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Abstract Let R be an arbitrary ring, and Z be a submodule of an R-module W. Z is called
C-small in W denoted by Z <. W if any proper submodule of Z is small in W. We characterize
C-small submodules of an R-module W and classify C-small submodules in finite Z-modules,
and we obtained some related results. Due to definition of C-small, we define C-supplement
submodule of a module. We also provide some results in C-supplement modules related to other
concepts.

1 Introduction

In this paper, R is an associative ring with identity, and all modules are unitary right R-module.
We use the notation C, < and < to show inclusion, submodule and proper submodule, respec-
tively, and V' < g W means that V' is a direct summand (DS) of W.

A submodule G of W is small in W denoted by G <« W if G+ Z = W forany Z < W
implies Z = W. A module W is said hollow if G < W implies G < W. More details about
small submodules can be found in [2, 8, 9]. The concept of small submodules has been extended
by some researchers, for this see [11, 3, 12]. A submodule Z of a module W is called C-small,
denoted by Z <. W if G < Z implies G < W. By the definition, every small submodule is
C-small, but the converse is not true.

For two submodules V, G of a module W, V is called a supplement of G if V' is minimal
with respect to the property W = V 4+ G, equivalently W =V 4+ Gand VNG < V. Vis
weak supplement of Gif V+ G =W and VNG < W. A module M is called supplemented
(weakly supplemented) if every submodule of M has a supplement (weak supplement) in W
and W is called amply supplemented if X + Y = W for two submodules X and Y, then X
has a supplement in W, contained in Y. To see more details about supplemented modules, see
[10, 5, 4] . In this paper, we also extend the concept of supplemented modules by defining
C-supplemented modules.

For amodule W,1let S <T < W.IfT/S « W/S, then S is called cosmall submodule of T’
in WW. The submodule T" of W is called coclosed in W if T" has no proper cosmall submodule.

In section 2, first we give the definition of C-small submodules and some properties and
then the related results to other concepts. In section 3, we define the concept of C-supplement,
amply C-supplement and weak C-supplement submodules. Any supplement submodule is C-
supplement but the converse is not true, and we investigate the relation between C-supplemented,
amply C-supplemented and weakly C-supplemented modules. In section 4, we obtain a classifi-
cation of C-small modules in a finite Z-module and show that every finite Z-module is a direct
sum of its C-small submodules.
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2 C-small submodules and projective modules

In this section, first we define C-small submodules as a generalization of small submodules and
show the related results with projective modules.

Definition 2.1. Let R be a ring and Z be submodule of an R-module W. Z is called C-small
submodule in W, denoted by Z <. W, if G < Z implies G < W.

Under the above definition, if Z is a small submodule of 1/, then Z is also a C-small submod-
ule of W. But the inverse is not always true. To see this, let W be an R-moduleand G < V < W
and G+ S = W forsome S < W. Since G < V wehave V+ S5 = W thatis S = W. So
G < W and therefore V' <. W. Now let Z,, be the ring of integers modulo n and W = Z, be
a Z-module. We have A = {0,3,6,9} < W. Since {0,6} and {0} are small in W, so A <. W.
Butlet B = {0,4,8} < W. We see that A + B = W. Therefore A is not small in .

Example 2.2. (a) Every proper submodule of hollow modules is C-small. For all integers n and
prime number p, submodules of Z,,» is C-small.

(b) Let W = Z;5. Submodules {0}, {0,9}, {0,6,12} and {0,2,4,6,8,10,12,14,16} are C-
small submodules and {0,3,6,9,12,15} is not a C-small submodule for {0,9} < {0,3,6,9, 12,15}
and {0,9} is not small in W.

Proposition 2.3. Let W be a module and Z; <. W and Z, <. W. Then Z) N Zy <. W.

Proof. Let G < Z; N Z,. Then G < Z;. So if G = Zj, then it is C-small and if G < Z|, then
G <« W and therefore G <. W. O

Proposition 2.4. Let W and V' be two R-modules and f : W — V be an R-homomorphism. If
Z <. W, then f(Z) <. f(W). In particular, if Z <. W <V then Z <. V.

Proof. Let G < f(Z). Then there exists S < Z such that f(S) = G. Now assume G + H =
f(S)+ H =V forsome H < Z. Then S + f*(H) = W. Since Z <. W, s0 S < W, this
implies S < W = f* (H). So we have f(S) < H and f(S) = G. Therefore V = H. O

Proposition 2.5. Let W = W, & W, and V' be a submodule of W such that (V + W;) /W <,
W/Wyand W =V + W,. Then (V +W,) ]V <. W/V.

Proof. LetV be a submodule of W such that (V + W;)/W; <. W/Wiand W =V + W,. We
have W/W, = W, — Wo/(WoNV) = (WL +V)/V = W/V. So (V + W;)/W, is mapped
onto (V + Wy)/V. Now since (V + Wy)/W; <. W/Wy, we have (V +W,)/V <. W/V. O

Proposition 2.6. Let W be a module and Z <V < W. If V <. W, then Z <. W and
V/IZ <. W/Z.

Proof. Let V <. W. Since Z <V, itis small in W or it is equal to V. Both cases show that
7Z <. W. Now we show that V/Z <. W/Z. Let G/Z < V/Z and G/Z + S/Z = W/Z for
some S/Z < W/Z. This implies that G +S = W. Since G < V and V <. W, then S = W
and S/Z =W/Z. So G/Z <« W/Z and therefore V/Z <. W/Z. ]

Proposition 2.7. Let W be a module and Z <V < W. If Z <« V. and V/Z <. W/Z, then
V<. W.

Proof. Let G < Vand G+ S = W for some S < W. Then (G + S)/Z = W/Z and (G +
Z2))Z4+(S+2)]Z=W/Z.Since Z < V,wehave G+ Z # V. So (G+ Z)/Z < V/Z. Hence
(S+2))Z=W/Z(byV/Z <. W/Z)and S+Z =W.Since Z <V, Z < W andso S =W
and then V <. W. m|

Corollary 2.8. Let W be a module and H,Z < W. If H+ Z <. W, then Z <. W and
H< . W.

Corollary 2.9. Let W be a module and Z <V < W. Then V <. W ifand only if Z < V and
V/Z <. W/Z.
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Definition 2.10. Let W and V be two R-modules and f : W — V be an R-epimomorphism. f
is called C-small in case Kerf <. W.

Proposition 2.11. Let W be an R-module and Z < W. The following statements are equivalent:
(1) Z< . W
(2) The natural map p, : W — W/Z is C-small epimorphism.

(3) For every G < Z, every R-module V and every h € Homg(V,W), (Imh) + G = W
implies Imh =W

Proof. (1) = (2) Itis clear. (2) = (3) Since p, is a C-small epimorphism and Kerp, = Z, this
implies Z <. W. So for every G < Z we have that G < W. Now if (Imh) + G = W, then
Imh = W for every R-module V and h € Hompg(V,W). (3) = (1) If we assume V = W and
h : V — W be an inclusion map, then G < W and so Z <. W. O

Corollary 2.12. Let g : W — V be an R-epimorphism. If for some 0 # G <V, f<(G) <. W,
then for all homomorphism h, if gh is epic, then h is epic.

Lemma 2.13. Let W be a module and W = A+ B = (ANB)+C for submodules A, B,C < W.
Then W = (BNC)+A=(ANC)+B.

Proof. See [6, Lemma 1.2]. O

Lemma 2.14. Let W be a module and A, B,C < W such that ANB < AnC. IfG <
(AN C)/(AN B), then there exists C' such that B < C' < Cand G = (ANC")/(AN B).

Proof. LetG < (ANC)/(ANB). ThenG = Z/(ANB)suchthat ANB < Zand Z < ANC.
Now we consider Z + B = C’. Then AN (Z + B) = Z + (AN B) = Z. This implies
G=Z/(AnB)=(ANn(Z+B))/(AnB)=(ANC")/(ANB)suchthat B<C'<C. O

Proposition 2.15. Let W be a module such that W = A+ B for A,B < W. If B < C and
C/B <. W/B, then (ANC)/(ANB) <. W/(AN B).

Proof. Let Z < (AN C)/(AN B). Then by Lemma 2.14, there exists a C’ < W such that
B<(C'<CandZ = (ANC")/(ANB).Nowlet W/(ANnB) = (ANC")/(ANB)+X/(ANB)
forsome ANB <X <W.ThenW = (ANC’)+ X ByLemma2.13, W =C"+ (AN X).
Since C/B <. W/B,W = B+ (AN X). Again by Lemma 2.13 , W = X + (AN B). Hence

W =X.Thus (ANC)/(ANB) <. W/(AN B). o
Proposition 2.16. Let W be a module and Z <V < W such that V. <qg W. If Z <. W, then
Z <. V.

Proof. LetG < Zand G+ S =V forsome S < V. Since V is a DS, there exists a H < W and
VeoH=W.Sowehave G+S+H=W.SinceZ <<, WandG< Z,S+H=V+H=W.
Therefore S =V and Z <. V. O

Proposition 2.17. Let W be an R-module and Z <. W. If there exists G < Z and W/G is
indecomposable, then W is indecomposable.

Proof. Let W = A@® B forsome A,B < W.So (A+ G)/G+ (B + G)/G = W/G. We show
that (A+G)N(B+G) = G. Since G < W, we have G = A’ @ B’ for some A’ < Aand B’ < B.
Letz € (A+G)N(B+G). Thusz =a+g; =b+ g, forsomea € A,b € B,gy,9 € G. Now
since G = A’ ® B’, we have g; = a; + by and g, = ap + b, where ay,a, € A’ and by, b, € B'.
Therefore a+a; +by =b+ar+b,anda+a; —ar, = b+b, —by. Since AN B = 0, we conclude
a=ap—a; € A'. Therefore a € G and so 2 € G. This implies that (A+G)/G® (B+G)/G =
W/G. Since W/@ is indecomposable, we may assume A+ G = W. Since G < Z and Z <. W,
G < W. Thus A=W and B = 0. This implies IV is indecomposable. O

Remark 2.18. Let W be a module. If V' < W is hollow module, then V' is C-small submodule
in W but the converse is not true. To see this, let V' < W a hollow module. If G < V, then
G <« V and so G <« W. Therefore V <. W. For the converse, let W = Z3c and A =
{0,6,12,18,24,30}. Then A <. W but it is not hollow module for we have B = {0, 12,24} <
Aand C ={0,18} < Aand B+ C = A.
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Theorem 2.19. Let W be a module. Every C-small submodule of W which is a DS, is a hollow
module.

Proof. LetV <. WbeaDSin W and G < V. Since V <. W we have that G < W and since
VisaDSin W, G < V. Therefore V is hollow. O

Proposition 2.20. Let W be a module and Z < W. Then the following are equivalent:

(1) There is a decomposition W = G & G' withG < Zand G' N Z <. W;

(2) There is an idempotent e € End(W) such that (W)e < Z and (Z)(1 —e) <. (W)(1 —¢);
(3) Thereis a DS G of W such that G < Z and Z/G <. W/G.

Proof. (1) = (2) For W = G @ G’, there exists an idempotent e € End(W) such that
(W)e =G and (W)(1 —e) = G'. Since G < Z, we conclude (Z)(1 —e) < ZN(W)(1l —¢) =
GNZ <, W. SinceG"isaDSinWand G'NZ < G', we have G' N Z <. G’ and so
(Z2)(1—¢) <. (W)(1 —e).
(2) = (3) We can choose G = (W)e. So G < Z. Then W = G @ (W)(1 — e) and since
(Z2)(1 —e) <. (W)(1 —e), we have Z/G <. W/G.
(3) = (1) There exists G & G’ = M. So Z = G & (G’ N Z) by modularity. Also we have
GNZ2Z/G<. W/LEG . ThusG'NZ <. G andsoG'NZ <. W.

o

Proposition 2.21. Let W be a module and V- < W. If V is cyclic and has a unique maximal
submodule, then V<, W.

Proof. Let V be cyclic and has a unique maximal submodule G. Then V is finitely generated.
Now let F' < V and F+ S = V for some S < V. Since V is finitely generated, every proper
submodule of V' is contained in a maximal submodule and we have that G + .S = V. By the
same way S can not be proper in V. Therefore S = V and FF < V. So F' <« W. This implies
V. W. O

Proposition 2.22. Let W be a module and V. < W. If End(V) is local ring and V is self-
projective, then V- <, W.

Proof. Let G < V and G+ Z = V for some Z < V. Now since V = G + Z, for every
veEV,wehavev = g+ z forsome g € Gand z € Z. Let f : V — V/G N Z be defined by
f(n) =Z 4+ Gn Z. Itis easy to see that f is well-defined and is a homomorphism. Since V is
self-projective, there exists a homomorphism & : V' — V such that the following diagram

14

h
/lf
V—SV/GNZ —= 0

commutes, where 7 : V' — V/GNZ is a natural epimorphism. Since 7 is natural epimorphism
and the diagram commutes, h(v) + GNZ = z + G N Z. This implies h(V) < Z. Letz € Z,
then 7(x — h(z)) = 7(x) —moh(z) = x+GNZ — f(xz)+GN Z. This implies = — h(x) € ker.
SoZ=h(V)+GNZ. NowsinceV=G+ Z,thenV =G+ h(V)+GNZ. ButGNZ <G.
Therefore V = G + h(V'). Hence h(V) is not a small submodule of V. Thus h ¢ RadEnd(V)
that is h is a isomorphism. This implies Z < V = h(V') and so Z = V. Therefore G < V and

so G <« W. This shows that V <. W.
o

Theorem 2.23. Let W be a module. If every proper submodule of W is contained in a maximal
submodule of W and if G/RadW < W/RadW is a C-small submodule in W/RadW, then
G/RadW is a DS.
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Proof. Let Z be a proper submodule of W that is contained in a maximal submodule say, H.
Since we have RadW = N{X < W|X is mazimal in W}, this implies RadW < H. So
Z + RadW < H # W. By arbitrary choice of Z, RadW <« Z. This shows that W/RadW
has no non-zero small submodule. Cause if G/RadW is small, then G < W. To see this, let
G+Z = W. Then (G/RadW )+ (Z+ RadW)/RadW = W/RadW , that implies Z + RadW =
W and Z = W and it is a contraction to proper assumption of Z. So G/RadW is a C-small
submodule of W/RadW which is not Small. Therefore there exists a S/RadW < W/RadW
and G/RadW + S/RadW = W/RadW. Since G/RadW N S/RadW < G/RadW, we have
G/RadW N S/RadW = 0 and therefore G/RadW <g W/RadW . m|

Proposition 2.24. Let W be semisimple module. Then Z < W is C-small if and only if Z is
simple.

Proof. Let Z < W be a simple. So it is clear that Z <. W. Conversely let 0 = Z <. W and
G < Z. Since W is semisimple, every submodule of W is a DS. Since Z <. W, G < W and
so G =0. O

Proposition 2.25. In a projective R-module P with endomorphism ring D = End(P), Let e €
D. Iffor every G < Ime, there exists r € J(D) such that Imr = G, then Ime <. P.

Proof. Let G < Ime. So there exists r € J(D) such that Imr = G. Let G+Z = Imr+ 2 = P
for some Z < P. Then we readily see if ny : P — P/Z is the natural epimorphism, rny :
P — P/Z is epic. So we can choose d € D such that the diagram

<

P2 piz =0

commutes. We have (1 — dr)nz = 0. But since r € J(D), 1 — dr is invertible and nz = 0.
Therefore Z = P. So G < P and then Ime <, P.
o

Proposition 2.26. Let W be a self-projective module and V- < W. If for every G < V,
Hom(W,G) =0, then V <. W.

Proof. For proving that V' is a C-small submodule in W, let G < V. By hypothesis, Hom(W,G) =
0. We show G < W. Let G 4+ Z = W. Now we consider the following diagram

S

W ——W/ZNnG —— 0

where 7 : W — W/Z NG is the natural epimorphism and f : W — W/Z NG is defines as
follow. For every w € W, f(w) = g+ 2N G where g € G and z € Z such that w = g + z. Now
we show f = 0. Let f # 0. Since W is self-projective, then there exists ¢ : W — W such that
moyy = f. Now for w € W, we have (moy)(w) = f(w), thatis Y(w)+ZNG =g+ ZNG,
where w = g+ z for some g € G and z € Z. Now ¢(w) — g € Z NG < G which implies that
¥(w) € G. Thus (W) < G. But Hom(W, G) = 0. That is ¢» = 0 which is a contradiction with
moy = f cause f # 0. So f = 0. This implies G < Z and hence W = G + Z = Z. Therefore
G« WandsoV <. W. O

3 C-supplemented modules

Let G and V' be submodules of an R-module W. V is called a supplement of G in W if it is
minimal with respect to the property W =V + G, equivalently W =V + Gand V + G < V.
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Let W be a module and V, V' < W. V' is called C-supplement of V if V + V' = W and
VNV <. V. V'is called weak C-supplement of V if V + V' = Wand VNV’ <. W. A
submodule V' of W is called a C-supplement (weak C-supplement) submodule, if there exists a
submodule Z of W such that V is a C-supplement (weak C-supplement) of Z in W.

Module W is called C-supplemented (weakly C-supplemented) if every submodule of W has
a C-supplement (weak C-supplement) in W and W is called amply C-supplemented if W =
A + B implies A has a C-supplement Z contained in B.

For two submodules Z < V < W, we say Z is a C-cosmall submodule of V' in W if
V/Z <. W/Z. The submodule V of W is called C-coclosed in W if V has no proper C-cosmall
submodule, equivalently V/Z <. W/Z implies V = Z for any submodule Z < V.

Proposition 3.1. Let W be a module and Z <V < W. If V is a C-coclosed submodule of W
and 7 <. W, then Z <. V.

Proof. LetG < Z and G+S =V forsome S < V. Suppose V'/S < V/S forsome S < V' <V
and V'/S+Y/S =W/Sforsome S <Y <W.SoV'+Y = W. This implies G+S+Y =W
andso S+Y =W =Y .Hence V/S’' <. W/S and this implies V' = S. ]

Corollary 3.2. Let W be a weakly C-supplemented module. Then every C-coclosed submodule
of W has a C-supplemented.

Corollary 3.3. Let W be a module and every submodule of W is C-coclosed. Then W is C-
supplemented if and only if W is weakly C-supplemented.

Remark 3.4. (1) It is easy to see that if A is a C-coclosed submodule of W and B < A, then
A/B is C-coclosed in W/B. For this (A/B)/(C/B) <. (W/B)/(C/B) where B < C < A,
then A/C <. W/C andso A = C.

(2) Let W be a module and G < W a supplement submodule, then for every H < G, G/H
is a supplement submodule in W/H. To see this, since G is supplement in W, there exists
Z<WandW =G+ Zand GNZ <. G. Therefore G/H + (Z + H)/H = W/H. Now
G/HN(Z+H)/H=GN(Z+H)/H=H+(GNZ)/H. Now Let 7 : L — G/H be a natural
epimorphism. Since GNZ <. Lson(ZNG)=H+ (ZNG) <. G/H.

(3) For amodule W and Z < G < W, if Z is C-coclosed in W, it is clear that Z is C-coclosed
in G and when G is a C-supplement submodule in W, the inverse is also true that is if Z is
C-coclosed in G, then Z is C-coclosed in W. For proving this let Z/H <. W/H for some
H < Z <W. By (2) G/H is a C-supplement in W/H. So we have Z/H <. G/H. Hence
Z =H.

Proposition 3.5. Every DS of an amply C-supplemented module is amply C-supplemented.

Proof. Let W beamodule and W = Z@® Z’. Now suppose Z = C+ D, then W = C+ (D Z').
Since W is amply C-supplemented, W = E+(D®Z") and EN(D®Z') <. F forsome E < C.
Thus Z = ZNW = E+Dand END = EN(D®Z') <. E. So Z is amply C-supplemented. O

Theorem 3.6. Let W be a module and T < W. Then the following are equivalent:
(1) There is decomposition W = Q + Q' withQ <T and TN Q' <. Q’;
(2) There is an idempotent e € End(W) such that (W)e < T and (T)(1 —e) <. (W)(1 —e);
(3) Thereis Q <g W suchthat Q <T and T/Q <. W/Q;
(4) T has a C-supplement D in W suchthat TN D <g T.

Proof. (1) = (2) For W = Q + Q’, there exists an idempotent e € End(W) such that (W)e =
Qand (W)(1—e) = Q'. Nowsince Q < T, wehave (T')(1—e) < TN(W)(1—e) <. (W)(1—e).
(2) = (3) We can take Q = (W)e. Then W = Q & (W)(1 — e) and since by modularity
T=Qd ((W)(1-e)NT),wehave T/Q <. W/Q.
B) =G LletQ<agWandQ <T.SoW =Qa&Q andT=Q& (Q' NT). Take D = Q".
ThenTND <gTandTND=T/Q <. W/Q=D. ThusTND <, D.
(4) = (1) Let D be a C-supplement of 7"in W and also 7' = Q & (T'N D) for some Q < 7.
Then W =T+D =Q+(TND)+D =Q+Dand QND = (QNT)ND =Qn(TND) = 0.
So @ <g W and also Since D is a C-supplement of 7, T N D <. D.

o
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Proposition 3.7. Let W be a module such that every submodule of W is C-supplemented. Then
W is amply C-supplemented.

Proof. Let A,B < W and W = A+ B. Then since AN B is a submodule of A and A is
C-supplemented, there exists X < Aand (ANB)+ X =Aand (ANB)NX =BNX <. X.
Therefore W = A+ B=(ANB)+ X + B= X + B. So W is amply C-supplemented. O

Corollary 3.8. Let R be a ring. Then every R-module is amply C-supplemented if and only if
every R-module is C-supplemented.

Proposition 3.9. Let W be a m-projective module. Then W is a C-supplemented module, if and
only if W is amply C-supplemented module.

Proof. Let W = Z + G for G,Z < W. Then there is e € End(W) such that (W)e < Z and
(W)(1 —e) < G. Now suppose that V' < W be a C-supplement of Z in W. We have W =
(W)e+(W)(1—e) = (W)e+(Z+V)(1—e) < Z+(V)(1—e). SoW = Z+(V)(1—e) where
(V)(1—e) < G. Now since ZNV <. V wehave ZN(V)(1—e) = (ZNV)(1—e) <. (V)(1—e).
Therefore W is amply C-supplemented. Converse is clear. O

Proposition 3.10. Let W be a weakly C-supplemented module. Then
(1) Every C-coclosed submodule of W is weakly C-supplemented.
(2) Every factor module of W is weakly C-supplemented.

Proof. (1) Let Z be a C-coclosed submodule of W and V' < Z. Since W is weakly C-
supplemented, there existsaG < Wand Z+G =W and ZNG <. W. Thus Z = V+(ZNG).
AlsoVNZNG)=VNGE<L,Z.

(2) Let V be a submodule of W and G/V < W/V. Since W is weakly C-supplemented, there
exists Z < Wsuchthat W =Z+GandGNZ <. W.Sowehave W/V =G/V+(Z+V)/V.
Now Let ¢ : W — W/V be natural epimorphism. Then G/VN(Z+V)/V = (V+GNZ)/V =
d(GNZ) <. W/V.So W/V is weakly C-supplemented. i

4 finite Z-module decomposition

In Examples 2.2 we showed some C-small submodule especially in finite Z-module Z,,. Next
we classify all C-small submodules in Z,,.

(e pne’) Qt

Theorem 4.1. Let Z,, be the ring of integers modulo n and n = p{"'py”...p;" where all of p;
are distinct prime and o; > 0. Then k7, <. Z, if and only if k = qp?lpzﬂz...pft, where
ged(q,n) = 1and forany 1 < i < t,1 < f; < o, or k = qp}'p3>..p; | vyt ...pgt where
gcd(q,n) = 1.

Proof. Let W = Z,. It is clear to see that every submodule G of W can be written as G = kW
where k is an integer and if k = gp) ‘pgz...pft, where ged(g,n) = 1 and forany 1 <4 <t 1 <
Bi < ay, then kW = k'M such that k' = pflpgz...pf‘ where forany 1 < i <t,1 < 8 < .
Now let G be a submodule of W, satisfying the first condition in necessity and G + S = W for
some S < W. Therefore there exists an integer f, such that S = fW and f = plﬁ ‘pgz...pf * where
1<i<t0<p; <. Since G+ S = W, then for some g € G and s € S we have g + s = 1.
By Theory of Numbers we can conclude ged(f, k') = 1. This implies f = 1. Therefore S = W.
SoG <« W and G <. M. Now let G satisfies the second condition, Then for every D < L, it
easy to see that D satisfies the first condition. So D <« W. Therefore G <. W. Conversely let
G = kW with k = qpf‘pgz...pf", where ged(g,n) = 1 and forany 1 < <¢,0 < 3; < o; and
thereis a 1 < j < ¢ such that 3; = 0 and there is 1 < u < t such that 0 < 3, < a, and u # j.
Then S = sW with s = p{"p3*...pJ...p{" is proper a submodule of G. Now let D = p}/ M.
Since ged(s,p;’) = 1, by theory of numbers we have S + D = W. So G is not C-small in
w. O

Example 4.2. Let W = Zgy. Since 900 = 22 x 32 x 52, A = (32 x 52)W, B = (2% x 5*)W,
C=22x3)W,D = (22x3¥x5W,E = (22x3x5HW, F = (2 x3 x5W,
G=02x3xW,H=02x3*x5W,I=2>%x3x5W,and J = (2 x3 x5 W, are
C-small submodules, while A, B, C' are not small in V.
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Let p be a prime number and W be a finite Z-module. W is called p-module if for every
x € W, there exists a positive integer n such that 27" = p"z = 0.

Lemma 4.3. For every prime number p, finite Z-module W has a submdule H and H is p-module
and maximal with this property.

Proof. If W = 0orpt |W]|, then 0 is p-submodule and it is maximal as a p-module. Let p | |IV].
Therefore there is H < W and |H| = p. Since W is finite, there is S < W and S contains H
such that S is maximal as a p-module. O

Proposition 4.4. Let W be finite Z-module and G < W. If G is cyclic p-module, then G <. W.

Proof. Let |G| = P™. Since G is cyclic, then G =< s > for some s € G. Now let D < G and
D+ T = G forsome T < G. Since GG is P-module, D and T are also p-modules. Now s = d+t
ford € D,t € T. Since o(s) = p", we have o(d + t) = p™. Since D < G, |D| < p" and let
|D| = p™,n; < nandlet |T| = p™. If no < ny, then o(d + ¢) = p™ and it is contradiction. If
n1 < ny, then o(d +t) = p™ = o(s) = p™. Therefore n, = nand T = G. So D <« G. Thus
D<Wand G <, W. O

Example 4.5. Let W = Zg X Z4 x Z;. For the prime 3, A = Zg x Zy X Zg is a 3-module and
cyclic for A is generated by (1,0,0) and obviously A is maximal as a 3-module. Therefore A is
C-small. Now let B = Zg X Z4 X Zo, C = Zo X Zo X Zy and D = Zgy X Z4 X Z. For every
r € B,yecCands € D,2%x =2%s =2y = 0. So they are 2-modules. But D is not cyclic. So
B and C are C-small.

Lemma 4.6. Let p be a prime number and W be a finite Z-module. If W is p-module, then W is
direct sum of cyclic p-modules.

Proof. Let |[W| = p™. If n = 1, then W is cyclic module and the result is obvious. Now let
a € W such that for every b € W, o(b) < o(a). Then there is a submodule G of W such that
W =< a > &G. Clearly G is p-module and |G| < |W|. So by induction G is direct sum of
Cyclic p-modules. Therefore W is direct sum of cyclic p-modules. O

Theorem 4.7. Let W be finite Z-module. Then W = S| ® S, @ ... & S, such that S; <. W for
all1 <i<n.

Proof. Let W be finite Z-module. If W = 0 then result is obvious. Let |W| = p{'p3*...p"
where p;’s be distinct prime numbers and «;’s be positives integer. By Lemma 4.3 for every
i =1,2,...,t, W has a p-module D and D is maximal with this property. Now let for every
i=1,2,..,t,|D;| = p{. Itis easy to see that D; N (Dy + ...+ D;_1 + D1 + ... + Dy) = 0 for
1 < i < t. Therefore | Dy + ... + Dy| = p{"'p5*..p{" = |W|. This implies W = D| & ... & Dy
which every D, is a p-module. Now by Lemma 4.6 W is direct sum of cyclic submodules and
now by proposition 4.4, W = S|, © S, @ ... ® S,, where S; <. W forany 1 <i <n. O

Remark 4.8. In [1], authors have discussed chain conditions on small submodules, and in [7],
authors have discussed chain conditions on non-small submodules. It will be interesting to dis-
cuss chain conditions on the class of small submodules and non-small submodules related to
c-small submodules.
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