = −7.312, F2 = 3.025, F3 = 6.821 at the points y1 = 5
, y2 = 1.

Solution by the WSA

In this section, we apply the weighted sum approach to the proposed numerical example and get
the optimal compromise solutions. Let us assign the different weights of the problem,W1 = 0.1,
W2= 0.9,W3 = 0.2. The general formulation of the problem using WSP is represented as follows:

Max F = 0.1

(
(−y2 − 1) +

(−5y1 + 4y2)

(2y1 + y2 + 5)

)
+ 0.9

(
(y2 + 1) +

(9y1 + 2y2)

(7y1 + 3y2 + 1)

)
+

0.2

(
(y1 + 1) + (3y1+8y2)

(4y1+5y2+3)

)
S.t y1 − y2 ≥ 2, 4y1 + 5y2 ≤ 25, y1 + 9y2 ≤ 9, y1 ≥ 5 and y1, y2 ≥ 0

The problem is solved using the LINGO 20.0 optimization software, and the best compromise
solutions are as follows: F1 = −6.971, F2 = 3.017, F3 = 6.9731 at the points y1 = 5 and y2 = 1.
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Solution by NGPA

We have solved the numerical example 1 individually as a single objective optimization problem
using the proposed NGPA. We construct the pay-off matrix by evaluating three objective func-
tions with the three individual solutions.

Pay-off matrix=

F1 F2 F3 ȳ1(5, 1) −7.3125 3.2051 6.8214
ȳ2(5, 1) −7.3125 3.2051 6.8214

ȳ3(5.804, 0.3548) −8.4333 2.5950 7.5299

Determine the lower and upper bounds for each objective function. These bounds are as-
signed using the following formula, F l

i = min {Fi(ȳ)}3
i=1 , F

U
i = max {Fi(ȳ)}3

i=1 .

The bounds of each objective represented as follows; −7.3125 ≤ F1 ≤6.5431, 3.2051 ≤ F2
≤ 6.8732, 7.5299 ≤ F3 ≤ 7.7395. Now, we define the membership function of each objective
function using the NGPA.

For the first objective function F1: F l
1(φ) = −7.3125, FU

1 (φ) = 6.5431, for the truth mem-

bership, F l
1(θ) = −7.3125, FU

1 (θ) = FU
1 (φ) + s1

(
FU

1 (φ) − F l
1(φ)

)
= −7.3125 + s1 for the

indeterminacy membership, F l
1(φ) = F l

1(φ) + t1

(
FU

1 (φ) − F l
1(φ)

)
= −7.3125 +t1, FU

1 (φ) =

6.5431, for the falsity membership, where t1 and s1 are predetermined real numbers within the
interval (0, 1). Based on these bounds, the membership function can be defined as follows:

φ1(F1(ȳ)) =



1, if F1(ȳ) < −7.3125

1 −
(−y2 − 1) +

(−5y1 + 4y2)

(2y1 + y2 + 5)
+ 7.3125

13.8556
, if − 7.3125 ≤ F1(ȳ) ≤ 6.5431

0, if F1(ȳ) > 6.5431

θ1(F1(ȳ)) =



1, if F1(ȳ) < −7.3125

1 −
(−y2 − 1) +

(−5y1 + 4y2)

(2y1 + y2 + 5)
+ 7.3125

s1
, if − 7.3125 ≤ F1(ȳ) ≤ −7.3125 + s1

0, if F1(ȳ) > −7.3125 + s1

ϕ1(F1(ȳ)) =



1, if F1(ȳ) > 6.5431

1 −
6.5431 − (−y2 − 1) +

(−5y1 + 4y2)

(2y1 + y2 + 5)
+ 7.3125

13.8556 − t1
, if − 7.3125 + t1 ≤ F1(ȳ) ≤ 6.543

0, if F1(ȳ) > −7.3125 + t1

For the second objective function F2: F l
2(φ) = 3.2051, FU

2 (φ) = 6.8732, for the truth member-

ship, F l
2(θ) = 3.2051, FU

2 (θ) = FU
2 (φ) + s2

(
FU

2 (φ)−F l
2(φ)

)
= 3.2051+ s2 for the indeterminacy

membership, F l
1(φ) = F l

2(φ) + t2

(
FU

1 (φ)− F l
2(φ)

)
= 3.2051 +t2, FU

2 (φ) = 6.8732, for the fal-

sity membership, where t2 and s2 are predetermined real numbers within the interval (0, 1).
Based on these bounds, the membership function can be defined as follows:
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φ2(F2(ȳ)) =



1, if F2(ȳ) < 3.2051

1 −
(y2 + 1) +

(9y1 + 2y2)

(7y1 + 3y2 + 1)
− 3.2051

3.6681
, if 3.2051 ≤ F2(ȳ) ≤ 6.8732

0, if F2(ȳ) > 6.8732

θ2(F2(ȳ)) =



1, if F2(ȳ) < 3.2051

1 −
(y2 + 1) +

(9y1 + 2y2)

(7y1 + 3y2 + 1)
− 3.2051

s2
, if 3.2051 ≤ F2(ȳ) ≤ 3.2051 + s2

0, if F2(ȳ) > 3.2051 + s2

ϕ2(F2(ȳ)) =



1, if F2(ȳ) < 3.2051

1 −
6.8732 − (y2 + 1) +

(9y1 + 2y2)

(7y1 + 3y2 + 1)
3.6681 − t2

, if 3.2051 + t2 ≤ F2(ȳ) ≤ 6.8732

0, if F2(ȳ) < 3.2051 + t2

For the second objective function F3: F l
3(φ) = 7.5299, FU

3 (φ) =7.7395, for the truth member-

ship, F l
3(θ) = 7.5299, FU

3 (θ) = FU
3 (φ) + s3

(
FU

3 (φ)−F l
3(φ)

)
=7.5299+ s3 for the indeterminacy

membership, F l
3(φ) = F l

3(φ) + t3

(
FU

3 (φ)− F l
3(φ)

)
= 7.5299 +t3, FU

3 (φ) = 7.7395, for the fal-

sity membership, where t3 and s3 are predetermined real numbers within the interval (0, 1).
Based on these bounds, the membership function can be defined as follows:

φ3(F3(ȳ)) =



1, if F3(ȳ) < 7.5299

1 −
(y1 + 1) +

(3y1 + 8y2)

(4y1 + 5y2 + 3)
− 7.5299

0.2096
, if 7.5299 ≤ F3(ȳ) ≤ 7.739

0, if F3(ȳ) > 7.739

θ3(F3(ȳ)) =



1, if F3(ȳ) < 7.5299

1 −
(y1 + 1) +

(3y1 + 8y2)

(4y1 + 5y2 + 3)
− 7.5299

s3
, if 7.5299 ≤ F3(ȳ) ≤ 7.5299 + s3

0, if F3(ȳ) > 7.5299 + s3
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ϕ3(F3(ȳ)) =



1, if F3(ȳ) > 7.7395

1 −
7.7395 − (y1 + 1) +

(3y1 + 8y2)

(4y1 + 5y2 + 3)
0.2096 − t3

, if 7.5299 + t3 ≤ F3(ȳ) ≤ 7.739

0, if F3(ȳ) < 7.5299 + t3

The construction of an equivalent neutrosophic mathematical model for the proposed problem is
represented as follows;

Max ζ − δ + η

S.t

y1 − y2 ≥ 2, 4y1 + 5y2 ≤ 25, y1 + 9y2 ≤ 9, y1 ≥ 5 and y1, y2 ≥ 0

(−y2 − 1) +
(−5y1 + 4y2)

(2y1 + y2 + 5)
+ 13.8556 ζ ≤ 6.5431

(y2 + 1) +
(9y1 + 2y2)

(7y1 + 3y2 + 1)
+ 3.6681 ζ ≤ 6.8732

(y1 + 1) +
(3y1 + 8y2)

(4y1 + 5y2 + 3)
+ 0.2096 ζ ≤ 7.7395

(−y2 − 1) +
(−5y1 + 4y2)

(2y1 + y2 + 5)
+ s1η − s1 ≤ −7.3125

(y2 + 1) +
(9y1 + 2y2)

(7y1 + 3y2 + 1)
+ s2η − s2 ≤ 3.2051

(y1 + 1) +
(3y1 + 8y2)

(4y1 + 5y2 + 3)
+ s3η − s3 ≤ 7.5299

(−y2 − 1) +
(−5y1 + 4y2)

(2y1 + y2 + 5)
− (13.8556 − t1)δ − t1 ≤ −7.3125

(y2 + 1) +
(9y1 + 2y2)

(7y1 + 3y2 + 1)
− (3.6681 − t2)δ − t1 ≤ 3.2051

(y1 + 1) +
(3y1 + 8y2)

(4y1 + 5y2 + 3)
− (0.2096 − t3)δ − t3 ≤ 7.5299

ζ ≥ η, ζ ≥ δ, ζ + η + δ ≤ 3, ζ, η, δ ∈ [0, 1], i = 1, 2, 3.

Now, solve the above numerical illustration using LINGO 20.0 optimization software and obtain
the best compromise solutions. The compromise solutions are represented as F1 = −6.3123, F2
= 3.025, F3 = 7.912.

Table 1. Compromise solutions of MOL+LFPP (Example 1).
Approach/ Methods y1 y2 F1 F2 F3

FGPA-I 5.352 0.718 −7.807 2.939 7.131
FGPA-II 5 1 −7.131 3.025 6.821

WSA 5 1 −6.971 3.017 6.9731
NGPA 5 1 −6.3123 3.025 7.912

Based on the analysis, NGPA provides the better compromise solution among the given
approaches as it achieves the highest values in all three objective functions. Table 1 presents the

compromise solutions, for example, 1 of the MOL+LFPP, dealing with the solution points
(y1, y2) and their corresponding objective values (F1, F2, F3)were obtained through the
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different approaches: FGPA-I, FGPA -II, WSA, and NGPA. This table showcases the variations
in the results achieved by each method, highlighting the trade-offs and efficiencies of the

different solution approaches in addressing the problem objectives.

Figure 1. Shows the compromise solutions using different approaches.
Figure 1 illustrates the compromise solutions for each objective function using different

approaches, for example, 1 of the MOL+LFPP. The figure highlights the performance of the
FGPA-I, FGPA-II, WSA, CGPA, and VFA are used to optimize the given objectives, providing

a comparative visual analysis of their effectiveness.

5.2 Numerical example 2

We consider another numerical example as follows;

Maximize F1(ȳ) = (−y1 − 1) +
(−y1 + 2y2 − 5)
(7y1 + 3y2 + 1)

Maximize F2(ȳ) = (−2y2 − 1) +
(2y1 − 3y2 − 5)

(y1 + 1)

Maximize F3(ȳ) = (−3y1 − 1) +
(5y1 + 2y2 − 19)
(−5y1 + 20)

S.t

y1 ≤ 6, y2 ≤ 6, 2y1 + y2 ≤ 9,−2y1 + y2 ≤ 5, y1 − y2 ≤ 5 and y1, y2 ≥ 0.

The pay-off matrix obtains the individual best and worst solutions as follows:

Pay-off matrix =

F1 F2 F3 ȳ1(0, 5) −0.6875 −31.0 −1.45
ȳ1(4.5, 0) −5.7923 −0.2727 −15.9
ȳ3(0, 5) −0.6875 −31.0 −1.45

The individual best and worst solutions are obtained as follows;
F b

1 =−0.688 at (0, 5), F b
2 =−0.272 at (4.5, 0) and F b

3 =−1.45 at (0, 5)
Fw

1 =−5.792 at (4.5, 0), Fw
2 = 31 at (0, 5) and Fw

3 =−15.9 at (4.5, 0).

Solutions by FPA

We use the best and worst solutions. The compromise solutions are obtained and summarized
as follows;

Then, the fuzzy goal appears in the following form: F1(ȳ) ≥ −0.688, F2(ȳ) ≥ −0.272, F3(ȳ) ≥
−1.45.

The membership functions are formulated as follows:

µ1(ȳ) =
F1(ȳ) + 5.792

5.104
=

(−y1 − 1) +
(−y1 + 2y2 − 5)
(7y1 + 3y2 + 1)

+ 5.792

5.104
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µ2(ȳ) =
F2(ȳ) + 31

31.272
=

(−2y2 − 1) +
(2y1 − 3y2 − 5)

(y1 + 1)
+ 31

31.272

µ3(ȳ) =
F3(ȳ) + 15.9

14.45
=

(−3y1 − 1) +
(5y1 + 2y2 − 19)
(−5y1 + 20)

+ 15.9

14.45

The membership functions µ1(ȳ), µ2(ȳ), µ3(ȳ) are maximal at the points (0, 5), (4.5, 0), (0, 5).
The membership functions are converted into equivalent linear membership functions at the

best solution points by the first order Taylor series as follows;

µ̂1(ȳ) = µ1(0, 5) + (y1 − 0)

(
∂

∂ȳ1
µ1(ȳ)

)
at ȳ=(0,5)

+ (y2 − 5)

(
∂

∂ȳ2
µ2(ȳ)

)
at ȳ=(0,5)

µ̂1(ȳ) = 1 − 0.235(y1 − 0) + 0.013(y2 − 5), similarly other membership function

µ̂2(ȳ) = 1 + 0.667(y1 − 4.5)− 0.163(y2 − 0), µ̂3(ȳ) = 1 − 0.198(y1 − 0) + 0.007((y2 − 5)

The fuzzy goal programming approach -I can be represented as

Minimize λ

S.t

1 − 0.235(y1 − 0) + 0.013(y2 − 5) + d−1 = 1

1 + 0.667(y1 − 4.5) + 0.163(y2 − 0) + d−2 = 1

1 − 0.198(y1 − 0) + +0.007(y2 − 5) + d−3 = 1 (5.3)

y1 ≤ 6, y2 ≤ 6, 2y1 + y2 ≤ 9,−2y1 + y2 ≤ 5, y1 − y2 ≤ 5 and y1, y2 ≥ 0.

λ ≥ d−i , 0 ≤ d−i ≤ 1, d−i ≥ 0, i = 1, 2, 3.

Eq. 5.3 provides the best compromise solutions F1 = −3.306, F2 = −7.51,F3 = −1.92 at the
pints y1 = 0 and y2 = 0.302. The fuzzy goal programming approach -II can be represented as:

Minimize ξ =
1
3
(d−1 + d−2 + d−3 )

S.t

1 − 0.235(y1 − 0) + 0.013(y2 − 5) + d−1 = 1

1 + 0.667(y1 − 4.5) + 0.163(y2 − 0) + d−2 = 1

1 − 0.198(y1 − 0) + +0.007(y2 − 5) + d−3 = 1 (5.4)

y1 ≤ 6, y2 ≤ 6, 2y1 + y2 ≤ 9,−2y1 + y2 ≤ 5, y1 − y2 ≤ 5 and y1, y2 ≥ 0.

λ ≥ d−i , 0 ≤ d−i ≤ 1, d−i ≥ 0, i = 1, 2, 3.

Eq. 5.4 provides the best compromise solutions using LINGO 20.0 optimization software F1 =
−6.0, F2 = −6.0, F3 = −1.95 at y1 = 0 and y2= 0.
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Solution by the WSA

In this section, we apply the weighted sum approach to the proposed numerical example and get
the optimal compromise solutions. Let us assign the different weights of the problem, w1 = 0.1,
w2 = 0.9,w3= 0.2. The general formulation of the problem using WSP is represented as follows:

Max F = 0.1(−y1−1)+
(−y1 + 2y2 − 5)
(7y1 + 3y2 + 1)

+0.9(−2y2−1)+
(2y1 − 3y2 − 5)

(y1 + 1)
+0.2(−3y1−1)+

(5y1 + 2y2 − 19)
(−5y1 + 20)

S.t y1 ≤ 6, y2 ≤ 6, 2y1 + y2 ≤ 9,−2y1 + y2 ≤ 5, y1 − y2 ≤ 5 and y1, y2 ≥ 0.
The problem is solved using the LINGO 20.0 optimization software, and the best compromise
solutions are as follows: F1 = −7.031, F2 = −2.1321, F3 = −1.972 at the points y1 = 5, y2 = 1.

Solution by NGPA

We have solved the numerical example 2 individually as a single objective optimization
problem using the proposed NGPA. Construct the pay-off matrix by evaluating objective

functions and constraints with the three solutions obtained.

Pay-off matrix =

F1 F2 F3 ȳ1(0, 5) −0.6875 −31.0 −1.45
ȳ1(4.5, 0) −5.7923 −0.2727 −15.9
ȳ3(0, 5) −0.6875 −31.0 −1.45

Determine the lower and upper bounds for each objective function. These bounds are assigned
using the following formula,F l

i = min {Fi(ȳ)}3
i=1 , F

U
i = max {Fi(ȳ)}3

i=1 .
The bounds of each objective represented as follows; −0.6875 ≤ F1 ≤−1.237, −0.2727 ≤ F2
≤−15.67, −1.45 ≤ F3 ≤ −1.375. Now, we define the membership function of each objective

function using the NGPA.
For the first objective function F1: F l

1(φ) = −0.6875, FU
1 (φ) = −1.237, for the truth

membership, F l
1(θ) = −0.6875, FU

1 (θ) = FU
1 (φ) + s1

(
FU

1 (φ)−F l
1(φ)

)
= −0.6875 + s1 for the

indeterminacy membership, F l
1(φ) = F l

1(φ) + t1

(
FU

1 (φ)− F l
1(φ)

)
= −0.6875 +t1, FU

1 (φ) =

−1.237, for the falsity membership, where t1 and s1 are predetermined real numbers within the
interval (0, 1). Based on these bounds, the membership function can be defined as follows:

φ1(F1(ȳ)) =



1, if F1(ȳ) < −0.6875

1 −
(−y1 − 1) +

(−y1 + 2y2 − 5)
(7y1 + 3y2 + 1)

+ 0.6875

−0.5495
, if − 0.6875 ≤ F1(ȳ) ≤ −1.237

0, if F1(ȳ) > −1.237

θ1(F1(ȳ)) =



1, if F1(ȳ) < −0.6875

1 −
(−y1 − 1) +

(−y1 + 2y2 − 5)
(7y1 + 3y2 + 1)

+ 0.6875

s1
, if − 0.6875 ≤ F1(ȳ) ≤ −0.6875 + s1

0, if F1(ȳ) > −0.6875 + s1

ϕ1(F1(ȳ)) =



1, if F1(ȳ) > −1.237

1 −
−1.23 − (−y1 − 1) +

(−y1 + 2y2 − 5)
(7y1 + 3y2 + 1)

+ 0.6875

−0.5495 − t1
, if − 0.6875 + t1 ≤ F1(ȳ) ≤ −1.237

0, if F1(ȳ) > −0.6875 + t1
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For the second objective function F1: F l
1(φ) = −0.2727, FU

1 (φ) = −15.67, for the truth

membership, F l
1(θ) = −0.2727, FU

1 (θ) = FU
1 (φ) + s1

(
FU

1 (φ)−F l
1(φ)

)
= −0.2727 + s1 for the

indeterminacy membership, F l
1(φ) = F l

1(φ) + t1

(
FU

1 (φ)− F l
1(φ)

)
= −0.2727 +t1, FU

1 (φ) =

−15.67, for the falsity membership, where t1 and s1 are predetermined real numbers within the
interval (0, 1). Based on these bounds, the membership function can be defined as follows:

φ2(F2(ȳ)) =



1, if F2(ȳ) < −0.2727

1 −
(−2y2 − 1) +

(2y1 − 3y2 − 5)
(y1 + 1)

+ 0.2727

−15.3973
, if − 0.2727 ≤ F2(ȳ) ≤ −15.67

0, if F2(ȳ) > −15.67

θ2(F2(ȳ)) =



1, if F2(ȳ) < −0.2727

1 −
(−2y2 − 1) +

(2y1 − 3y2 − 5)
(y1 + 1)

+ 0.2727

s2
, if − 0.2727 ≤ F2(ȳ) ≤ −0.2727 + s2

0, if F2(ȳ) > −0.2727 + s2

ϕ2(F2(ȳ)) =



1, if F2(ȳ) > −15.67

1 −
−15.67 − (−2y2 − 1) +

(2y1 − 3y2 − 5)
(y1 + 1)

−15.3973 − t2
, if − 0.2727 ≤ F2(ȳ) ≤ −15.67

0, if F2(ȳ) < −0.2727 + t2

For the third objective function F3: F l
3(φ) = −1.45, FU

3 (φ) =−1.375, for the truth membership,

F l
3(θ) = −1.45, FU

3 (θ) = FU
3 (φ) + s3

(
FU

1 (φ)− F l
3(φ)

)
= −1.45 + s3 for the indeterminacy

membership, F l
3(φ) = F l

3(φ) + t3

(
FU

1 (φ)− FU
3 (φ)

)
= −1.45 +t3, FU

3 (φ) = −1.375, for the

falsity membership, where t1 and s3 are predetermined real numbers within the interval (0, 1).
Based on these bounds, the membership function can be defined as follows:

φ3(F3(ȳ)) =



1, if F3(ȳ) < −1.45

1 −
(−3y1 − 1) +

(5y1 + 2y2 − 19)
(−5y1 + 20)

+ 1.45

0.075
, if − 1.45 ≤ F3(ȳ) ≤ −1.375

0, if F3(ȳ) > −1.375

θ3(F3(ȳ)) =



1, if F3(ȳ) < −1.45

1 −
(−3y1 − 1) +

(5y1 + 2y2 − 19)
(−5y1 + 20)

+ 1.45

s3
, if − 1.45 ≤ F3(ȳ) ≤ −1.45 + s3

0, if F3(ȳ) > −1.45 + s3



1034 Wajaha,Sheema, Naseem, Mohammad Sheihan, Ayesha

ϕ3(F3(ȳ)) =



1, if F3(ȳ) > −1.375

1 −
−1.375 − (−3y1 − 1) +

(5y1 + 2y2 − 19)
(−5y1 + 20)

0.075 − t3
, if − 1.45 + t3 ≤ F3(ȳ) ≤ −1.375

0, if F3(ȳ) < −1.45 + t3

The construction of an equivalent neutrosophic mathematical model for the proposed problem
is as follows:

Max ζ − δ + η

S.t

y1 ≤ 6, y2 ≤ 6, 2y1 + y2 ≤ 9,−2y1 + y2 ≤ 5, y1 − y2 ≤ 5 and y1, y2 ≥ 0.

(−y1 − 1) +
(−y1 + 2y2 − 5)
(7y1 + 3y2 + 1)

− 0.5495ζ ≤ −1.237

(−2y2 − 1) +
(2y1 − 3y2 − 5)

(y1 + 1)
− 15.3973ζ ≤ −15.67

(−3y1 − 1) +
(5y1 + 2y2 − 19)
(−5y1 + 20)

+ 0.075ζ ≤ −1.375

(−y1 − 1) +
(−y1 + 2y2 − 5)
(7y1 + 3y2 + 1)

+ s1η − s1 ≤ −0.6875

(−2y2 − 1) +
(2y1 − 3y2 − 5)

(y1 + 1)
+ s2η − s2 ≤ −0.2727

(−3y1 − 1) +
(5y1 + 2y2 − 19)
(−5y1 + 20)

+ s3η − s3 ≤ −1.45

(−y1 − 1) +
(−y1 + 2y2 − 5)
(7y1 + 3y2 + 1)

− (−0.5495 − t1)δ − t1 ≤ −0.6875

(−2y2 − 1) +
(2y1 − 3y2 − 5)

(y1 + 1)
− (−15.3973 − t2)δ − t2 ≤ −0.2727

(−3y1 − 1) +
(5y1 + 2y2 − 19)
(−5y1 + 20)

− (−0.075 − t3)δ − t3 ≤ −1.45

ζ ≥ η, ζ ≥ δ, ζ + η + δ ≤ 3, ζ, η, δ ∈ [0, 1], i = 1, 2, 3.

Now, solve the above numerical illustration using LINGO 20.0 optimization software and
obtain the best compromise solutions. The compromise solutions are represented as F1 =

−3.0172,F2 = −6.9730, F3 = −1.8735.
Table 2. Compromise solutions of MOL+LFPP (Example 2).

Approach/ Methods y y2 F1 F2 F3

FGPA-I 0 0.302 −3.306 −7.51 −1.92
FGPA-II 0 0 −6.0 −6.0 −1.95

WSA 5 1 −7.031 −2.1321 −1.972
NGPA 5 1 −3.0172 −6.9730 −1.8735

Table 2 presents the compromise solutions for the MOL+LFPP based on example 2,
showcasing the solution points (y1, y2) and their corresponding objective values (F1, F2, F3)
obtained using the different approaches: FGPA-I, FGPA-II, WSA, and NGPA. The results

highlight the varying performance and trade-offs among the methods in achieving the optimal
solution for the given objectives.
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Figure 2. Shows the compromise solution using different approaches.
Figure 2 illustrates the compromise solutions using different approaches for the MOL+LFPP.

The NGPA provides a better solution than the other approaches, demonstrating its effectiveness
in optimizing the objectives.

6 Conclusion

In this study, we developed and analyzed a mathematical model for the multi-objective linear
plus linear fractional programming problem (MOL+LFPP). By employing three distinct

approaches—Fuzzy Programming Approach (FPA), Weighted Sum Approach (WSA), and
Neutrosophic Goal Programming Approach (NGPA)—we generated sets of efficient solutions

for the proposed problem. Numerical illustrations solved using LINGO 20.0 optimization
software demonstrated the feasibility and effectiveness of these approaches.

The results reveal that NGPA consistently outperforms the other methods, providing superior
compromise solutions with the highest values across all objective functions. Specifically, in
Example 1 and Example 2, NGPA achieved objective values of (−6.3123, 3.025, 7.912) and
(−3.0172, −6.9730, −1.8735), respectively. These outcomes underscore NGPA’s robustness
and reliability in handling the complexities of MOL+LFPP, making it a particularly effective

approach for such problems.
Furthermore, the study underscores the adaptability of NGPA in dealing with multi-objective

optimization scenarios, where traditional methods may fall short in balancing conflicting
objectives. The findings suggest that NGPA provides better objective values and a more
comprehensive framework for decision-makers seeking optimal solutions in complex,

multi-objective environments. Future research could explore the integration of NGPA with
other advanced techniques to enhance its application in broader optimization contexts.

6.1 Managerial and Practical Implications

The findings of this research have significant implications for managers and practitioners
involved in multi-objective decision-making scenarios. The proposed methodologies provide

robust frameworks for handling complex optimization problems with linear and fractional
objectives [73, 74]. Managers can leverage these approaches to make more informed decisions

that simultaneously consider multiple, often competing, objectives [75]. The ability to find
compromise solutions that optimize various objectives can lead to more efficient and effective

resource allocation and operational strategies [76, 77]. The use of fuzzy weighted sum and
neutrosophic programming approaches allows for incorporating uncertainty and vagueness in

real-world scenarios, enhancing the adaptability of the decision-making process.

6.2 Limitations and Future Research

While this study presents valuable insights, it also has certain limitations that pave the way for
future research. The current study is limited to examples with relatively few objectives and

constraints. Future research could explore the scalability of these approaches to larger and more
complex MOL+LFPP instances. The numerical examples used in this paper are hypothetical, so

applying these methodologies to real-world data would provide more practical insights and
validate the robustness of the proposed solutions [86, 88]. Further comparative studies with
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other multi-objective optimization approaches could enrich the understanding of the relative
strengths and weaknesses of FPA, WSA, and NGPA. Investigating the performance of these

methodologies in dynamic and time-varying environments could enhance their applicability in
rapidly changing industries [78]. Additionally, exploring hybrid methodologies that combine

elements of fuzzy, weighted sum, and neutrosophic approaches with other optimization
techniques could lead to more versatile and powerful solution frameworks. By addressing these
limitations, future research can build on the foundation laid by this study to further advance the

field of multi-objective optimization in both theoretical and practical dimensions.
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