On C-SMALL AND C-SUPPLEMENT SUBMODULES

M. Akbari Gelvardi and Y. Talebi

Communicated by Manoj Kumar Patel

MSC 2020 Classifications: 16D10; 16D80; 16D99.

Keywords and phrases: small submodules, c-small submodules, supplement, c-supplement.

Acknowledgement: The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Abstract Let R be an arbitrary ring, and Z be a submodule of an R-module W. Z is called C-small in W denoted by $Z \ll_c W$ if any proper submodule of Z is small in W. We characterize C-small submodules of an R-module W and classify C-small submodules in finite \mathbb{Z} -modules, and we obtained some related results. Due to definition of C-small, we define C-supplement submodule of a module. We also provide some results in C-supplement modules related to other concepts.

1 Introduction

In this paper, R is an associative ring with identity, and all modules are unitary right R-module. We use the notation \subseteq , \leq and < to show inclusion, *submodule* and proper submodule, respectively, and $V \ll_{\oplus} W$ means that V is a direct summand (DS) of W.

A submodule G of W is small in W denoted by $G \ll W$ if G + Z = W for any $Z \leq W$ implies Z = W. A module W is said hollow if G < W implies $G \ll W$. More details about small submodules can be found in [2, 8, 9]. The concept of small submodules has been extended by some researchers, for this see [11, 3, 12]. A submodule Z of a module W is called C-small, denoted by $Z \ll_c W$ if G < Z implies $G \ll W$. By the definition, every small submodule is C-small, but the converse is not true.

For two submodules V, G of a module W, V is called a supplement of G if V is minimal with respect to the property W = V + G, equivalently W = V + G and $V \cap G \ll V$. V is weak supplement of G if V + G = W and $V \cap G \ll W$. A module M is called supplemented (weakly supplemented) if every submodule of M has a supplement (weak supplement) in W and W is called amply supplemented if X + Y = W for two submodules X and Y, then X has a supplement in W, contained in Y. To see more details about supplemented modules, see [10, 5, 4]. In this paper, we also extend the concept of supplemented modules by defining C-supplemented modules.

For a module W, let $S \le T \le W$. If $T/S \ll W/S$, then S is called cosmall submodule of T in W. The submodule T of W is called coclosed in W if T has no proper cosmall submodule.

In section 2, first we give the definition of C-small submodules and some properties and then the related results to other concepts. In section 3, we define the concept of C-supplement, amply C-supplement and weak C-supplement submodules. Any supplement submodule is C-supplement but the converse is not true, and we investigate the relation between C-supplemented, amply C-supplemented and weakly C-supplemented modules. In section 4, we obtain a classification of C-small modules in a finite \mathbb{Z} -module and show that every finite \mathbb{Z} -module is a direct sum of its C-small submodules.

2 C-small submodules and projective modules

In this section, first we define C-small submodules as a generalization of small submodules and show the related results with projective modules.

Definition 2.1. Let R be a ring and Z be submodule of an R-module W. Z is called C-small submodule in W, denoted by $Z \ll_c W$, if G < Z implies $G \ll W$.

Under the above definition, if Z is a small submodule of W, then Z is also a C-small submodule of W. But the inverse is not always true. To see this, let W be an R-module and $G < V \ll W$ and G + S = W for some $S \leq W$. Since G < V we have V + S = W that is S = W. So $G \ll W$ and therefore $V \ll_c W$. Now let \mathbb{Z}_n be the ring of integers modulo n and $W = \mathbb{Z}_{12}$ be a \mathbb{Z} -module. We have $A = \{0, 3, 6, 9\} \leq W$. Since $\{0, 6\}$ and $\{0\}$ are small in W, so $A \ll_c W$. But let $B = \{0, 4, 8\} < W$. We see that A + B = W. Therefore A is not small in W.

Example 2.2. (a) Every proper submodule of hollow modules is C-small. For all integers n and prime number p, submodules of \mathbb{Z}_{p^n} is C-small.

(b) Let $W = \mathbb{Z}_{18}$. Submodules $\{0\}$, $\{0,9\}$, $\{0,6,12\}$ and $\{0,2,4,6,8,10,12,14,16\}$ are C-small submodules and $\{0,3,6,9,12,15\}$ is not a C-small submodule for $\{0,9\} < \{0,3,6,9,12,15\}$ and $\{0,9\}$ is not small in W.

Proposition 2.3. Let W be a module and $Z_1 \ll_c W$ and $Z_2 \ll_c W$. Then $Z_1 \cap Z_2 \ll_c W$.

Proof. Let $G \leq Z_1 \cap Z_2$. Then $G \leq Z_1$. So if $G = Z_1$, then it is C-small and if $G < Z_1$, then $G \ll W$ and therefore $G \ll_c W$.

Proposition 2.4. Let W and V be two R-modules and $f: W \longrightarrow V$ be an R-homomorphism. If $Z \ll_c W$, then $f(Z) \ll_c f(W)$. In particular, if $Z \ll_c W \leq V$ then $Z \ll_c V$.

Proof. Let G < f(Z). Then there exists S < Z such that f(S) = G. Now assume G + H = f(S) + H = V for some $H \leq Z$. Then $S + f^{\leftarrow}(H) = W$. Since $Z \ll_c W$, so $S \ll W$, this implies $S \leq W = f^{\leftarrow}(H)$. So we have $f(S) \leq H$ and f(S) = G. Therefore V = H. \Box

Proposition 2.5. Let $W = W_1 \oplus W_2$ and V be a submodule of W such that $(V + W_1)/W_1 \ll_c W/W_1$ and $W = V + W_2$. Then $(V + W_1)/V \ll_c W/V$.

Proof. Let V be a submodule of W such that $(V + W_1)/W_1 \ll_c W/W_1$ and $W = V + W_2$. We have $W/W_1 \cong W_2 \longrightarrow W_2/(W_2 \cap V) \cong (W_2 + V)/V = W/V$. So $(V + W_1)/W_1$ is mapped onto $(V + W_1)/V$. Now since $(V + W_1)/W_1 \ll_c W/W_1$, we have $(V + W_1)/V \ll_c W/V$. \Box

Proposition 2.6. Let W be a module and $Z \leq V \leq W$. If $V \ll_c W$, then $Z \ll_c W$ and $V/Z \ll_c W/Z$.

Proof. Let $V \ll_c W$. Since $Z \leq V$, it is small in W or it is equal to V. Both cases show that $Z \ll_c W$. Now we show that $V/Z \ll_c W/Z$. Let G/Z < V/Z and G/Z + S/Z = W/Z for some $S/Z \leq W/Z$. This implies that G + S = W. Since G < V and $V \ll_c W$, then S = W and S/Z = W/Z. So $G/Z \ll W/Z$ and therefore $V/Z \ll_c W/Z$.

Proposition 2.7. Let W be a module and $Z \leq V \leq W$. If $Z \ll V$ and $V/Z \ll_c W/Z$, then $V \ll_c W$.

Proof. Let G < V and G + S = W for some $S \le W$. Then (G + S)/Z = W/Z and (G + Z)/Z + (S + Z)/Z = W/Z. Since $Z \ll V$, we have $G + Z \ne V$. So (G + Z)/Z < V/Z. Hence (S + Z)/Z = W/Z (by $V/Z \ll_c W/Z$) and S + Z = W. Since $Z \ll V$, $Z \ll W$ and so S = W and then $V \ll_c W$. □

Corollary 2.8. Let W be a module and $H, Z \leq W$. If $H + Z \ll_c W$, then $Z \ll_c W$ and $H \ll_c W$.

Corollary 2.9. Let W be a module and $Z < V \leq W$. Then $V \ll_c W$ if and only if $Z \ll V$ and $V/Z \ll_c W/Z$.

Definition 2.10. Let W and V be two R-modules and $f: W \longrightarrow V$ be an R-epimomorphism. f is called C-small in case $Kerf \ll_c W$.

Proposition 2.11. Let W be an R-module and $Z \leq W$. The following statements are equivalent:

- (1) $Z \ll_c W$
- (2) The natural map $p_z : W \longrightarrow W/Z$ is C-small epimorphism.
- (3) For every G < Z, every R-module V and every $h \in Hom_R(V, W)$, (Imh) + G = Wimplies Imh = W

Proof. (1) \Rightarrow (2) It is clear. (2) \Rightarrow (3) Since p_z is a C-small epimorphism and $Kerp_z = Z$, this implies $Z \ll_c W$. So for every G < Z we have that $G \ll W$. Now if (Imh) + G = W, then Imh = W for every R-module V and $h \in Hom_R(V, W)$. (3) \Rightarrow (1) If we assume V = W and $h : V \longrightarrow W$ be an inclusion map, then $G \ll W$ and so $Z \ll_c W$.

Corollary 2.12. Let $g: W \longrightarrow V$ be an *R*-epimorphism. If for some $0 \neq G \leq V$, $f^{\leftarrow}(G) \ll_c W$, then for all homomorphism h, if gh is epic, then h is epic.

Lemma 2.13. Let W be a module and $W = A + B = (A \cap B) + C$ for submodules $A, B, C \leq W$. Then $W = (B \cap C) + A = (A \cap C) + B$.

Proof. See [6, Lemma 1.2].

Lemma 2.14. Let W be a module and $A, B, C \leq W$ such that $A \cap B \leq A \cap C$. If $G < (A \cap C)/(A \cap B)$, then there exists C' such that $B \leq C' < C$ and $G = (A \cap C')/(A \cap B)$.

Proof. Let $G < (A \cap C)/(A \cap B)$. Then $G = Z/(A \cap B)$ such that $A \cap B \le Z$ and $Z < A \cap C$. Now we consider Z + B = C'. Then $A \cap (Z + B) = Z + (A \cap B) = Z$. This implies $G = Z/(A \cap B) = (A \cap (Z + B))/(A \cap B) = (A \cap C')/(A \cap B)$ such that $B \le C' < C$. \Box

Proposition 2.15. Let W be a module such that W = A + B for $A, B \le W$. If $B \le C$ and $C/B \ll_c W/B$, then $(A \cap C)/(A \cap B) \ll_c W/(A \cap B)$.

Proof. Let $Z < (A \cap C)/(A \cap B)$. Then by Lemma 2.14, there exists a $C' \leq W$ such that $B \leq C' < C$ and $Z = (A \cap C')/(A \cap B)$. Now let $W/(A \cap B) = (A \cap C')/(A \cap B) + X/(A \cap B)$ for some $A \cap B \leq X \leq W$. Then $W = (A \cap C') + X$. By Lemma 2.13, $W = C' + (A \cap X)$. Since $C/B \ll_c W/B$, $W = B + (A \cap X)$. Again by Lemma 2.13, $W = X + (A \cap B)$. Hence W = X. Thus $(A \cap C)/(A \cap B) \ll_c W/(A \cap B)$.

Proposition 2.16. Let W be a module and $Z \leq V \leq W$ such that $V \leq_{\oplus} W$. If $Z \ll_c W$, then $Z \ll_c V$.

Proof. Let G < Z and G + S = V for some $S \le V$. Since V is a DS, there exists a $H \le W$ and $V \oplus H = W$. So we have G + S + H = W. Since $Z \ll_c W$ and G < Z, S + H = V + H = W. Therefore S = V and $Z \ll_c V$.

Proposition 2.17. Let W be an R-module and $Z \ll_c W$. If there exists G < Z and W/G is indecomposable, then W is indecomposable.

Proof. Let $W = A \oplus B$ for some $A, B \le W$. So (A + G)/G + (B + G)/G = W/G. We show that $(A+G) \cap (B+G) = G$. Since $G \le W$, we have $G = A' \oplus B'$ for some $A' \le A$ and $B' \le B$. Let $x \in (A+G) \cap (B+G)$. Thus $x = a + g_1 = b + g_2$ for some $a \in A, b \in B, g_1, g_2 \in G$. Now since $G = A' \oplus B'$, we have $g_1 = a_1 + b_1$ and $g_2 = a_2 + b_2$ where $a_1, a_2 \in A'$ and $b_1, b_2 \in B'$. Therefore $a + a_1 + b_1 = b + a_2 + b_2$ and $a + a_1 - a_2 = b + b_2 - b_1$. Since $A \cap B = 0$, we conclude $a = a_2 - a_1 \in A'$. Therefore $a \in G$ and so $x \in G$. This implies that $(A+G)/G \oplus (B+G)/G = W/G$. Since W/G is indecomposable, we may assume A+G = W. Since G < Z and $Z \ll_c W$, $G \ll W$. Thus A = W and B = 0. This implies W is indecomposable. □

Remark 2.18. Let W be a module. If $V \le W$ is hollow module, then V is C-small submodule in W but the converse is not true. To see this, let $V \le W$ a hollow module. If G < V, then $G \ll V$ and so $G \ll W$. Therefore $V \ll_c W$. For the converse, let $W = \mathbb{Z}_{36}$ and $A = \{0, 6, 12, 18, 24, 30\}$. Then $A \ll_c W$ but it is not hollow module for we have $B = \{0, 12, 24\} < A$ and $C = \{0, 18\} < A$ and B + C = A.

Theorem 2.19. Let W be a module. Every C-small submodule of W which is a DS, is a hollow module.

Proof. Let $V \ll_c W$ be a DS in W and G < V. Since $V \ll_c W$ we have that $G \ll W$ and since V is a DS in W, $G \ll V$. Therefore V is hollow.

Proposition 2.20. *Let W* be a module and $Z \leq W$. Then the following are equivalent:

- (1) There is a decomposition $W = G \oplus G'$ with $G \leq Z$ and $G' \cap Z \ll_c W$;
- (2) There is an idempotent $e \in End(W)$ such that $(W)e \leq Z$ and $(Z)(1-e) \ll_c (W)(1-e)$;
- (3) There is a DS G of W such that $G \leq Z$ and $Z/G \ll_c W/G$.

Proof. (1) ⇒ (2) For $W = G \oplus G'$, there exists an idempotent $e \in End(W)$ such that (W)e = G and (W)(1 - e) = G'. Since $G \leq Z$, we conclude $(Z)(1 - e) \leq Z \cap (W)(1 - e) = G' \cap Z \ll_c W$. Since G' is a DS in W and $G' \cap Z < G'$, we have $G' \cap Z \ll_c G'$ and so $(Z)(1 - e) \ll_c (W)(1 - e)$.

 $(2) \Longrightarrow (3)$ We can choose G = (W)e. So $G \le Z$. Then $W = G \oplus (W)(1-e)$ and since $(Z)(1-e) \ll_c (W)(1-e)$, we have $Z/G \ll_c W/G$.

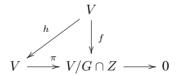
(3) \implies (1) There exists $G \oplus G' = M$. So $Z = G \oplus (G' \cap Z)$ by modularity. Also we have $G' \cap Z \cong Z/G \ll_c W/L \cong G'$. Thus $G' \cap Z \ll_c G'$ and so $G' \cap Z \ll_c W$.

Proposition 2.21. Let W be a module and $V \leq W$. If V is cyclic and has a unique maximal submodule, then $V \ll_c W$.

Proof. Let V be cyclic and has a unique maximal submodule G. Then V is finitely generated. Now let F < V and F + S = V for some $S \le V$. Since V is finitely generated, every proper submodule of V is contained in a maximal submodule and we have that G + S = V. By the same way S can not be proper in V. Therefore S = V and $F \ll V$. So $F \ll W$. This implies $V \ll_c W$.

Proposition 2.22. Let W be a module and $V \leq W$. If End(V) is local ring and V is self-projective, then $V \ll_c W$.

Proof. Let G < V and G + Z = V for some $Z \leq V$. Now since V = G + Z, for every $v \in V$, we have v = g + z for some $g \in G$ and $z \in Z$. Let $f : V \to V/G \cap Z$ be defined by $f(n) = Z + G \cap Z$. It is easy to see that f is well-defined and is a homomorphism. Since V is self-projective, there exists a homomorphism $h : V \to V$ such that the following diagram



commutes, where $\pi: V \to V/G \cap Z$ is a natural epimorphism. Since π is natural epimorphism and the diagram commutes, $h(v) + G \cap Z = z + G \cap Z$. This implies $h(V) \leq Z$. Let $x \in Z$, then $\pi(x - h(x)) = \pi(x) - \pi oh(x) = x + G \cap Z - f(x) + G \cap Z$. This implies $x - h(x) \in ker\pi$. So $Z = h(V) + G \cap Z$. Now since V = G + Z, then $V = G + h(V) + G \cap Z$. But $G \cap Z \leq G$. Therefore V = G + h(V). Hence h(V) is not a small submodule of V. Thus $h \notin RadEnd(V)$ that is h is a isomorphism. This implies $Z \leq V = h(V)$ and so Z = V. Therefore $G \ll V$ and so $G \ll W$. This shows that $V \ll_c W$.

Theorem 2.23. Let W be a module. If every proper submodule of W is contained in a maximal submodule of W and if G/RadW < W/RadW is a C-small submodule in W/RadW, then G/RadW is a DS.

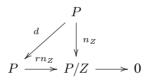
Proof. Let Z be a proper submodule of W that is contained in a maximal submodule say, H. Since we have $RadW = \bigcap \{X \leq W | X \text{ is maximal in } W\}$, this implies $RadW \leq H$. So $Z + RadW \leq H \neq W$. By arbitrary choice of Z, $RadW \ll Z$. This shows that W/RadW has no non-zero small submodule. Cause if G/RadW is small, then $G \ll W$. To see this, let G+Z = W. Then (G/RadW) + (Z + RadW)/RadW = W/RadW, that implies Z + RadW = W and Z = W and it is a contraction to proper assumption of Z. So G/RadW is a C-small submodule of W/RadW which is not Small. Therefore there exists a S/RadW < W/RadW and G/RadW + S/RadW = W/RadW. Since $G/RadW \cap S/RadW \leq G/RadW$, we have $G/RadW \cap S/RadW = 0$ and therefore $G/RadW \leq_{\oplus} W/RadW$. □

Proposition 2.24. Let W be semisimple module. Then $Z \leq W$ is C-small if and only if Z is simple.

Proof. Let $Z \leq W$ be a simple. So it is clear that $Z \ll_c W$. Conversely let $0 \neq Z \ll_c W$ and G < Z. Since W is semisimple, every submodule of W is a DS. Since $Z \ll_c W$, $G \ll W$ and so G = 0.

Proposition 2.25. In a projective *R*-module *P* with endomorphism ring D = End(P), Let $e \in D$. If for every G < Ime, there exists $r \in J(D)$ such that Imr = G, then $Ime \ll_c P$.

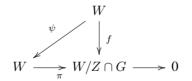
Proof. Let G < Ime. So there exists $r \in J(D)$ such that Imr = G. Let G + Z = Imr + Z = P for some $Z \leq P$. Then we readily see if $n_Z : P \to P/Z$ is the natural epimorphism, $rn_Z : P \to P/Z$ is epic. So we can choose $d \in D$ such that the diagram



commutes. We have $(1 - dr)n_Z = 0$. But since $r \in J(D)$, 1 - dr is invertible and $n_Z = 0$. Therefore Z = P. So $G \ll P$ and then $Ime \ll_c P$.

Proposition 2.26. Let W be a self-projective module and $V \leq W$. If for every G < V, Hom(W,G) = 0, then $V \ll_c W$.

Proof. For proving that V is a C-small submodule in W, let G < V. By hypothesis, Hom(W, G) = 0. We show $G \ll W$. Let G + Z = W. Now we consider the following diagram



where $\pi: W \longrightarrow W/Z \cap G$ is the natural epimorphism and $f: W \longrightarrow W/Z \cap G$ is defines as follow. For every $w \in W$, $f(w) = g + z \cap G$ where $g \in G$ and $z \in Z$ such that w = g + z. Now we show f = 0. Let $f \neq 0$. Since W is self-projective, then there exists $\psi: W \longrightarrow W$ such that $\pi o \psi = f$. Now for $w \in W$, we have $(\pi o \psi)(w) = f(w)$, that is $\psi(w) + Z \cap G = g + Z \cap G$, where w = g + z for some $g \in G$ and $z \in Z$. Now $\psi(w) - g \in Z \cap G \leq G$ which implies that $\psi(w) \in G$. Thus $\psi(W) \leq G$. But Hom(W, G) = 0. That is $\psi = 0$ which is a contradiction with $\pi o \psi = f$ cause $f \neq 0$. So f = 0. This implies $G \leq Z$ and hence W = G + Z = Z. Therefore $G \ll W$ and so $V \ll_c W$.

3 C-supplemented modules

Let G and V be submodules of an R-module W. V is called a supplement of G in W if it is minimal with respect to the property W = V + G, equivalently W = V + G and $V + G \ll V$.

Let W be a module and $V, V' \leq W$. V' is called C-supplement of V if V + V' = W and $V \cap V' \ll_c V'$. V' is called weak C-supplement of V if V + V' = W and $V \cap V' \ll_c W$. A submodule V of W is called a C-supplement (weak C-supplement) submodule, if there exists a submodule Z of W such that V is a C-supplement (weak C-supplement) of Z in W.

Module W is called C-supplemented (weakly C-supplemented) if every submodule of W has a C-supplement (weak C-supplement) in W and W is called amply C-supplemented if W = A + B implies A has a C-supplement Z contained in B.

For two submodules $Z \leq V \leq W$, we say Z is a C-cosmall submodule of V in W if $V/Z \ll_c W/Z$. The submodule V of W is called C-coclosed in W if V has no proper C-cosmall submodule, equivalently $V/Z \ll_c W/Z$ implies V = Z for any submodule $Z \leq V$.

Proposition 3.1. Let W be a module and $Z \le V \le W$. If V is a C-coclosed submodule of W and $Z \ll_c W$, then $Z \ll_c V$.

Proof. Let G < Z and G+S = V for some $S \le V$. Suppose V'/S < V/S for some $S \le V' \le V$ and V'/S + Y/S = W/S for some $S \le Y \le W$. So V' + Y = W. This implies G + S + Y = W and so S + Y = W = Y. Hence $V/S' \ll_c W/S$ and this implies V = S.

Corollary 3.2. Let W be a weakly C-supplemented module. Then every C-coclosed submodule of W has a C-supplemented.

Corollary 3.3. Let W be a module and every submodule of W is C-coclosed. Then W is C-supplemented if and only if W is weakly C-supplemented.

Remark 3.4. (1) It is easy to see that if A is a C-coclosed submodule of W and $B \le A$, then A/B is C-coclosed in W/B. For this $(A/B)/(C/B) \ll_c (W/B)/(C/B)$ where $B \le C \le A$, then $A/C \ll_c W/C$ and so A = C.

(2) Let W be a module and $G \leq W$ a supplement submodule, then for every $H \leq G$, G/H is a supplement submodule in W/H. To see this, since G is supplement in W, there exists $Z \leq W$ and W = G + Z and $G \cap Z \ll_c G$. Therefore G/H + (Z + H)/H = W/H. Now $G/H \cap (Z + H)/H = G \cap (Z + H)/H = H + (G \cap Z)/H$. Now Let $\pi : L \to G/H$ be a natural epimorphism. Since $G \cap Z \ll_c L$ so $\pi(Z \cap G) = H + (Z \cap G) \ll_c G/H$.

(3) For a module W and $Z \leq G \leq W$, if Z is C-coclosed in W, it is clear that Z is C-coclosed in G and when G is a C-supplement *submodule* in W, the inverse is also true that is if Z is C-coclosed in G, then Z is C-coclosed in W. For proving this let $Z/H \ll_c W/H$ for some $H \leq Z \leq W$. By (2) G/H is a C-supplement in W/H. So we have $Z/H \ll_c G/H$. Hence Z = H.

Proposition 3.5. Every DS of an amply C-supplemented module is amply C-supplemented.

Proof. Let W be a module and $W = Z \oplus Z'$. Now suppose Z = C + D, then $W = C + (D \oplus Z')$. Since W is amply C-supplemented, $W = E + (D \oplus Z')$ and $E \cap (D \oplus Z') \ll_c E$ for some $E \leq C$. Thus $Z = Z \cap W = E + D$ and $E \cap D = E \cap (D \oplus Z') \ll_c E$. So Z is amply C-supplemented. \Box

Theorem 3.6. Let W be a module and $T \leq W$. Then the following are equivalent:

- (1) There is decomposition W = Q + Q' with $Q \leq T$ and $T \cap Q' \ll_c Q'$;
- (2) There is an idempotent $e \in End(W)$ such that $(W)e \leq T$ and $(T)(1-e) \ll_c (W)(1-e)$;
- (3) There is $Q \leq_{\oplus} W$ such that $Q \leq T$ and $T/Q \ll_c W/Q$;
- (4) *T* has a *C*-supplement *D* in *W* such that $T \cap D \leq_{\oplus} T$.

Proof. (1) \Longrightarrow (2) For W = Q + Q', there exists an idempotent $e \in End(W)$ such that (W)e = Q and (W)(1-e) = Q'. Now since $Q \leq T$, we have $(T)(1-e) \leq T \cap (W)(1-e) \ll_c (W)(1-e)$. (2) \Longrightarrow (3) We can take Q = (W)e. Then $W = Q \oplus (W)(1-e)$ and since by *modularity* $T = Q \oplus ((W)(1-e) \cap T)$, we have $T/Q \ll_c W/Q$.

(3) \Longrightarrow (4) Let $Q \leq_{\oplus} W$ and $Q \leq T$. So $W = Q \oplus Q'$ and $T = Q \oplus (Q' \cap T)$. Take D = Q'. Then $T \cap D \leq_{\oplus} T$ and $T \cap D \cong T/Q \ll_c W/Q \cong D$. Thus $T \cap D \ll_c D$.

(4) \Longrightarrow (1) Let *D* be a C-supplement of *T* in *W* and also $T = Q \oplus (T \cap D)$ for some $Q \leq T$. Then $W = T + D = Q + (T \cap D) + D = Q + D$ and $Q \cap D = (Q \cap T) \cap D = Q \cap (T \cap D) = 0$. So $Q \leq_{\oplus} W$ and also Since *D* is a C-supplement of *T*, $T \cap D \ll_c D$. **Proposition 3.7.** Let W be a module such that every submodule of W is C-supplemented. Then W is amply C-supplemented.

Proof. Let $A, B \leq W$ and W = A + B. Then since $A \cap B$ is a submodule of A and A is C-supplemented, there exists $X \leq A$ and $(A \cap B) + X = A$ and $(A \cap B) \cap X = B \cap X \ll_c X$. Therefore $W = A + B = (A \cap B) + X + B = X + B$. So W is amply C-supplemented. \Box

Corollary 3.8. Let R be a ring. Then every R-module is amply C-supplemented if and only if every R-module is C-supplemented.

Proposition 3.9. Let W be a π -projective module. Then W is a C-supplemented module, if and only if W is amply C-supplemented module.

Proof. Let W = Z + G for $G, Z \leq W$. Then there is $e \in End(W)$ such that $(W)e \leq Z$ and $(W)(1-e) \leq G$. Now suppose that $V \leq W$ be a C-supplement of Z in W. We have $W = (W)e + (W)(1-e) = (W)e + (Z+V)(1-e) \leq Z + (V)(1-e)$. So W = Z + (V)(1-e) where $(V)(1-e) \leq G$. Now since $Z \cap V \ll_c V$ we have $Z \cap (V)(1-e) = (Z \cap V)(1-e) \ll_c (V)(1-e)$. Therefore W is amply C-supplemented. Converse is clear. □

Proposition 3.10. Let W be a weakly C-supplemented module. Then

- (1) Every C-coclosed submodule of W is weakly C-supplemented.
- (2) Every factor module of W is weakly C-supplemented.

Proof. (1) Let Z be a C-coclosed submodule of W and $V \leq Z$. Since W is weakly C-supplemented, there exists a $G \leq W$ and Z + G = W and $Z \cap G \ll_c W$. Thus $Z = V + (Z \cap G)$. Also $V \cap (Z \cap G) = V \cap G \ll_c Z$.

(2) Let V be a submodule of W and $G/V \le W/V$. Since W is weakly C-supplemented, there exists $Z \le W$ such that W = Z + G and $G \cap Z \ll_c W$. So we have W/V = G/V + (Z+V)/V. Now Let $\phi : W \to W/V$ be natural epimorphism. Then $G/V \cap (Z+V)/V = (V+G \cap Z)/V = \phi(G \cap Z) \ll_c W/V$. So W/V is weakly C-supplemented.

4 finite \mathbb{Z} -module decomposition

In Examples 2.2 we showed some C-small submodule especially in finite \mathbb{Z} -module \mathbb{Z}_n . Next we classify all C-small submodules in \mathbb{Z}_n .

Theorem 4.1. Let \mathbb{Z}_n be the ring of integers modulo n and $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$ where all of p_i are distinct prime and $\alpha_i \ge 0$. Then $k\mathbb{Z}_n \ll_c \mathbb{Z}_n$ if and only if $k = qp_1^{\beta_1} p_2^{\beta_2} \dots p_t^{\beta_t}$, where gcd(q,n) = 1 and for any $1 \le i \le t, 1 \le \beta_i \le \alpha_i$, or $k = qp_1^{\alpha_1} p_2^{\alpha_2} \dots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \dots p_t^{\alpha_t}$ where gcd(q,n) = 1.

Proof. Let $W = \mathbb{Z}_n$. It is clear to see that every submodule G of W can be written as G = kWwhere k is an integer and if $k = qp_1^{\beta_1}p_2^{\beta_2}...p_t^{\beta_t}$, where gcd(q, n) = 1 and for any $1 \le i \le t, 1 \le \beta_i \le \alpha_i$. $\beta_i \le \alpha_i$, then kW = k'M such that $k' = p_1^{\beta_1}p_2^{\beta_2}...p_t^{\beta_t}$ where for any $1 \le i \le t, 1 \le \beta_i \le \alpha_i$. Now let G be a submodule of W, satisfying the first condition in necessity and G + S = W for some $S \le W$. Therefore there exists an integer f, such that S = fW and $f = p_1^{\beta_1}p_2^{\beta_2}...p_t^{\beta_t}$ where $1 \le i \le t, 0 \le \beta_i \le \alpha_i$. Since G + S = W, then for some $g \in G$ and $s \in S$ we have g + s = 1. By Theory of Numbers we can conclude gcd(f, k') = 1. This implies f = 1. Therefore S = W. So $G \ll W$ and $G \ll_c M$. Now let G satisfies the second condition, Then for every D < L, it easy to see that D satisfies the first condition. So $D \ll W$. Therefore $G \ll_c W$. Conversely let G = kW with $k = qp_1^{\beta_1}p_2^{\beta_2}...p_t^{\beta_t}$, where gcd(q, n) = 1 and for any $1 \le i \le t, 0 \le \beta_i \le \alpha_i$ and there is a $1 \le j \le t$ such that $\beta_j = 0$ and there is $1 \le u \le t$ such that $0 \le \beta_u < \alpha_u$ and $u \ne j$. Then S = sW with $s = p_1^{\alpha_1}p_2^{\alpha_2}...p_0^{\alpha_{t-1}}$ is proper a submodule of G. Now let $D = p_j^{\alpha_j}M$. Since $gcd(s, p_j^{\alpha_j}) = 1$, by theory of numbers we have S + D = W. So G is not C-small in W.

Example 4.2. Let $W = \mathbb{Z}_{900}$. Since $900 = 2^2 \times 3^2 \times 5^2$, $A = (3^2 \times 5^2)W$, $B = (2^2 \times 5^2)W$, $C = (2^2 \times 3^2)W$, $D = (2^2 \times 3^2 \times 5)W$, $E = (2^2 \times 3 \times 5^2)W$, $F = (2 \times 3^2 \times 5^2)W$, $G = (2 \times 3 \times 5^2)W$, $H = (2 \times 3^2 \times 5)W$, $I = (2^2 \times 3 \times 5)W$, and $J = (2 \times 3 \times 5)W$, are C-small submodules, while A, B, C are not small in W.

Let p be a prime number and W be a finite \mathbb{Z} -module. W is called p-module if for every $x \in W$, there exists a positive integer n such that $x^{p^n} = p^n x = 0$.

Lemma 4.3. For every prime number p, finite \mathbb{Z} -module W has a submdule H and H is p-module and maximal with this property.

Proof. If W = 0 or $p \nmid |W|$, then 0 is *p*-submodule and it is maximal as a *p*-module. Let $p \mid |W|$. Therefore there is $H \leq W$ and |H| = p. Since W is finite, there is $S \leq W$ and S contains H such that S is maximal as a *p*-module.

Proposition 4.4. Let W be finite \mathbb{Z} -module and $G \leq W$. If G is cyclic p-module, then $G \ll_c W$.

Proof. Let $|G| = P^n$. Since G is cyclic, then $G = \langle s \rangle$ for some $s \in G$. Now let $D \langle G$ and D+T = G for some $T \leq G$. Since G is P-module, D and T are also p-modules. Now s = d+t for $d \in D, t \in T$. Since $o(s) = p^n$, we have $o(d+t) = p^n$. Since $D \langle G, |D| \langle p^n$ and let $|D| = p^{n_1}, n_1 \langle n$ and let $|T| = p^{n_2}$. If $n_2 \leq n_1$, then $o(d+t) = p^{n_1}$ and it is contradiction. If $n_1 < n_2$, then $o(d+t) = p^{n_2} = o(s) = p^n$. Therefore $n_2 = n$ and T = G. So $D \ll G$. Thus $D \ll W$ and $G \ll_c W$.

Example 4.5. Let $W = \mathbb{Z}_9 \times \mathbb{Z}_4 \times \mathbb{Z}_2$. For the prime 3, $A = \mathbb{Z}_9 \times \mathbb{Z}_0 \times \mathbb{Z}_0$ is a 3-module and cyclic for A is generated by (1,0,0) and obviously A is maximal as a 3-module. Therefore A is C-small. Now let $B = \mathbb{Z}_0 \times \mathbb{Z}_4 \times \mathbb{Z}_0$, $C = \mathbb{Z}_0 \times \mathbb{Z}_0 \times \mathbb{Z}_2$ and $D = \mathbb{Z}_0 \times \mathbb{Z}_4 \times \mathbb{Z}_2$. For every $x \in B$, $y \in C$ and $s \in D$, $2^2x = 2^2s = 2y = 0$. So they are 2-modules. But D is not cyclic. So B and C are C-small.

Lemma 4.6. Let p be a prime number and W be a finite \mathbb{Z} -module. If W is p-module, then W is direct sum of cyclic p-modules.

Proof. Let $|W| = p^n$. If n = 1, then W is cyclic module and the result is obvious. Now let $a \in W$ such that for every $b \in W$, $o(b) \le o(a)$. Then there is a submodule G of W such that $W = \langle a \rangle \oplus G$. Clearly G is p-module and |G| < |W|. So by induction G is direct sum of Cyclic p-modules. Therefore W is direct sum of cyclic p-modules.

Theorem 4.7. Let W be finite \mathbb{Z} -module. Then $W = S_1 \oplus S_2 \oplus ... \oplus S_n$ such that $S_i \ll_c W$ for all $1 \leq i \leq n$.

Proof. Let W be finite Z-module. If W = 0 then result is obvious. Let $|W| = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$ where p_i 's be distinct prime numbers and α_i 's be positives integer. By Lemma 4.3 for every $i = 1, 2, \dots, t$, W has a p-module D and D is maximal with this property. Now let for every $i = 1, 2, \dots, t, |D_i| = p_i^{\alpha_i}$. It is easy to see that $D_i \cap (D_1 + \dots + D_{i-1} + D_{i+1} + \dots + D_t) = 0$ for $1 \le i \le t$. Therefore $|D_1 + \dots + D_t| = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t} = |W|$. This implies $W = D_1 \oplus \dots \oplus D_t$ which every D_i is a p-module. Now by Lemma 4.6 W is direct sum of cyclic submodules and now by proposition 4.4, $W = S_1 \oplus S_2 \oplus \dots \oplus S_n$ where $S_i \ll_c W$ for any $1 \le i \le n$.

Remark 4.8. In [1], authors have discussed chain conditions on small submodules, and in [7], authors have discussed chain conditions on non-small submodules. It will be interesting to discuss chain conditions on the class of small submodules and non-small submodules related to c-small submodules.

References

- I. Al-khazzi and P. F. Smith, Modules with chain conditions on superfluous submodules, Comm. Algebra, 19, 2331-2351, (1991).
- [2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlog, New York, 1992.
- [3] R. Beyranvand and F. Moradi, *Small submodules with respect to an arbitrary submodule*, Jornal of Algebra and Related Topics **3(2)**, 43-51,(2015).
- [4] E. K. H. Calisici and E. Turkmen, ss-supplemented module, Commun, Fac, Sci, Univ, Ank, Ser, A1 Math, Stat, 69(1), 473-485, (2020).
- [5] D. Keskin and M. J. Nematollahi and Y. Talebi, On H-supplemented module, Algebra Colloquium 18(1) 915-924, (2011).

- [6] D. Keskin, lifting modules, Comm. Algebra, 28(7), 3427-3440, (2000).
- [7] A. Kumar Chaturvedi and N. Kumar, *On modules with chain conditions on non-small submodules*, Int. Electronic Journal of Algebra,**33**, 109-124, (2023).
- [8] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlog, New York, 1999.
- [9] T. Y. Lam, A first course in noncommutative rings, Springer-Verlog, New York, 1991.
- [10] S. H. Mohamed and B. J. Muller, *Continuous and Discrete Modules*, London Math, Soc, Lecture Note Ser, 147, Cambridge: Cambridge Univ. Press, 1990.
- [11] Y. Talebi and M. Hosseinpour, Generalization of δ -lifting modules, J. Algebraic System, 1(1), 67-77,(2013).
- [12] Y. Talebi and B. Talaee, On f-supplemented module, Albanian Journal of Mathematics,5(2), 95-102,(2011).

Author information

M. Akbari Gelvardi, Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran. E-mail: mohammad.akbarigl@gmail.com

Y. Talebi, Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran. E-mail: talebi@umz.ac.ir

Received: 2024-01-02 Accepted: 2024-10-06