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Abstract The aim of this paper is to investigate the topological characteristics of compact bi-
warped product submanifolds of an odd-dimensional sphere. Furthermore, we aim to establish
specific constraints on the warping functions f1 and f2, Dirichlet energy functions E(f1) and
E(f2), as well as the first non-zero eigenvalues λ1 and λ2, in order to demonstrate the absence
of stable currents for these submanifolds and establish their homology groups as zero.

1 Introduction

In 1969, Bishop and O’Neill [4] pioneered the concept of warped product manifolds with the aim
of generating instances of Riemannian manifolds featuring negative or non-positive curvature.
Indeed, the warped product B×bF of two pseudo-Riemannian manifolds (B, gB) and (F, gF )) is
defined by a positive-valued smooth function b on B, yielding the metric tensor g = gB ⊕ b2gF .
Here, (B, gB) is referred to as the base manifold, while (F, gF ) represents the fiber, with b
acting as the warping function. These warped product manifolds represent a natural extension of
Riemannian product manifolds. On the other hand, bi-warped product submanifolds constitute
natural extensions of both warped product submanifolds and Riemannian product manifolds, as
introduced by Chen and Dillen [8].

The algebraic structure of a manifold is encoded in its homology groups, which serve as cru-
cial topological characteristics. Homology theory has been applied in data analysis, especially
in the field of topological data analysis [12]. The concept of integral currents plays a crucial role
in offering topological insights by integrating the geometric structure of differentiable manifolds
with homology groups employing integral coefficients. Federer and Fleming [10] showed the
close connection between submanifold theory and homological theory, revealing that any non-
trivial integral homological group Hp(M,Z) is linked via stable currents. Subsequently, in 1970,
Lawson and Simon [14] expanded this investigation to submanifolds of spheres, establishing the
absence of an integral current under a pinching condition of the second fundamental form. Fu
and Xu [11] proved the vanishing theorem for homology groups of compact submanifolds in
hyperbolic space with negative constant curvature, and they also derived a topological sphere
theorem. Following this, Lui and Zhang [15] demonstrated non-existence theorems for stable
integral currents in certain classes of hypersurfaces or higher codimensional submanifolds in Eu-
clidean spaces. In [16], it was proven by the authors that the homology groups were trivial and
stable currents did not exist for a contact CR-warped product submanifold in an odd-dimensional
unit sphere.

Furthermore, Alkhaldi et al. in [1] demonstrated the vanishing homology and absence of
stable integral currents in compact oriented warped product pointwise semi-slant submanifolds
of a complex space form, and they derived topological sphere theorems. More recently, Khan et
al. [13] investigated the topological characteristics of compact bi-warped product submanifolds,
revealing the non-existence of stable integral currents and the triviality of their homology groups
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in compact oriented bi-warped product submanifolds in Euclidean space.
Inspired by the aforementioned studies, we show that if the Laplacian and gradient of the warping
function of a compact bi-warped product submanifold in a Sasakian space form with constant
sectional curvature c = 1 satisfy specific extrinsic restrictions, then these submanifolds have
no stable integral currents, and their homology groups are trivial. We have also proven similar
results for the Dirichlet energy functions E(f1) and E(f2) and the first non-zero eigenvalues λ1
and λ2.

2 Preliminaries

A (2n + 1)-dimensional Riemannian manifold (M̃, g) is said to be an almost contact metric
manifold if it admit a (1, 1)-tensor field ϕ, a characteristic vector field ξ, a 1-form η and a
compatible metric denoted by g satisfying [3].

ϕ2 = −I + η ⊗ ξ, ϕ(ξ) = 0, η(ξ) = 1, η ◦ ϕ = 0, (2.1)

g(X, ξ) = η(X), g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), (2.2)

for all X,Y ∈ Γ(TM̃). Then (ϕ, ξ, η, g) is called an almost contact metric structure of M̃ . An
almost contact metric manifold is called a Sasakian manifold [3] if and only if

(∇̃Xϕ)Y = g(X,Y )ξ − η(Y )X, (2.3)

∇̃Xξ = −ϕX, (2.4)

for every X,Y ∈ Γ(TM̃), and ∇̃ represents the Riemannian connection relative to g.
A Sasakian manifold M̃ is termed a Sasakian space form M̃(c) if it possesses a constant

ϕ-holomorphic sectional curvature c. The curvature tensor R̃ is expressed as [16]

R̃(X,Y, Z,W ) =
c+ 3

4
{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}

+
c− 1

4
{η(X)η(Z)g(Y,W )− η(Y )η(Z)g(X,W )

+ g(X,Z)η(Y )η(W )− g(Y,Z)η(X)η(W )

+ g(ϕY,Z)g(ϕX,W ) + g(ϕZ,X)g(ϕY,W )

− 2g(ϕX, Y )g(ϕZ,W )} (2.5)

for all X,Y, Z,W ∈ Γ(TM̃).
Suppose N is a submanifold isometrically immersed in a differentiable manifold M̃ , with ∇

and ∇⊥ representing the induced Riemannian connections on the tangent bundle TN and the
normal bundle T⊥N , respectively.
The Gauss and Weingarten formulas are expressed as follows:

∇̃XY = ∇XY + h(X,Y ) (2.6)

and
∇̃XV = −AV X +∇⊥

XV (2.7)

for any X,Y ∈ Γ(TN) and V ∈ Γ(TN⊥), with h representing the second fundamental form,
∇⊥ denoting the normal connection, and A indicating the shape operator.

The decomposition for the vector fields X ∈ Γ(TN) and V ∈ Γ(T⊥N) is as follows:

ϕX = TX + FX (2.8)

ϕV = tV + fV, (2.9)

where TX and FX are the tangential and normal components of ϕX , while tV and fV are
tangential and normal components of ϕV , respectively.
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Suppose R represents the Riemannian curvature tensor of N . Then the Gauss equation for a
submanifold N is expressed as:

R̃(X,Y, Z,W ) = R(X,Y, Z,W ) + g(h(X,Z), h(Y,W ))− g(h(X,W ), h(Y, Z)), (2.10)

for all X,Y, Z,W ∈ Γ(TN).
Consider p ∈ N and e1, ..., en, en+1, ..., e2m+1 is an orthonormal basis of the tangent space

M̃2m+1. When restricted to N , the vectors e1, ..., en are tangent to N at p, while en+1, ..., e2m+1
are normal to N .
We denote by hr

ij , where i, j = 1, ..., n and r = {en+1, ..., e2m+1}, the coefficients of the second
fundamental form h with respect to the local frame field. Then, we have

hr
ij = g(h(ei, ej), er), ∥h∥2 =

n∑
i,j=1

g(h(ei, ej), h(ei, ej)). (2.11)

At every point x ∈ N , the wirtinger angle θ(X) between ϕX and TxN remains invariant regard-
less of the choice of the non-zero vector X ∈ TxN . In such cases, the angle θ serves as a function
on N , known as the slant function of the submanifold, and the submanifold is termed a pointwise
slant submanifold. If the slant function θ(X) is constant across N , then N is recognized as a
slant submanifold. Now, let us consider the following characterization for a submanifold N to
be a slant submanifold [6, 7]:

T 2 = cos2θ(−I + η ◦ ξ), (2.12)

for 0 ≤ θ ≤ π
2 and T being an endomorphism defined in (2.8), the subsequent equation is derived

from the aforementioned equation:

g(TX, TY ) = cos2θ(g(X,Y )− η(X)η(Y )), (2.13)

g(FX,FY ) = sin2θ(g(X,Y )− η(X)η(Y )), (2.14)

for all X,Y ∈ Γ(TN). Invariant and anti-invariant submanifolds are categorized as slant sub-
manifolds, with slant function θ = 0 and θ = π

2 respectively.

Definition 2.1. [8] If we have a Cartesian product M = M0×M1×M3× ...×Mk of Riemannian
manifolds M0,M1, ...,Mk, with canonical projection maps πi = M −→ Mk for i = 0, 1, 2, ..., k,
and positive-valued functions f0, f1, ..., fk are defined such that f0, f1, ..., fk : M0 −→ (0,∞),
then we define the Riemannian metric g as:

g(X,Y ) = g(π1∗X,π1∗Y ) +
k∑

i=1

(fi ◦ π)g(πi∗X,πi∗Y )

where ∗ denote the symbol for tangent map, and for any X,Y tangent to M , then M is termed a
multiple warped product manifold. If we select two fibers of a multiple warped product M0 ×f1

M1 ×f2 ...×fk Mk, such that M = M0 ×f1 M1 ×f2 M2, then M is defined as a bi-warped product
submanifold, which satisfies the following:

∇XY =
2∑

i=1

(Xlnfi)Yi,

for X ∈ Γ(TM0), Y ∈ Γ(T (M1 × M2)) and Yi is tangent to Mi, for i=1, 2, where, ∇ denotes
the Levi-Civita connection on M .

The following property is directly derived from [9] as follows:

∇ZX = ∇XZ =
(Xfi)

fi
Z, i = 1, 2 (2.15)

for any X ∈ Γ(TNT ) and Z ∈ Γ(T (N⊥ ×Nθ)).
The gradient ∇(lnf) of lnf , for all X ∈ Γ(TN) is given by [4]

g(∇lnf,X) = X(lnf). (2.16)
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The following relation is provided in the reference cited in [9]

R(X,Z)Y =
Hf1(X,Y )

f
Z, (2.17)

R(X,U)Y =
Hf2(X,Y )

f
Z, (2.18)

for all X,Y ∈ Γ(TNT ), Z ∈ Γ(T (N⊥)), U ∈ Γ(TNθ) and Hf1 and Hf2 are the Hessian tensor
of warping functions f1 and f2.

Remark 2.2. A warped product manifold Nn = Np+1
T ×f1 N

t
⊥ ×f2 N

s
θ is trivial if and only if

f1 and f2 are constants along Np+1
T and N t

⊥, where (p + 1), t and s are the dimensions of the
invariant submanifold, anti-invariant submanifold and pointwise slant submanifold, respectively.

For the Laplacian ∆(lnfi) of the warping function fi, i=1, 2, we have [5]

∆(lnfi) =− div(
∇fi
fi

) = −g(∇ 1
fi
,∇fi)−

1
fi
div(∇fi)

= ∥∇lnfi∥2 +
∆fi
fi

. (2.19)

Further simplifying equation (2.19), we obtain

∆fi
fi

= ∆(lnfi)− ∥∇lnfi∥2. (2.20)

3 Homology and stable currents in bi-warped product submanifolds

Now, let us investigate the homology and stable currents on a bi-warped product submanifold of
the odd dimensional sphere S2( p2 +q)+1 of constant holomorphic sectional curvature c = 1.

Let us consider Nn = Np+1
T ×f1 N

t
⊥×f2 N

s
θ as a bi-warped product submanifold of a Sasakian

manifold M̃2m+1, Np+1
T represents a (p + 1)-dimensional invariant submanifold tangent to ξ,

N t
⊥ denotes a t-dimensional anti-invariant submanifold, and Ns

θ stands for an s-dimensional
pointwise slant submanifold and n = p+ t+ s+ 1.
The tangent and normal spaces of N are given by the tangent bundles DT , D⊥ and Dθ of NT ,
N⊥ and Nθ, respectively. Thus, we have

TN = DT ⊕D⊥ ⊕Dθ, T⊥N = ϕD⊥ ⊕ FDθ ⊕ µ,

where µ denote the invariant subbundle of T⊥N .
To establish our main results, we utilize the information obtained by Lawson and Simons

[14]. Here is a summary of their findings:

Lemma 3.1. [14, 18] For the second fundamental form h and any positive integers p, q with
p+ q = n, if the following inequality

p∑
α=1

n∑
β=p+1

(2∥h(uα, uβ)∥2 − g(h(uα, uα), h(uβ , uβ))) < pqc (3.1)

is satisfied for an n-dimensional compact submanifold Nn in a space form M̃(c) of constant
curvature c ≥ 0, then there exists no stable p-current in Nn and both Hp(Nn, Z) and Hq(Nn, Z)
are zero. Here Hα(Nn, Z) represents the α-th homology group of Nn with integer coefficients,
and {eα}1≤α≤n forms an orthonormal basis of Nn.

The following lemma from [17] is utilized in the proof of our main results later.

Lemma 3.2. [17] Let Nn = Np+1
T ×f1N

t
⊥×f2N

s
θ be a non-trivial bi-warped product submanifold

of a Sasakian manifold. Then
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(i) g(h(u1, u2), ϕu3) = 0,

(ii) g(h(u2, u3), ϕu3) = −ϕu2(lnf1)∥u3∥2,

(iii) g(h(u2, u3), Fu4) = 0,

for any u1, u2 ∈ DT , u3 ∈ D⊥ and u4 ∈ Dθ.

Lemma 3.3. [17] Let Nn = Np+1
T ×f1N

t
⊥×f2N

s
θ be a non-trivial bi-warped product submanifold

of a Sasakian manifold. Then

(i) g(h(u2, u4), Fu4) = −ϕu2(lnf2)∥u4∥2,

(ii) g(h(u2, u4), FTu4) = cos2θu2(lnf2)∥u4∥2,

(iii) g(h(ϕu2, u4), Fu4) = u2(lnf2)∥u4∥2,

(iv) g(h(ϕu2, u4), FTu4) = cos2θϕu2(lnf2)∥u4∥2,

for any u1, u2 ∈ DT , u3 ∈ D⊥ and u4 ∈ Dθ.

Theorem 3.4. Let Np+q+1 = Np+1
T ×f1 N

t
⊥×f2 N

s
θ be a compact bi-warped product submanifold

of S2( p2 +q)+1(1). If the following inequality holds

t∆(lnf1) + s∆(lnf2) >t(2 − t)∥∇lnf1∥2 + s(2csc2θ − s)∥∇lnf2∥2

+ q − qg(∇lnf1,∇lnf2), (3.2)

where ∇f1,∇f2 and ∆f1,∆f2 denote the gradient and the laplacian of the warped product func-
tions f1 and f2, respectively. Then the (p+1)-stable currents are absent in Np+q+1. In addition,
Hp+1(Nn, Z) = Hq(Nn, Z) = 0, where Hi(Nn, Z) = 0 is the i-th homology groups of Np+q+1,
and p+ 1, t, s are the dimensions of Np+1

T , N t
⊥ and Ns

θ , respectively, with q = t+ s.

Proof. Suppose dim(Np+1
T ) = p+ 1 = 2α+ 1, dim(N t

⊥) = t, and dim(Ns
θ ) = s = 2β, where

NT , N⊥ and N t
θ are the integral manifolds of the distributions DT , D⊥ and Dt

θ, respectively.
Let {u0 = ξ, u1, u2, ..., uα, uα+1 = ϕu1, ..., u2α = ϕuα}, {u2α+1 = û1, ..., u2α+t = ût} and
{u2α+t+1 = u∗

1 , ..., u2α+t+β = u∗
β , u2α+t+β+1 = u∗

β+1 = secθTu∗
1 , ..., u2α+t+2β = u∗

s=2β =

secθTu∗
β} be the orthonormal frames of TNp+1

T , TN t
⊥ and TNs

θ , respectively.
The orthonormal basis of the normal subbundle ϕD⊥ and FDθ are {un+1 = ũ1 = ϕũ1, ..., un+t =
ũt = ϕũt} and {ut+1 = ū1 = cscθFu∗

1 , ..., ut+β = ūβ = cscθFu∗
1 , ut+β+1 = ūβ+1 =

cscθsecθ FTu∗
1 , ..., ut+2β = ū2β = cscθsecθFTu∗

β} respectively. Thus, we have

p∑
i=0

n∑
j=1

(2∥h(ui, uj)∥2 − g(h(ui, ui), h(uj , uj)))

=
p+2t+2s+1∑

r=n+1

p∑
i=0

t∑
j=p+1

(hr
ij)

2 +
p+2t+2s+1∑

r=n+1

p∑
i=0

s∑
j=t+1

(hr
ij)

2

+
p∑

i=0

t∑
j=p+1

(∥h(ui, uj)∥2 − g(h(ui, ui), h(uj , uj)))

+
p∑

i=0

s∑
j=t+1

(∥h(ui, uj)∥2 − g(h(ui, ui), h(uj , uj))). (3.3)
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Thus, utilizing the Gauss equation (2.10) for the unit sphere in odd dimensions, we obtain

p∑
i=0

n∑
j=1

(2∥h(ui, uj)∥2 − g(h(ui, ui), h(uj , uj)))

=
p+2t+2s+1∑

r=n+1

p∑
i=0

t∑
j=p+1

(hr
ij)

2 +
p+2t+2s+1∑

r=n+1

p∑
i=0

s∑
j=t+1

(hr
ij)

2

+
p∑

i=0

t∑
j=p+1

g(R(ui, uj)uj , ui) +
p∑

i=0

s∑
j=t+1

g(R(ui, uj)uj , ui)

−
p∑

i=0

n∑
j=1

g(R̃(ui, uj)uj , ui). (3.4)

By employing formula (2.5) in (3.4) for an odd-dimensional sphere yields

p∑
i=0

n∑
j=1

(2∥h(ui, uj)∥2 − g(h(ui, ui), h(uj , uj)))

=
p+2t+2s+1∑

r=n+1

p∑
i=0

t∑
j=p+1

(hr
ij)

2 +
p+2t+2s+1∑

r=n+1

p∑
i=0

s∑
j=t+1

(hr
ij)

2

+ (p+ 1)q +
p∑

i=0

t∑
j=p+1

g(R(ui, uj)uj , ui)

+
p∑

i=0

s∑
j=t+1

g(R(ui, uj)uj , ui). (3.5)

We now compute the last two terms on the right-hand side of equation (3.5) by employing equa-
tions (2.17) and (2.18) as follows:

p∑
i=0

t∑
j=p+1

g(R(ui, uj)uj , ui) =
t

f1

p∑
i=0

g(∇ui
∇f1, ui), (3.6)

and
p∑

i=0

s∑
j=t+1

g(R(ui, uj)uj , ui) =
s

f2

p∑
i=0

g(∇ui
∇f2, ui). (3.7)

Combining equations (3.5), (3.6) and (3.7), we derive

p∑
i=0

n∑
j=1

(2∥h(ui, uj)∥2 − g(h(ui, ui), h(uj , uj))) = (p+ 1)q +
t

f1

p∑
i=0

g(∇ui∇f1, ui)

+
s

f2

p∑
i=0

g(∇ui
∇f2, ui) +

p+2t+2s+1∑
r=n+1

p∑
i=0

t∑
j=p+1

(hr
ij)

2

+
p+2t+2s+1∑

r=n+1

p∑
i=0

s∑
j=t+1

(hr
ij)

2. (3.8)

We first compute the terms ∆f1 and ∆f2, which correspond to the Laplacian of the warping
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functions f1 and f2, respectively. This is done by using (2.15) as follows:

∆f1 = −
n∑

k=1

g(∇uk
∇f1, uk) = −

p∑
i=0

g(∇ui
∇f1, ui)−

t∑
j=1

g(∇ûj
∇f1, ûj)

−
s∑

r=1

g(∇u∗
r
∇f1, u

∗
r)

= −
p∑

i=0

g(∇ui∇f1, ui)−
1
f1

t∑
j=1

g(ûj , ûj)∥∇f1∥2

− 1
f2

(
s∑

r=1

g(u∗
r , u

∗
r)− sec2θ

s∑
r=1

g(Tu∗
r , Tu

∗
r)

)
g(∇f1,∇f2).

(3.9)

Finally, the above equation simplifies to:

∆f1 = −
p∑

i=0

g(∇ui∇f1, ui)−
t

f1
∥∇f1∥2 − s

f2
g(∇f1,∇f2). (3.10)

Likewise, we can calculate

∆f2 = −
p∑

i=0

g(∇ui∇f2, ui)−
t

f1
g(∇f1,∇f2)−

s

f2
∥∇f2∥2. (3.11)

Multiplying equation (3.10) by 1
f1

, we obtain

∆f1

f1
= − 1

f1

p∑
i=0

g(∇ui
∇f1, ui)− t∥∇lnf1∥2 − sg(∇lnf1,∇lnf2). (3.12)

Applying equation (2.20) in (3.12), we derive

∆(lnf1)− ∥∇lnf1∥2 = − 1
f1

p∑
i=0

g(∇ui∇f1, ui)− t∥∇lnf1∥2 − sg(∇lnf1,∇lnf2). (3.13)

After rearraging the terms, we obtain

1
f1

p∑
i=0

g(∇ui∇f1, ui) = −∆(lnf1) + (1 − t)∥∇lnf1∥2 − sg(∇lnf1,∇lnf2). (3.14)

Equation (3.11) can be expressed similarly as

1
f2

p∑
i=0

g(∇ui
∇f2, ui) = −∆(lnf2) + (1 − s)∥∇lnf2∥2 − tg(∇lnf1,∇lnf2). (3.15)

On the other hand
p+2t+2s+1∑

r=n+1

p∑
i=0

n∑
j=p+1

(hr
ij)

2 =
t∑

r=1

p∑
i=0

t∑
j=1

g(h(ui, ûj), ũr)
2 +

2β∑
r=1

p∑
i=0

s∑
j=1

g(h(ui, u
∗
j ), ūr)

2

=
p∑

i=0

β∑
j,r=1

{g(h(ui, u
∗
j ), cscθFu∗

r)
2 + g(h(ui, u

∗
j ), cscθsecθFu∗

r)
2}

+
α∑
i=0

β∑
j,r=1

{g(h(ϕui, u
∗
j ), cscθFu∗

r)
2 + g(h(ϕui, u

∗
j ), cscθsecθFu∗

r)
2}

+
p∑

i=0

t∑
j,r=1

{g(h(ui, ûj), ϕûr)
2. (3.16)
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Considering Lemma (3.2) and Lemma (3.3), we have

p+2t+2s+1∑
r=n+1

p∑
i=0

n∑
j=p+1

(hr
ij)

2 = (csc2θ + cot2θ)
p∑

i=0

β∑
j,r=1

(ϕuilnf2)
2g(u∗

j , u
∗
j )

2

+ (csc2θ + cot2θ)
p∑

i=0

β∑
j,r=1

(uilnf2)
2g(u∗

j , u
∗
j )

2

+
p∑

i=0

t∑
j=1

(ϕuilnf1)
2g(ûj , ûj)

2. (3.17)

After some computations, we find

p+2t+2s+1∑
r=n+1

p∑
i=0

n∑
j=p+1

(hr
ij)

2 = s(csc2θ + cot2θ)∥∇lnf2∥2 + t∥∇lnf1∥2. (3.18)

By substituting equations (3.14), (3.15) and (3.18) into (3.8), we obtain

p∑
i=0

n∑
j=1

(2∥h(ui, uj)∥2 − g(h(ui, ui), h(uj , uj)))− pq = −t∆(lnf1)− s∆(lnf2) + t(2 − t)∥∇lnf1∥2

+ s(2csc2θ − s)∥∇lnf2∥2 + q

− qg(∇lnf1,∇lnf2). (3.19)

We can derive the following inequality, assuming condition (3.2) holds:

p∑
i=0

n∑
j=1

(2∥h(ui, uj)∥2 − g(h(ui, ui), h(uj , uj))) < pq. (3.20)

By applying Lemma (3.1) on the odd-dimensional sphere with constant sectional curvature,
specifically when c = 1, we arrive at the theorem’s ultimate conclusion.

Remark 3.5. If Ns
θ = 0, the bi-warped product submanifold Nn = Np+1

T ×f1 N t
⊥ ×f2 Ns

θ

transforms into the CR-warped product submanifold Nn = Np+1
T ×f1 N

t
⊥. However, if N t

⊥ = 0,
then the bi-warped product submanifold Nn = Np+1

T ×f1 N
t
⊥ ×f2 N

s
θ becomes the pointwise

semi-slant warped product submanifold Nn = Np+1
T ×f2 N

s
θ .

From Theorem (3.4) and Remark (3.5), we derive the following corollaries:

Corollary 3.6. Consider Np+t+1 = Np+1
T ×f1 N

t
⊥ as a compact CR-warped product submanifold

of S2( p2 +q)+1(1). If the following condition holds:

t∆(lnf1) > t(2 − t)∥∇lnf1∥2 + t, (3.21)

then there does not exist integral (p+1)-stable currents in Np+t+1. Futhermore, Hp+1(Np+t+1, Z) =
Ht(Np+t+1, Z) = 0, where Hi(Np+t+1, Z) = 0 represents the i-th homology groups of Np+t+1,
and p+ 1, t denote the dimensions of Np+1

T and N t
⊥ respectively.

Corollary 3.7. Consider Np+s+1 = Np+1
T ×f2 N

s
θ as a compact pointwise semi-slant warped

product submanifold of S2( p2 +q)+1(1). If the following condition holds,

s∆(lnf2) > s(2csc2θ − s)∥∇lnf2∥2 + s, (3.22)

then there does not exist integral (p+1)-stable currents in Np+s+1. Futhermore, Hp+1(Np+s+1, Z) =
Hs(Np+s+1, Z) = 0, where Hi(Np+s+1, Z) = 0 represents the i-th homology groups of Np+t+1,
and p+ 1, s denote the dimensions of Np+1

T and Ns
θ respectively.
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In [5], Calin and Chang investigated geometric mechanics on Riemannian manifolds, where
they introduced a positive differentiable function f (denoted as f ∈ F (Mn)) on a compact Rie-
mannian manifold Mn. The Dirichlet energy of a function f and a Lagrangian are defined as
follows in [6]:

E(f) =
1
2

∫
Mn

∥∇f∥2dV, 0 < E(f) < ∞. (3.23)

Utilizing the Dirichlet energy formula (3.23) for a compact manifold without boundary, in con-
junction with Theorem (3.4), we derive the following result.

Theorem 3.8. Suppose Np+q+1 = Np+1
T ×f1 N

t
⊥×f2 N

s
θ is a compact oriented bi-warped product

submanifold of S2( p2 +q)+1(1) without boundary. The following condition holds:

2t(t− 2)E(f1) + 2s(s− 2csc2θ)E(f2) > q

∫
Nn

(1 − g(∇lnf1,∇lnf2))dV. (3.24)

where, E(f1) and E(f2) represent the Dirichlet energies of the warping functions f1 and f2 with
respect to the volume element dV . Consequently, there are no stable (p+ 1)-currents in Np+q+1

and Hp+1(Np+q+1, Z) = Hq(Np+q+1, Z) = 0, with q = t+ s.

Proof. By integrating along the volume element dV in equation (3.2), we obtain∫
Nn

t∆(lnf1)dV +

∫
Nn

s∆(lnf2)dV >

∫
Nn

t(2 − t)∥∇lnf1∥2dV +

∫
Nn

s(2csc2θ − s)∥∇lnf2∥2dV

+ q

∫
Nn

(1 − g(∇lnf1,∇lnf2)) dV. (3.25)

On the other hand, for a compact oriented Riemannian manifold without boundary, we have∫
Nn ∆f = 0 in [19]. Using this fact in the inequality (3.25), we get

∫
Nn

t(t− 2)∥∇lnf1∥2dV +

∫
Nn

s(s− 2csc2θ)∥∇lnf2∥2dV >

q

∫
Nn

(1 − g(∇lnf1,∇lnf2))dV. (3.26)

By applying the Dirichlet energy formula (3.23) in (3.26), we find

2t(t− 2)E(f1) + 2s(s− 2csc2θ)E(f2) >

q

∫
Nn

(1 − g(∇lnf1,∇lnf2))dV. (3.27)

This concludes the proof of the theorem.

The following corollaries are derived from the aforementioned theorem.

Corollary 3.9. Suppose Np+t+1 = Np+1
T ×f1 N t

⊥ is a compact oriented CR-warped product
submanifold of S2( p2 +q)+1(1) without boundary. If the following condition holds:

E(f1) >

∫
Nn

1
2(t− 2)

dV, (3.28)

then there are no stable (p+1)-currents in Np+t+1 and Hp+1(Np+t+1, Z) = Ht(Np+t+1, Z) = 0,
where, E(f1) represent the Dirichlet energy of the warping function f1 with respect to the volume
element dV .

Corollary 3.10. Suppose Np+s+1 = Np+1
T ×f2 N

s
θ is a compact oriented pointwise semi-slant

warped product submanifold of S2( p2 +q)+1(1) without boundary. If the following condition holds:

E(f2) >

∫
Nn

1
2(s− 2csc2θ)

dV, (3.29)

then there are no stable (p+ 1)-currents in Np+s+1 and Hp+1(Np+s+1, Z) = Hs(Np+s+1, Z) =
0, where, E(f2) represent the Dirichlet energy of the warping function f2 with respect to the
volume element dV .
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The Laplace eigenvalue equation is defined such that a real number λ is called an eigenvalue
if there exists a non-vanishing function f1, that satisfies the following equation:

∆f1 = λf1, on Nn,

with appropriate boundary conditions. Considering a Riemannian manifold Nn without a bound-
ary, the first nonzero eigenvalue of ∆, denoted by λ1, is defined in [2].
Building upon the characterization established in [2] and utilizing both the first non-zero eigen-
value of the Laplace operator and the maximum principle for the first non-zero eigenvalue λ1,
we derive the following:

Theorem 3.11. Let Np+q+1 = Np+1
T ×f1 N

t
⊥ ×f2 N

s
θ be a compact oriented bi-warped product

submanifold of S2( p2 +q)+1(1), where f1 and f2 denote non-constant eigenfunctions associated
with the first non-zero eigenvalues λ1 and λ2, respectively. If the following inequality holds:∫

Nn

{
t(t− 2)λ1f

2
1 + s(s− 2csc2θ)λ2f

2
2 − q(1 − g(∇lnf1,∇lnf2))

}
dV > 0, (3.30)

then there are no stable (p+ 1)-currents in Np+q+1 and Hp+1(Np+q+1, Z) = Hq(Np+q+1, Z) =
0, with q = t+ s.

Proof. Applying the minimum principle to the first eigenvalues λ1 and λ2, the results as derived
in [2] can be obtained. Here, we make the assumption that f1 and f2 are non-constant warping
functions. Then

λ1

∫
Nn

f2
1 dV ≤ ∥∇f1∥2dV (3.31)

and
λ2

∫
Nn

f2
2 dV ≤ ∥∇f2∥2dV. (3.32)

The equality in (3.31) and (3.32) valid if and only if ∆f1 = λ1f1 and ∆f2 = λ2f2. Integrating
equation (3.26) and using Green’s lemma, we obtain:∫

Nn

t(t− 2)∥∇lnf1∥2dV +

∫
Nn

s(s− 2csc2θ)∥∇lnf2∥2dV >

q

∫
Nn

(1 − g(∇lnf1,∇lnf2))dV. (3.33)

Utilizing equations (3.31) and (3.32) in (3.33), we derive∫
Nn

{
t(t− 2)λ1f

2
1 + s(s− 2csc2θ)λ2f

2
2 − q(1 − g(∇lnf1,∇lnf2))

}
dV > 0. (3.34)

This completes the proof.

4 Conclusion remarks

It has been shown in this paper that if the Laplacian and gradient of the warping function of a
compact bi-warped product submanifold of an odd dimensional sphere satisfy specific extrinsic
restrictions, then these submanifolds have no stable integral currents, and have trivial homology
groups. Additionally, we have established similar results for the Dirichlet energy functions E(f1)
and E(f2), as well as for the first non-zero eigenvalues λ1 and λ2.
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