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Abstract In this article, we present a numerical study of the convection-diffusion equation
with a source term, formulated as a mixed initial-boundary value problem, using a spectral ele-
ment method for the space discretization, which enables problem (1.1) in a finite regular set Λ

to be solved as a set of ordinary differential equations. We prove the existence, uniqueness and
the stability of the solution. Finally, we estimate the error between the exact and approximated
discrete solutions, and illustrate the features of our method with numerical examples. To solve
the discrete problem, we use the inverse matrix.

1 Introduction

The convection-diffusion equation is a combination of the diffusion and convection (advection)
equations. It describes physical phenomena where particles, energy, or other physical quanti-
ties are transferred within a system due to two processes: diffusion and convection, see also
[4, 13, 63].
Many problems in physics, mathematical physics, and various other fields of science can be mod-
eled by the convection-diffusion equation. For numerous examples and additional applications,
see [9, 18, 24, 33, 35, 45, 51]. Various numerical methods have been employed to solve the
convection-diffusion equation. Appadu [10] solved the equation using both standard and non-
standard finite difference schemes. El-Hawary and Abdel-Rahman [28] studied the numerical
solution of the convection-diffusion equation (linear Burger’s equation) using a spectral spline
method. Boztosun and Charafi [29] explored the numerical solution of the linear advection-
diffusion equation using mesh-free and mesh-dependent methods. Krukier et al. [37] presented
a numerical solution of the steady convection-diffusion equation with dominant convection in
a domain with two spatial variables, as also discussed in [39]. In [44], Porshokouhi et al. ap-
plied a homotopy perturbation method to solve the convection-diffusion equation. Chawla et al.
[46] introduced extended one-step time-integration schemes for convection-diffusion equations.
Olayiwola [47] used the variational iteration method to solve the convection-diffusion equation.
Feng [54], employed an explicit finite difference method to solve the convection-diffusion equa-
tion. Temsah [57] presented a steady-state solution for the convection-diffusion equation using
the El-Gendi method. El-Wakil et al. [58] solved the convection-diffusion equation using the
Adomian decomposition method. For more details on the convection-diffusion equation, see
also [3, 5, 25, 31, 32, 38, 43, 48, 55].

The primary objective of this work is the numerical analysis of the discretization of the
convection-diffusion equation with a source term, formulated as a mixed initial-boundary value
problem. We have developed a spectral method to improve the accuracy of the solutions while
reducing computational complexity. By reducing the size of the resulting system to (N − 1)
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instead of (N −1)2 as in previous works (e.g., Bernardi and Maday, 1992; Daug, 1996; Bernardi
et al., 1999), we achieved a significant improvement in solution efficiency. Furthermore, this
spectral method exhibits a faster rate of error reduction compared to traditional methods such as
the Finite Difference Method (FDM) and the Finite Element Method (FEM), making it a highly
efficient approach for solving two-dimensional partial differential equations. For a more detailed
and comprehensive analysis of these methods, we refer to [12, 14, 15, 17, 19, 23, 62].

The paper is organized as follows: After this introduction, Section 2 is devoted to orthogonal
polynomials and their main properties. The variational formulation of the problem is presented
in Section 3. The discrete problem and the proof of existence and uniqueness of the solution
are introduced in Section 4. Numerical experiments and error estimates are discussed in Section
5, and finally, we conclude in Section 6. In this paper, we consider the convection-diffusion
equation with a source term:

∂tu(x, t)− a∂2
xu(x, t) + b∂xu(x, t) + cu(x, t) = f(x, t) , x ∈ Λ, t > 0, (1.1)

with the initial condition:

u(x, 0) = u0(x), x ∈ Λ, (1.2)

and the Dirichlet boundary conditions:

u(x, t) = 0 x ∈ ∂Λ, t > 0, (1.3)

where Λ = (−1, 1) is a finite regular set with boundary ∂Λ, b∂xu(x, t) and a∂2
xu(x, t) represent

the convection and diffusion terms, respectively, and f(x, t) is the heat source term. The param-
eters a, b and c are positive constants, with u(x, t) representing the temperature at point x at time
t. The discretization involves both spatial and temporal variables. In the case of b = 0, we have
studied this problem numerically and theoretically in [1], and also in [2].

Thus, the problem described in (1.1) becomes a problem of a single spatial variable. By using
an orthogonal matrix, we reduce this problem to a system of ordinary differential equations.

In this paper, we investigate this problem under inhomogeneous boundary conditions. We
consider the approximate solution in the polynomial space P0

N (Ω) , which is spanned by the ele-
ments ln(x)lm(t), where 1 ≤ m,n ≤ N − 1, and ln(x) and lm(t) are the Lagrange polynomials.

In this work, we construct an approximate solution to the inhomogeneous mixed initial-
boundary value problem (1.1, 1.2, 1.3) in the form:

uN (x, t) =
N−1∑
n=1

an(t)ln(x), (1.4)

where

an(t) =
N−1∑
m=1

unmlm(t). (1.5)

The Lagrangian interpolates ln(x), 1 ≤ n ≤ N − 1, are defined at the points xi ∈ Λ = [−1, 1],
0 ≤ i ≤ N , These interpolants satisfy the property ln(ξj) = δnj , 1 ≤ n, j ≤ N − 1, where δnj
is the Kronecker delta, and the points ξj , 0 ≤ j ≤ N are the collocation points on the Gauss-
Lobatto Legendre grid. The grid made by ξj , 0 ≤ j ≤ N, is denoted by ΛN+1. The choice of the
form (1.4) for the solution, combined with certain techniques, gives a linear system which can
be written in matrix form as: ΓDa − Aa = ΓG, where A is a square, positive-definite matrix,
and Γ is a diagonal invertible matrix, and the operator D = d

dt . We write a = Pv, where
P is an orthogonal matrix such that P−1

(
Γ−1A

)
P = C is a diagonal matrix, This results in a

system of N−1 ordinary differential equations. We can use Lagrange’s method of undetermined
parameters to solve for each component vi(t) of v, and finally, we obtain the expression for an(t)
which provides the desired approximate solution, see also [1, 6, 7, 8, 30, 36, 59, 60, 64].
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2 Orthogonal polynomials

We work in the interval Λ and use the Legendre polynomials Ln,where n ≥ 0. Each polynomial
Ln has degree n and is orthogonal to the other polynomials in the space

L2 (Λ) =

{
φ : Λ → R,measurable /

∫ 1

−1
φ2 (x) dx < +∞

}
. (2.1)

and satisfies the following property∫ 1

−1
Ln(x)Lm(x)dx =

2
2n+ 1

δnm. (2.2)

h′
n (x) = −n (n+ 1)Ln (x) , hn (x) =

(
1 − x2)L′

n (x) , n ≥ 0, (2.3)

hn (x) =
n (n+ 1)

2n+ 1
(Ln−1(x)− Ln+1(x)) (2.4)∫

Λ

(hn (x))
2
dx =

4 [n(n+ 1)]2

(4n2 − 1)(2n+ 3)
. (2.5)

3 Variational Formulation

3.1 The spaces

The pivot space for the problem (1.1) is the space L2 (Λ) , and the variational space is the Sobolev
space

H1 (Λ) =
{
v ∈ L2 (Λ) / ∂xv ∈ L2(Λ)

}
, (3.1)

with the corresponding norms defined as follows:

∥v∥2
L2(Λ) =

∫
Λ

v2dx,

∥v∥2
H1(Λ) =

∫
Λ

(v2 + (∂xv)
2
)dx. (3.2)

3.2 The continuous problem

To introduce the variational formulation for the continuous problem (1.1), we define the subspace
of the variational space with zero Dirichlet trace as

H1
0 (Λ) =

{
v ∈ H1 (Λ) / v = 0 on ∂Λ

}
. (3.3)

We define the product in L2 (Λ) as

(f, v) =

∫
Λ

f(x, t)v(x, t)dx. (3.4)

The continuous problem (1.1) admits the following equivalent variational formulation:
Find u ∈ H1

0 (Λ), such that

∀v ∈ H1
0 (Λ) ,Φ(u, v) = ⟨f, v⟩ , (3.5)

where
Φ(u, v) =

∫
Λ

(
∂tu− a∂2

xu+ b∂xu+ cu
)
vdx, (3.6)

and integrating by parts gives

Φ(u, v) =

∫
Λ

(∂tuv + a∂xu∂xv + b∂xuv + cuv) dx. (3.7)
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4 Discrete space and form

Let N denote the discretization parameter for the problem (1.1), where in the spectral method,
N represents the degree of the polynomials. The approximate space is generated by the finite-
dimensional subspace of L2 (Λ), and P0

N (Λ) is the approximate subspace of H1
0 (Λ), where

P0
N (Λ) = {pn ∈ PN (Λ) / pn(1) = pn(−1) = 0} ,

and PN (Λ) is the set of polynomials of degree less than or equal to N . Furthermore, we take
into account the exact quadrature formula and introduce the bilinear form ΦN as an approxi-
mation to the form Φ, and we approximate the scalar product (., .) for (., .)N , as discussed in
[1, 6, 8, 30, 60, 64].

4.1 The Discrete problem

Firstly, we observe that the Lagrange polynomials ln(x), where 0 ≤ n ≤ N , form a basis for
P0
N (Λ). The exact solution u of problem (1.1) is approximated by the solution uI

N belonging to
P0
N (Λ), with

(
uI
N − uN0

)
∈ P0

N (Λ). The corresponding variational problem is:{
find uI

N ∈ P0
N (Λ), s.t

∀vN ∈ P0
N (Λ),ΦN (uI

N , vN ) = (fN , vN )N
, (4.1)

where

ΦN (uI
N , vN ) =

N∑
k=0

(
∂tu

I
NvN + a∂xu

I
N∂xvN + b∂xu

I
NvN + cuI

NvN
)
(ξk, t)ρk, (4.2)

and ξk, ρk for 0 ≤ k ≤ N are defined in proposition 4.1, and uI
N = uN + uN0, with uN ∈

P0
N (Λ). The problem (4.1) is equivalent to the following problem: Find uI

N ∈ P0
N (Λ) with

uN = uI
N − uN0 ∈ P0

N (Λ) such that, ∀vN ∈ P0
N (Λ)

ΦN (uN , vN ) = ΘN (uN0, vN ), (4.3)

where
ΘN (uN0, vN ) = (fN , vN )N − ΦN (uN0, vN ). (4.4)

4.2 Existence and uniqueness of solution

Quadrature formula

Proposition 4.1. There exists a unique set of N − 1 nodes ξj , 1 ≤ j ≤ N − 1, in Λ, with the
conditions ξ0 = −1 and ξN = 1, as well as N + 1 positive weights ρj , 0 ≤ j ≤ N, such that the
following exactness property holds:

∀φ ∈ P2N−1(Λ),

∫ 1

−1
φ (x) dx =

N∑
j=0

φ (ξj) ρj . (4.5)

Here, ξj for 1 ≤ j ≤ N − 1 are the roots of the polynomial L
′

N . and the weights ρj are given by:{
ρ0 = ρN = 2

N(N+1)

ρj=
ρ0

L2
N (ξj)

, 1 ≤ j ≤ N − 1
. (4.6)

Proof. See [2, 14, 15].

Definition 4.2. We define the discrete product for all polynomials vN and uN in P0
N (Λ) as:

(uN , vN )N =
N∑
k=0

uN (ξk, t)vN (ξk, t)ρk. (4.7)
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Lemma 4.3. The polynomial hN−1 ∈ P0
N (Λ) verifies the double inequality:

∥hN−1∥2
L2(Λ) ≤ (hN−1, hN−1)N ≤ 3

2
∥hN−1∥2

L2(Λ) . (4.8)

Proof. See [2, 8].

Proposition 4.4. For all polynomials hn ∈ P0
n(Λ), the following inequalities hold:

n ∥hn∥L2(Λ) ≤
∥∥∥h′

n

∥∥∥
L2(Λ)

≤ 3n ∥hn∥L2(Λ) . (4.9)

Proof. See [8].

Also, the Lagrange polynomials lj(x) for j = 1, N − 1 can be written in the following form

lj(x) =
N−1∑
k=0

γkjhk (x) ,

and using (2.3), we get

lj(x) =
N−1∑
k=0

λkjLk (x) . (4.10)

Proposition 4.5. The set of polynomials {Ln (ζ)}, for n = 0, ..., N , forms a basis for the poly-
nomial space PN (Λ). Therefore, any polynomial φN ∈ PN (Λ) can be written as φN (ζ) =
N∑

n=0
αnLn(ζ). Furthermore, we have the following inequality:

c1 log(2N + 1) ≤ ∥φN∥2
L2(Λ) ≤ c2 log(exp(2)(2N + 1)), (4.11)

where (c1, c2) =
(
min(α2

n

)
,max(α2

n)).

Proof. See [2, 8].

Proposition 4.6. For a positive integer m, the Sobolev space Hm (Λ) is defined as:

Hm (Λ) =

{
φ ∈ L2 (Λ) : 1 ≤ k ≤ m,

dk

dxk
φ ∈ L2 (Λ)

}
, (4.12)

with the norm:

∥φ∥2
Hm(Λ) =

∫
Λ

m∑
k=0

(
dk

dxk
φ

)2

(x) dx. (4.13)

Proposition 4.7. The bilinear form ΦN (., .) in equation (4.3) satisfies the following properties
of continuity:

∀uN ∈ P0
N (Λ), ∀vN ∈ P0

N (Λ), |ΦN (uN , vN )| ≤ 3
2

max (a+b, c+C4)
(
||uN ||H1

0 (Λ)
. ||vN ||H1

0 (Λ)

)
,

(4.14)
and of ellipticity:

∀uN ∈ P0
N (Λ), |ΦN (uN , uN )| ≥ min(a, c+ C3)

(
||uN ||2H1

0 (Λ)

)
. (4.15)

Proof. The continuity: The bilinear form ΦN is expressed as:

ΦN (uN , vN ) =
N∑
k=0

∂tuN (ξk, t)vN (ξk, t)ρk +
N

a
∑

k=0
∂xuN (ξk, t)∂xvN (ξk, t)ρk

+
N

b
∑

k=0
∂xuN (ξk, t)vN (ξk, t)ρk +

N

c
∑

k=0
uN (ξk, t)vN (ξk, t)ρk.
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We assume that the solution and its derivatives are bounded, so there exist two positive con-
stants C3 and C4 such that

C3 |uN (ξk, t)| ≤ |∂tuN (ξk, t)| ≤ C4 |uN (ξk, t)| . (4.16)

Using lemma (4.3), the exact quadrature formula, and the Cauchy-Schwarz inequality, we
can derive the desired results, see also (Bernardi and Maday [16], Boutaghou and Nouri [8]).

The ellipticity: The bilinear form ΦN is written as:

ΦN (uN , uN ) =
N∑
k=0

∂tuN (ξk, t)uN (ξk, t)ρk +
N

a
∑
k=0

∂xuN (ξk, t)∂xuN (ξk, t)ρk +
N

b
∑
k=0

∂xuN (ξk, t)uN (ξk, t)ρk

+
N

c
∑
k=0

uN (ξk, t)uN (ξk, t)ρk.

Using the exact quadrature formula, we rewrite the expression as:

ΦN (uN , uN ) =
N∑
k=0

∂tuN (ξk, t)uN (ξk, t)ρk + a

∫ 1

−1
∂xuN (x, t)∂xuN (x, t)dx+

N

b
∑
k=0

∂xuN (ξk, t)uN (ξk, t)ρk

+
N

c
∑
k=0

uN (ξk, t)uN (ξk, t)ρk,

From inequality (4.16) and the orthogonality properties, we obtain:

|ΦN (uN , uN )| ≥
N

C3
∑

k=0
uN (ξk, t)uN (ξk, t)ρk+a

∫ 1
−1 ∂xuN (x, t)∂xuN (x, t)dx+

N

c
∑

k=0
uN (ξk, t)uN (ξk, t)ρk.

Using inequality (4.8) we write:

|ΦN (uN , uN )| ≥ min(a, c+ C3)
(
||uN ||2H1

0 (Λ)

)
,

which yields the desired result.

Proposition 4.8. (The inequality of stability) For any continuous function g = u0 on Λ, the
problem (4.3) has a unique solution uN in P0

N (Λ), and this solution verifies the inequality of
stability:

∥uN (x, t)∥H1
0 (Λ)

≤ γ
(
∥fN (x, t)∥L2(Λ) + ∥gN (x)∥L2(Λ)

)
, (4.17)

where γ is a positive constant.

Proof. From the variational formulation (4.3), we can write:

ΦN (uN , uN ) = (fN , uN )N − ΦN (gN , uN ) ≤ |(fN , uN )N |+ |ΦN (gN , uN )| . (4.18)

Using inequality (4.8) and the Cauchy-Schwarz inequality, we have:

|(fN , uN )N |+ |ΦN (gN , uN )| ≤ 3
2
∥fN (x, t)∥L2(Λ) . ∥uN (x, t)∥L2(Λ) + a ∥∂xgN (x)∥L2(Λ) . ∥∂xuN (x, t)∥L2(Λ)

+b ∥∂xgN (x)∥L2(Λ) . ∥uN (x, t)∥L2(Λ) +
3c
2

∥gN (x)∥L2(Λ) . ∥uN (x, t)∥L2(Λ) .

The quantities ∥∂xgN (x)∥L2(Λ) and ∥∂xuN (x, t)∥L2(Λ) are bounded. Therefore, there exists a
positive constant γ such that:

ΦN (uN , uN ) ≤ |(fN , uN )N |+|ΦN (gN , uN )| ≤ γ
(
∥fN (x, t)∥L2(Λ) + ∥gN (x)∥L2(Λ)

)
∥uN (x, t)∥H1

0 (Λ)
,

Finally, using the ellipticity inequality (4.15), yields the desired result.
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5 Numerical experiment

At the points ξk, 1 ≤ k ≤ N − 1 the problem (1.1, 1.2, 1.3) is transformed into a system of
equations:

N−1∑
n=1

ln(ξk)a′n(t) + [cln(ξk) + bl′n(ξk)− al′n(ξk)] an(t) =
N−1∑
n=1

fn(t)ln(ξk) + au′′
N0(ξk)− bu′

N0(ξk)− cuN0(ξk) in Λ ∩ ΛN+1

uN (ξk, t) = 0, on ∂Λ ∩ ΛN+1

uN (x, 0) = uN0(x)

f(x, t) =
N−1∑
n=1

fn(t)ln (x) , fn(t) =
N−1∑
j=1

fjnlj (t) , fjn = f (ξj , tn)

(5.1)
Since the functions

cln(x) + bl′n(x)− al
′′

n(x), 1 ≤ n ≤ N − 1,

are polynomials with degree N, we multiply both sides by lm(ξk)ρk and applying the sum, by
using the quadrature formula, when m varies from 1 to N − 1, we obtain a linear system, then
we can write this system in a matrix form:

ΓDa−Aa = ΓG. (5.2)

Where A is a square, positive-definite matrix of order N − 1 , with elements:

αmn = (−cln(ξm)− bl′n(ξm) + al
′′

n(ξm))lm(ξk)ρm, n = 1, N − 1,m = 1, N − 1.

Γ is a diagonal invertible matrix with elements:

γmn =

{
ρm , n = m

0, n ̸= m
, m, n = 1, N − 1,

G is a known vector:

G = (f1(t) + au
′′
N0(ξ1)− bu

′
N0(ξ1)− cuN0(ξ1), f2(t) + au

′′
N0(ξ2)− bu

′
N0(ξ2)− cuN0(ξ2)

, ..., fN−1(t) + au
′′
N0(ξN−1)− bu

′
N0(ξN−1)− cuN0(ξN−1))

t,

a(t) is the unknown vector of coefficients:

a(t) = (a1(t), a2(t), a3(t), ....., aN−2(t), aN−1(t))
t,

the operator,

D =
d

dt
.

We now multiply equation (5.2) by the inverse matrix Γ−1 to obtain:

Da− Γ
−1Aa = G . (5.3)

The matrix Γ−1A has positive eigenvalues, and there exists an orthogonal matrix P such that,

P−1 (
Γ
−1A

)
P = C,

where C is a diagonal matrix with eigenvalues λi = αii, for i = 1, N − 1 of the matrix Γ−1A,
if we consider the vector v such that

a = Pv,

then the system (5.3) becomes
PDv − (Γ−1A)Pv = G. (5.4)
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Multiplying both sides by P−1 results in:

Dv − Cv = P−1G. (5.5)

This is a system of N − 1 linear ordinary differential equations:

v′k(t)− λkvk(t) = hk(t), (5.6)

where

hk(t) =
N−1∑
j=1

p−1 (k, j) (fj(t) + au′′
N0(ξk)− bu′

N0(ξk)− cuN0(ξk)) , 1 ≤ k ≤ N − 1, (5.7)

p−1 (k, j) are the elements of the inverse matrix P−1. To solve the equations (5.6) we use La-
grange’s method [64], we may write the solution in the closed form:

vk(t) = eλkt

(∫ t

0
e−λkshk(s)ds+ dk

)
, (5.8)

where dk is a constant to be determined from the boundary conditions. Thus, equation (5.8) can
be written as:

vk(t) = eλkt

∫ t

0
e−λkshk(s)ds+

N−1∑
j=1

p−1
kj uN0(ξk)

 . (5.9)

Finally, we obtain the functions,

an(t) =
N−1∑
j=1

pnjvj(t), (5.10)

where pnj , 1 ≤ n, j ≤ N − 1 are the elements of the matrix P , and the approximation solution
is:

u(x, t) =
N−1∑
n=1

N−1∑
j=1

pnj

∫ t

0
e−λkshk(s)ds+

N−1∑
j=1

p−1
kj u0(ξk)

 eλktln(x).

For the time interval t ∈ [0, T ] , the solution is written as:

u(x, t) =
N−1∑
n=1

N−1∑
j=1

unj ln (x) lj (t) , an(t) =
N−1∑
j=1

unj lj(t), (5.11)

where the coefficients unj are determined by:

unj =
N−1∑
j=1

pnj

∫ tj

0
e−λkshk(s)ds+

N−1∑
j=1

p−1
kj uN0(ξk)

 eλktj .

Thus, the approximate solution is:

uN (x, t) =
N−1∑
n=1

N−1∑
m=1

N−1∑
j=1

pnj

∫ tj

0
e−λkshk(s)ds+

N−1∑
j=1

p−1
kj uN0(ξk)

 eλktj

 ln(x)lm (t)+ϕ (x) ,

where ϕ (x) =
N−1∑
n=1

uN0(ξn)ln (x) .

By using (5.7), we get:

uN (x, t) =
N−1∑
n=1

N−1∑
m=1

N−1∑
j=1

pnj

∫ tj

0
e−λk(s−tj)

N−1∑
j=1

p−1 (k, j) (fj(s) + au′′
N0(ξk)− bu′

N0(ξk)− cuN0(ξk))

 ds

+

N−1∑
j=1

p−1
kj u0(ξk)

 eλktj

 ln(x)lm (t) + ϕ (x) ,
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5.1 Numerical integration

The function
qk(s) = e−λk(s−t)hk(s), (5.12)

appears in the integral. We approximate this integral numerically since it may not have an explicit
primitive. You can use polynomial interpolation to approximate this integral. The Lagrange
polynomial interpolation for qk(s) is given by:

qNj(s) =
N∑

n=0

qj(tn)lj(s),

where tn, 0 ≤ n ≤ N, are the collocation points defined by tn = T
2 (ξn + 1) and ξn are the

collocation points on the Gauss-Lobatto Legendre grid, then the approximation of the integral
(5.9)

vNj(t) =

∫ t

0
qNj(s)ds+

N−1∑
j=1

p−1
kj uN0(ξk)

 eλkt,

then we obtain

bn(t) =
N−1∑
j=1

pnj(tn)vNj(t),

where pnj , 1 ≤ n, j ≤ N−1 are the elements of the matrix P , using (1.4) we get the approximate
solution

uN (x, t) =
N−1∑
n=1

N−1∑
j=1

pnjvNj(t)ln(x).

5.2 Error estimation

Definition 5.1. The polynomial space P0
N (Λ) is dense in the space of continuous functions on

Λ, and hence in H1
0 (Λ) Therefore, any function u ∈ H1

0 (Λ) admits the expansion

u(x, t) =
∞∑
k=1

∞∑
l=1

α(k, l)hk(x)tl(t). (5.13)

We know that

tn(t) =
n(n+ 1)
2(2n+ 1)

(pn−1 (t)− pn+1 (t)) , (5.14)

where
pn(t) = Ln(

2
T
t− 1), n ≥ 0. (5.15)

Using equation (5.14), we can write

u(x, t) =
∞∑
k=1

∞∑
l=1

γ(k, l)hk(x)pl(t). (5.16)

Proposition 5.2. The following estimate holds between the exact solution u ∈ H1
0 (Λ) and the

approximate solution uN ∈ P0
N (Λ):

∥u− uN∥L2(Λ) ≤ 3CN−1
(
∥(u0 − uN0)∥L2(Λ) + ∥f − fN∥L2(Λ)

)
, (5.17)

where C is a real positive constant.

Proof. Using the ellipticity condition (4.15) and (4.9), we can write,

N2 ∥u− uN∥2
L2(Λ) ≤ Φ(u− uN , u− uN ) = (f − fN , u− uN )N − Φ(u0 − uN0, u− uN ),

≤ C

(∣∣∣∣∫
Λ

(f − fN ) (u− uN ) dx

∣∣∣∣+ |Φ(u0 − uN0, u− uN )|
)
. (5.18)
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Where C is a real positive constant, using the Cauchy-Schwarz inequality, we find∣∣∣∣∫
Λ

(f − fN ) (u− uN ) dx

∣∣∣∣ ≤ ∥f − fN∥L2(Λ) ∥u− uN∥L2(Λ) , (5.19)

By applying the triangle inequality, we obtain

|Φ(u0 − uN0, u− uN )| ≤
∣∣∣∣a ∫

Λ

∂x (u0 − uN0) ∂x (u− uN ) dx

∣∣∣∣+ ∣∣∣∣∫
Λ

∂t (u0 − uN0) (u− uN ) dx

∣∣∣∣
+

∣∣∣∣b∫
Λ

∂x (u0 − uN0) (u− uN ) dx

∣∣∣∣+ ∣∣∣∣c∫
Λ

(u0 − uN0) (u− uN ) dx

∣∣∣∣ .
Since u0 is independent of t, we have∫

Λ

∂t (u0 − uN0) (u− uN ) dx = 0,

Thus, by the Cauchy-Schwarz inequality, we find∣∣∣∣c∫
Λ

(u0 − uN0) (u− uN ) dx

∣∣∣∣ ≤ c ∥(u0 − uN0)∥L2(Λ) ∥(u− uN )∥L2(Λ) , (5.20)

and∣∣∣∣a ∫
Λ

∂x (u0 − uN0) ∂x (u− uN ) dx

∣∣∣∣ ≤ a ∥∂x (u0 − uN0)∥L2(Λ) ∥∂x (u− uN )∥L2(Λ) , (5.21)

and ∣∣∣∣b∫
Λ

∂x (u0 − uN0) (u− uN ) dx

∣∣∣∣ ≤ b ∥∂x (u0 − uN0)∥L2(Λ) ∥(u− uN )∥L2(Λ) , (5.22)

using (5.19), (5.20), (5.21), (5.22) and (4.9), we get

N2 ∥u− uN∥2
L2(Λ) ≤ 3CN

(
∥(u0 − uN0)∥L2(Λ) + ∥f − fN∥L2(Λ)

)
∥(u− uN )∥L2(Λ) .

Finally, we obtain the desired result.

5.3 Condition number

Definition 5.3. The condition number of an n× n non-singular matrix A is defined as:

kP (A) = ∥A∥P
∥∥A−1∥∥

P
, (5.23)

where ∥A∥P is the spectral norm of A, given by: ρ = (AtA)
1
2 .

Remark 5.4. The condition number of a matrix A gives a measure of how sensitive systems
of equations, with coefficients matrix A, are to small perturbations such as those caused by
rounding. Then if the condition number of a matrix is large, the effect of rounding error in the
solution process may be serious [64].

To compute the condition number of different order of these matrix we use the spectral norm,
and all operations are made by the Maple, using [22].

5.4 Figure illustration

We consider the exact explicit solution given by: u(x, t) = − exp(−0.02π2t) sin(πx),with a =
b = 1, with the initial condition: u(x, 0) = u0(x) = − sin(πx) and the source term: f(x, t) =(
(−0.98π2 − 1) sin(πx)− π cos(πx)

)
exp(−0.02π2t).

The Figures 1 and 2 present the behavior of the condition number and the error, with N vary-
ing from 3 to 12. We plot (N, log(kP (A))). In Figure 3, we show the behavior of the functions
an(t) as n varies from 3 to 12. Figures 4 and 5, display the true and the approximate solutions u
and uN , respectively, for N = 12.
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Remark 5.5. This Figure shows that the error decreases rapidly when N increass. Here we plot(
N, ∥u− uN∥L2(Λ)

)
.

Remark 5.6. In Table 1, the results demonstrate that the computational method used achieves a
very rapid convergence in solution accuracy as N increases. This rapid decrease in error makes
the method highly efficient in providing accurate solutions in a short amount of time and the
high experimental order of convergence EOC, particularly for smaller values of N , indicates a
substantial improvement in accuracy.

It is important to note that the large values of the EOC for smaller N suggest a significant
acceleration in the accuracy of the solution, emphasizing the effectiveness of the spectral method
employed.

N eN = ∥u− uN∥L2(Λ) ∥(u0 − uN0)∥L2(Λ) + ∥f − fN∥L2(Λ) EOC(eN , eN+2)

4 1.92 × 10−1 10.10 6.79
6 1.23 × 10−2 1.70 11.57
8 4.4 × 10−4 1.23 × 10−1 16.91
10 1.01 × 10−5 4.91 × 10−3 11.41
12 1.39 × 10−6 2.22 × 10−4 −

Table1: The behavior of the error and the experimental order of convergence EOC

Figure 1. The behavior of the condition number when N vary from 3 to 12
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Figure 2. The behavior of the error when N vary from 3 to 12

Figure 3. Plots of the functions an(t), n vary from 3 to 12
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Figure 4. The true solution u(x, t)

Figure 5. The approximation solution uN (x, t) when N = 12
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6 Conclusion

The primary objective of this work was to reduce the two-dimensional problem to a one-dimensional
domain by using an orthogonal matrix. As a result, the linear systems (5.2),(5.3),(5.4) and (5.5)
are of size (N − 1), whereas in other approaches, the matrix size is (N − 1)2. This reduction
significantly simplifies the computational complexity, providing a more efficient way to solve
the problem.
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