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Abstract. We start this paper by observing that a principally ordered regular semigroup S is
an inverse semigroup if and only if the operation x → x0 is the identity, when restricted to the the
set of idempotents of S, that is, e = e0 for every e ∈ E(S). We then study principally ordered
regular semigroups S, for which the operation x → x∗ satisfies e = e∗, for every idempotent
e ∈ S, that we call idempotent ∗−invariant. We prove that under this condition the semigroup
S is dually naturally ordered, inverse and S = S0. We obtain the following results: (1) S is
a semigroup with zero if and only if S has a greatest element which is idempotent; (2) S is a
monoid if and only if S has a smallest idempotent; (3) If E(S) is a finite set, then S has a greatest
idempotent and hence E(S) is a band with a zero element; (4) the ∗-subsemigroup generated by
a pair of idempotents is described.
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1 Introduction

We recall (see, for example [1]) that the natural order, ≤n, on the idempotents of a regular
semigroup S, is defined by

e ≤n f ⇐⇒ e = ef = fe

and that an ordered regular semigroup (T,≤) is said to be dually naturally ordered if the order
reverses the natural order, in the sense that if e ≤n f then f ≤ e.

An ordered regular semigroup S is said to be principally ordered if, for every x ∈ S, there
exists x∗ = max{y ∈ S|xyx ≤ x}.

The basic properties of the operation x → x∗, in principally ordered regular semigroups,
were established in [3] and [4] and are listed in [1, Theorem 13.26]. In particular, we recall for
the reader’s convenience that, in such a semigroup, the following properties hold, and will be
used throughout in what follows:

(P1)
(
∀x ∈ S

)
x = xx∗x;

(P2) every x ∈ S has a biggest inverse, namely x0 = x∗xx∗;
(P3)

(
∀x ∈ S

)
x0 ≤ x∗;

(P4)
(
∀x ∈ S

)
xx0 = xx∗ is the greatest idempotent in Rx;

(P5)
(
∀x ∈ S

)
x0x = x∗x is the greatest idempotent in Lx;

(P6)
(
∀e ∈ E(S)

)
e ≤ e0 ≤ e∗;

In any ordered regular semigroup S, in which every x ∈ S has a biggest inverse x0, it was
proven in [8], and is stated in [1, Theorem 13.22], that

(P7)
(
∀x ∈ S

)
(xx0)0 = x00x0 and (x0x)0 = x0x00;

(P8) (x, y) ∈ R ⇐⇒ xx0 = yy0; (x, y) ∈ L ⇐⇒ x0x = y0y.

Properties (P7) and (P8) hold in a principally ordered regular semigroup since by (P2),
biggest inverses in such a semigroup exist.
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In the next result, we present a necessary and condition for a principally ordered regular
semigroups to be an inverse semigroup.

Lemma 1.1. A principally ordered regular semigroup, S, is an inverse semigroup if and only if
e = e0, for every e ∈ E(S).

Proof. It is well known [7, Theorem 5.1.1] that a semigroup is inverse if and only if each element
has a unique inverse, if and only if every R-class and every L-class have a unique idempotent.
For an idempotent e in a principally ordered regular semigroup S, we have that e is an inverse of
itself and, by (P2), e0 is also an inverse of e.
If, on one hand, S is an inverse semigroup we can immediately conclude that e = e0.
If, on the other hand, e = e0, for every e ∈ E(S), let us assume that f, g ∈ E(S) are such that
(f, g) ∈ L. Then, by (P8), f0f = g0g and therefore, by hypothesis, f = g which means that
every L has a unique idempotent. Similarly, every R has a unique idempotent. Therefore, S is
an inverse semigroup.

Corollary 1.2. If S is a principally ordered inverse semigroup, then S = S0.

Proof. For any x ∈ S we have, by (P4) and (P5), that xx0 and x0x are idempotents. Using
Lemma 1 along with properties (P2) and (P7), we have that

x = xx0xx0x = (xx0)0x(x0x)0 = x00x0xx0x00 = x00

which immediately tells us that S ⊆ S0. Since the reverse inclusion is obvious, we can conclude
that S = S0.

Throughout this paper we consider S a principally ordered regular semigroup, with set of
idempotents denoted by E(S).

2 Idempotent ∗−Invariant

We say that a principally ordered regular semigroup S is idempotent ∗-invariant if e = e∗ for
every e ∈ E(S)

Note that in a idempotent ∗-invariant principally ordered regular semigroup S, we have, using
(P6) that for every e ∈ S,

e ≤ e0 ≤ e∗ = e =⇒ e = e0

from which the following results follow immediately from Lemma 1 and its Corollary.

Theorem 2.1. Let S be a idempotent ∗-invariant principally ordered regular semigroup. Then,
S is an inverse semigroup.

Theorem 2.2. If S is a idempotent ∗-invariant principally ordered regular semigroup, then S =
S0.

Example 2.3. It can be seen in [2, Example 1] that the set of 2×2 real matrices S6 = {I,O,E11, E12, E21, E22},
where O is the zero matrix and

E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]
, I =

[
1 0
0 1

]
with the usual product of matrices is an inverse ordered semigroup with a partial order defined
by the following Hasse diagram
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Routine calculations show that S6 is principally ordered with
E∗

11 = E11, E∗
22 = E22, E∗

12 = E21, E∗
21 = E12, I∗ = I , O∗ = O

and
E0

11 = E11, E0
22 = E22, E0

12 = E21, E0
21 = E12, I0 = I , O0 = O

which tells us that S6 = S∗
6 = S0

6 .
Also, S6 is dually naturally ordered and, since E(S6) = {E11, E22, O, I}, it follows immediately
that S6 is idempotent ∗-invariant.

A natural question is: does the converse of Theorem 1 hold? The following example shows
that it does not.

Example 2.4. Let G be a discretely ordered group. Adjoin to G an element z and add the single
relation z < 1G. Extend the multiplication of G to S = G ∪ {z} by defining z2 = z and
xz = x = zx, for all x ∈ G.
From [1, Exercise 13.2] we can say that S is an inverse semigroup. In [6, Example 2] it is stated
that this semigroup is principally ordered. Routine calculations give us that x∗ = x0 = x−1, for
every x ∈ G. Also, z∗ = 1G and z0 = z, which means that S is not idempotent ∗-invariant. We
obtain that S = S0 but S ̸= S∗.
Since 1G ≤n z and z ≤ 1G, we can conclude that S is dually naturally ordered.

In both Examples we have that the semigroup is dually naturally ordered. In fact, it is true in
general that a idempotent ∗-invariant principally ordered regular semigroup, is dually naturally
ordered.

Theorem 2.5. If S is a idempotent ∗-invariant principally ordered regular semigroup, then, S is
dually naturally ordered.

Proof. Let e, f ∈ E(S) be such that e ≤n f , that is, ef = e = fe. Then,
efe = e =⇒ f ≤ e∗ = e

which means that S is dually naturally ordered.

In both Example 1 and Example 2 we can see that we have an identity element which is the
smallest idempotent of the semigroup.

In Example 1 we have the presence of a zero element which is the greatest element of the
semigroup, but in Example 2 none of them (neither a greatest element nor a zero element) exist.

This is not a coincidence. In the next two Theorems we relate the existence of a zero ele-
ment with the existence of a greatest element, and the existence of an identity element with the
existence of a smallest idempotent.

Theorem 2.6. Let S be a idempotent ∗-invariant principally ordered regular semigroup. The
following statements are equivalent

(1) S has a greatest element (in fact an idempotent).
(2) S is a semigroup with zero.
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Proof. (2) =⇒ (1): Let us assume that ξ is the zero element of S, which is, in particular, an
idempotent. For any x ∈ S, we have that

ξ · xx∗ = ξ = xx∗ · ξ =⇒ ξ ≤n xx∗

and since, by Theorem 3, S is dually naturally ordered, we obtain that xx∗ ≤ ξ. Multiplying on
the right by x gives

x = xx∗x ≤ ξx = ξ =⇒ x ≤ ξ.
Thus, ξ is the greatest element of S.
(1) =⇒ (2): Let us assume that ξ is the greatest element of S. We have that

ξ · ξ ≤ ξ = ξξ∗ξ = (ξξ∗)ξ ≤ ξ · ξ =⇒ ξ ∈ E(S).
For any e ∈ E(S), we have

ξe = ξeee ≤ ξeξe ≤ ξξξe = ξe =⇒ ξe ∈ E(S).
Similarly, eξ ∈ E(S), eξe ∈ E(S) and ξeξ ∈ E(S).
Note that ξeξ ∈ E(S) is such that ξeξ ≤n ξ and, using Theorem 3, we can say that

ξ ≤ ξeξ ≤ ξξξ = ξ
and therefore ξeξ = ξ.
Thus, ξ ∈ V (eξe) and since (eξe)0 is the greatest inverse of eξe, we have by (P6) and the fact
that S is idempotent ∗-invariant, that

ξ ≤ (eξe)0 ≤ (eξe)∗ = eξe
Then, since ξ is the greatest element of S,

ξ = eξe =⇒ ξξ = ξeξe =⇒ ξ = ξe
and, similarly, ξ = eξ.
Finally, for any x ∈ S, we have, since x∗x is an idempotent, that

ξx ≤ ξξ = ξ = ξx∗x ≤ ξξx = ξx =⇒ ξx = ξ
and, similarly, xξ = ξ.
Therefore, ξ is the zero element of S, and S is a semigroup with zero.

Next example shows that the equivalence in the previous Theorem does not hold, if we do
not consider the hypothesis that the semigroup is idempotent ∗-invariant.

Example 2.7. Let S = {e, f, g} be a band where g is a zero element and ef = f = fe, chain-
ordered in the following way: f < g < e.
Routine calculations allows us to conclude that S is a principally ordered inverse semigroup
where f∗ = g∗ = e∗ = e, hence it is not idempotent ∗-invariant. We have that e is the greatest
element of S, but it is not the zero element of S.
Therefore, we can conclude, from this example, that in the previous Theorem the hypothesis
idempotent ∗-invariant, is essential.

Theorem 2.8. Let S be a idempotent ∗-invariant principally ordered regular semigroup. The
following statements are equivalent

(1) S has a smallest idempotent.
(2) S is a monoid.

Proof. (2) =⇒ (1): Assuming that α is the identity element of S we have, for every e ∈ E(S),
using Theorem 3, that

α · e = e = e · α =⇒ e ≤n α =⇒ α ≤ e
and therefore α is the smallest idempotent of S.
(1) =⇒ (2): Let us now suppose that α is the smallest idempotent of S. For any e ∈ E(S)

αe = αααe ≤ αe · αe ≤ αeee = αe =⇒ αe ∈ E(S)
and, similarly, eα, eαe, αeα ∈ E(S).
Since eαe ≤n e we conclude, using Theorem 3, that

e ≤ eαe ≤ eee = e =⇒ eαe = e.
Then, e ∈ V (αeα) and therefore, using the fact that S is idempotent ∗-invariant, we obtain

e ≤ (αeα)0 ≤ (αeα)∗ = αeα ≤ αee = αe ≤ ee = e.
Thus, αe = e and, similarly, eα = e.
Now, for any x ∈ S,

αx = α(xx∗x) = (α · xx∗)x = xx∗ · x = x
and, similarly, xα = x. Therefore, α is the identity element of S, that is S is a monoid.
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Example 1, shows that, in a idempotent ∗-invariant principally ordered regular monoid S, the
identity element is not, in general, the smallest element of S.

The following example illustrate that, in the previous Theorem, the hypothesis that it is idem-
potent ∗-invariant, is crucial.

Example 2.9. Let S = {z, e, f} be a band where z is a zero element, and ef = e = fe, with the
following order relations e < f < z.
Straightforward calculations give us that S is a principally ordered semigroup with e∗ = f ,
f∗ = f and z∗ = z. Also, e0 = e, f0 = f and z0 = z, which means, by Lemma 1, that S is an
inverse semigroup.
Now, S has a smallest idempotent, e, which is not an identity element. This does not contradicts
Theorem 5 since S is not idempotent ∗-invariant (in fact, e ̸= e∗).
Also, e ≤n f and z ≤n f , but e ≤ f and f ≤ z, from which we can conclude that S is neither
naturally ordered nor dually naturally ordered.

We now explore what happens when the set of idempotents is finite.

Theorem 2.10. Let S be a idempotent ∗-invariant principally ordered regular semigroup, with a
finite set of idempotents. Then S has a greatest idempotent.

Proof. Let us assume that E(S) = {e1, e2, ···, en} and consider the multiplication of its elements
z = e1e2 · · · en. By Theorem 1, S is inverse and therefore the idempotents commute. Then,

z2 = (e1e2 · · · en)(e1e2 · · · en) = e1
2e2

2 · · · en2 = e1e2 · · · en = z
which means that z is an idempotent. Now, for every i ∈ {1, 2, · · ·, n},

z · ei = e1e2 · · · en · ei = e1 · · · eiei · · · en = e1 · · · ei · · · en = z
and, similarly, ei · z = z. Then, z ≤n ei which, by Theorem 3, tells us that ei ≤ z and therefore
z is the greatest idempotent of S.

Corollary 2.11. If S is a idempotent ∗-invariant principally ordered regular semigroup, with a
finite set of idempotents, then E(S) is a band with a zero element.

Proof. Let us assume that E(S) = {e1, e2, ..., en}. By Theorem 1, S is an inverse semigroup
and therefore its idempotents commute, which implies that E(S) is a subsemigroup of S and, in
fact, a band.
By Theorem 6, z = e1e2 · · · en is the greatest idempotent of S and, in particular, is the greatest
element of E(S).
Finally, by Theorem 4, z is the zero element of S and since it belongs to E(S), it has to be the
zero element of E(S).

Note that in Example 1, E(S) = {I, E11, E22, O} is a finite band with a zero element, O.
In the next Theorem we present a partial converse of the previous result.

Theorem 2.12. Let S be a principally ordered regular semigroup, such that E(S) is a commuta-
tive band with a zero element, z, which is the greatest element of S.
If S has no chain of idempotents with length bigger than 2, then S is idempotent ∗-invariant.

Proof. Since E(S) is a commutative band we can say that S is an inverse semigroup and there-
fore, by Lemma 1, e = e0 ≤ e∗ ≤ z. By hypothesis we must have that e∗ = z or e∗ = e.
If e∗ = z then, using the fact that z is the zero element of S,

e = e0 = e∗ee∗ = zez = z
and therefore e = z = e∗.
Thus, in either case, we may conclude that e = e∗ which means that S is idempotent ∗-invariant.

In [5, Theorem 2] Blyth and Pinto proved that if S is a principally ordered inverse semigroup
such that x → x∗ is weakly isotone, that is, for every e, f ∈ E(S) such that e ≤ f , we obtain
e∗ ≤ f∗, then the ∗-subsemigroup generated by {e, f} with e < f and e∗ < f∗ is a band with at
most seven elements, in which every connection in the Hasse diagram also indicate the natural
order or the dual natural order.

In this context of a idempotent ∗-invariant principally ordered regular semigroup, we can
formulate the following result.
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Theorem 2.13. Let S be a idempotent ∗-invariant principally ordered regular semigroup. For
e, f ∈ E(S), we have that

(1) if e < f then the ∗-subsemigroup generated by {e, f} is a chain with exactly two elements
e, f , where ef = f is the zero (semigroup) element.

(2) if e and f are incomparable, then the ∗-subsemigroup generated by {e, f} is a band with
exactly three elements e, f, ef , that verify e < ef and f < ef , where ef is the zero element.

Proof. Let e, f ∈ E(S). In any of the cases we have, by Theorem 3, that
ef · e = ef = e · ef =⇒ ef ≤n e =⇒ e ≤ ef

and, similarly, f ≤ ef .
(1) Note that, by Theorem 1, S is an inverse semigroup and, for idempotents e, f , such that

e ≤ f , we have that e∗ = e ≤ f = f∗, which means that x → x∗ is, trivially, weakly isotone.
Now, if e < f , then the hypothesis of [5, Theorem 2] hold and we can conclude that the ∗-
subsemigroup, T , generated by {e, f} is a band with the seven elements: e, ef, e∗f, f, f∗, e∗, e∗f∗.
Since S is idempotent ∗-invariant they are reduce to three, since e = e∗, ef = e∗f = e∗f∗ and
f = f∗. Additionally, we have that

e = ee ≤ ef ≤ ff = f
and therefore, since f ≤ ef , we have that ef = f , which implies that T = {e, f} is a two-
element chain, with e < f . Also,

e · f = ef = f and f · e = fe = ef = f
which means that ef = f is the zero element of T .

(2) Let us now assume that e ≰ f and f ≰ e. If e = ef , then f ≤ ef = e, which is a
contradiction. Similarly, we obtain a contradiction assuming that f = ef . Therefore, we have
that e < ef and f < ef . We can immediately conclude that e, f, ef are all distinct and that they
form a band with ef as its zero element.

In Example 1, if we take idempotents I, E11, then the ∗-subsemigroup T1 generated by
{I, E11} is equal to T1 = {I, E11}, where E11 is the zero element of T1, since I · E11 = E11 =
E11 · I .

Taking now, still in Example 1, the incomparable idempotents E11 and E22, then the ∗-
subsemigroup T2 generated by {E11, E22} is equal to T2 = {E11, E22, O}, where E11 < O,
E22 < O and O is the zero element of T2.

Example 2.14. Consider the set Z of integer numbers as a join semilattice under the definition
m ∨ n =max{m,n}

It is easy to verify that we obtain a principally ordered inverse semigroup, with m∗ = m, and
therefore idempotent ∗-invariant .
Let us now take S6 as in Example 1 and consider the cartesian ordered set S6 × Z, with the
multiplication

(A,m)(B,n) = (AB,m ∨ n).
Then, we can see that we obtain a idempotent ∗-invariant principally ordered regular (in fact,
inverse) semigroup, with an infinite set of idempotents.
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