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Abstract Let R be an arbitrary ring, and Z be a submodule of an R-module W . Z is called
C-small in W denoted by Z ≪c W if any proper submodule of Z is small in W . We characterize
C-small submodules of an R-module W and classify C-small submodules in finite Z-modules,
and we obtained some related results. Due to definition of C-small, we define C-supplement
submodule of a module. We also provide some results in C-supplement modules related to other
concepts.

1 Introduction

In this paper, R is an associative ring with identity, and all modules are unitary right R-module.
We use the notation ⊆, ≤ and < to show inclusion, submodule and proper submodule, respec-
tively, and V ≪⊕ W means that V is a direct summand (DS) of W .

A submodule G of W is small in W denoted by G ≪ W if G + Z = W for any Z ≤ W
implies Z = W . A module W is said hollow if G < W implies G ≪ W . More details about
small submodules can be found in [2, 8, 9]. The concept of small submodules has been extended
by some researchers, for this see [11, 3, 12]. A submodule Z of a module W is called C-small,
denoted by Z ≪c W if G < Z implies G ≪ W . By the definition, every small submodule is
C-small, but the converse is not true.

For two submodules V,G of a module W , V is called a supplement of G if V is minimal
with respect to the property W = V + G, equivalently W = V + G and V ∩ G ≪ V . V is
weak supplement of G if V + G = W and V ∩ G ≪ W . A module M is called supplemented
(weakly supplemented) if every submodule of M has a supplement (weak supplement) in W
and W is called amply supplemented if X + Y = W for two submodules X and Y , then X
has a supplement in W , contained in Y . To see more details about supplemented modules, see
[10, 5, 4] . In this paper, we also extend the concept of supplemented modules by defining
C-supplemented modules.

For a module W , let S ≤ T ≤ W . If T/S ≪ W/S, then S is called cosmall submodule of T
in W . The submodule T of W is called coclosed in W if T has no proper cosmall submodule.

In section 2, first we give the definition of C-small submodules and some properties and
then the related results to other concepts. In section 3, we define the concept of C-supplement,
amply C-supplement and weak C-supplement submodules. Any supplement submodule is C-
supplement but the converse is not true, and we investigate the relation between C-supplemented,
amply C-supplemented and weakly C-supplemented modules. In section 4, we obtain a classifi-
cation of C-small modules in a finite Z-module and show that every finite Z-module is a direct
sum of its C-small submodules.
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2 C-small submodules and projective modules

In this section, first we define C-small submodules as a generalization of small submodules and
show the related results with projective modules.

Definition 2.1. Let R be a ring and Z be submodule of an R-module W . Z is called C-small
submodule in W , denoted by Z ≪c W , if G < Z implies G≪W .

Under the above definition, if Z is a small submodule ofW , then Z is also a C-small submod-
ule ofW . But the inverse is not always true. To see this, letW be anR-module andG < V ≪W
and G + S = W for some S ≤ W . Since G < V we have V + S = W that is S = W . So
G ≪ W and therefore V ≪c W . Now let Zn be the ring of integers modulo n and W = Z12 be
a Z-module. We have A = {0, 3, 6, 9} ≤ W . Since {0, 6} and {0} are small in W , so A ≪c W .
But let B = {0, 4, 8} < W . We see that A+B =W . Therefore A is not small in W .

Example 2.2. (a) Every proper submodule of hollow modules is C-small. For all integers n and
prime number p, submodules of Zpn is C-small.
(b) Let W = Z18. Submodules {0}, {0, 9}, {0, 6, 12} and {0, 2, 4, 6, 8, 10, 12, 14, 16} are C-
small submodules and {0,3,6,9,12,15} is not a C-small submodule for {0, 9} < {0, 3, 6, 9, 12, 15}
and {0, 9} is not small in W .

Proposition 2.3. Let W be a module and Z1 ≪c W and Z2 ≪c W . Then Z1 ∩ Z2 ≪c W .

Proof. Let G ≤ Z1 ∩ Z2. Then G ≤ Z1. So if G = Z1, then it is C-small and if G < Z1, then
G≪W and therefore G≪c W .

Proposition 2.4. Let W and V be two R-modules and f : W −→ V be an R-homomorphism. If
Z ≪c W , then f(Z) ≪c f(W ). In particular, if Z ≪c W ≤ V then Z ≪c V .

Proof. Let G < f(Z). Then there exists S < Z such that f(S) = G. Now assume G + H =
f(S) + H = V for some H ≤ Z. Then S + f←(H) = W . Since Z ≪c W , so S ≪ W , this
implies S ≤W = f←(H). So we have f(S) ≤ H and f(S) = G. Therefore V = H .

Proposition 2.5. Let W = W1 ⊕W2 and V be a submodule of W such that (V +W1)/W1 ≪c

W/W1 and W = V +W2. Then (V +W1)/V ≪c W/V .

Proof. Let V be a submodule of W such that (V +W1)/W1 ≪c W/W1 and W = V +W2. We
have W/W1 ∼= W2 −→ W2/(W2 ∩ V ) ∼= (W2 + V )/V = W/V . So (V +W1)/W1 is mapped
onto (V +W1)/V . Now since (V +W1)/W1 ≪c W/W1, we have (V +W1)/V ≪c W/V .

Proposition 2.6. Let W be a module and Z ≤ V ≤ W . If V ≪c W , then Z ≪c W and
V/Z ≪c W/Z.

Proof. Let V ≪c W . Since Z ≤ V , it is small in W or it is equal to V . Both cases show that
Z ≪c W . Now we show that V/Z ≪c W/Z. Let G/Z < V/Z and G/Z + S/Z = W/Z for
some S/Z ≤ W/Z. This implies that G + S = W . Since G < V and V ≪c W , then S = W
and S/Z =W/Z. So G/Z ≪W/Z and therefore V/Z ≪c W/Z.

Proposition 2.7. Let W be a module and Z ≤ V ≤ W . If Z ≪ V and V/Z ≪c W/Z, then
V ≪c W .

Proof. Let G < V and G + S = W for some S ≤ W . Then (G + S)/Z = W/Z and (G +
Z)/Z+(S+Z)/Z =W/Z. Since Z ≪ V , we have G+Z ̸= V . So (G+Z)/Z < V/Z. Hence
(S+Z)/Z =W/Z (by V/Z ≪c W/Z) and S+Z =W . Since Z ≪ V , Z ≪W and so S =W
and then V ≪c W .

Corollary 2.8. Let W be a module and H,Z ≤ W . If H + Z ≪c W , then Z ≪c W and
H ≪c W .

Corollary 2.9. Let W be a module and Z < V ≤ W . Then V ≪c W if and only if Z ≪ V and
V/Z ≪c W/Z.
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Definition 2.10. Let W and V be two R-modules and f : W −→ V be an R-epimomorphism. f
is called C-small in case Kerf ≪c W .

Proposition 2.11. Let W be an R-module and Z ≤W . The following statements are equivalent:

(1) Z ≪c W

(2) The natural map pz : W −→W/Z is C-small epimorphism.

(3) For every G < Z, every R-module V and every h ∈ HomR(V,W ), (Imh) + G = W
implies Imh =W

Proof. (1) ⇒ (2) It is clear. (2) ⇒ (3) Since pz is a C-small epimorphism and Kerpz = Z, this
implies Z ≪c W . So for every G < Z we have that G ≪ W . Now if (Imh) + G = W , then
Imh = W for every R-module V and h ∈ HomR(V,W ). (3) ⇒ (1) If we assume V = W and
h : V −→W be an inclusion map, then G≪W and so Z ≪c W .

Corollary 2.12. Let g : W −→ V be anR-epimorphism. If for some 0 ̸= G ≤ V , f←(G) ≪c W ,
then for all homomorphism h, if gh is epic, then h is epic.

Lemma 2.13. LetW be a module andW = A+B = (A∩B)+C for submodules A,B,C ≤W .
Then W = (B ∩ C) +A = (A ∩ C) +B.

Proof. See [6, Lemma 1.2].

Lemma 2.14. Let W be a module and A,B,C ≤ W such that A ∩ B ≤ A ∩ C. If G <
(A ∩ C)/(A ∩B), then there exists C ′ such that B ≤ C ′ < C and G = (A ∩ C ′)/(A ∩B).

Proof. Let G < (A∩C)/(A∩B). Then G = Z/(A∩B) such that A∩B ≤ Z and Z < A∩C.
Now we consider Z + B = C ′. Then A ∩ (Z + B) = Z + (A ∩ B) = Z. This implies
G = Z/(A ∩B) = (A ∩ (Z +B))/(A ∩B) = (A ∩ C ′)/(A ∩B) such that B ≤ C ′ < C.

Proposition 2.15. Let W be a module such that W = A + B for A,B ≤ W . If B ≤ C and
C/B ≪c W/B, then (A ∩ C)/(A ∩B) ≪c W/(A ∩B).

Proof. Let Z < (A ∩ C)/(A ∩ B). Then by Lemma 2.14, there exists a C ′ ≤ W such that
B ≤ C ′ < C and Z = (A∩C ′)/(A∩B). Now let W/(A∩B) = (A∩C ′)/(A∩B)+X/(A∩B)
for some A ∩ B ≤ X ≤ W . Then W = (A ∩ C ′) +X .By Lemma 2.13 , W = C ′ + (A ∩X).
Since C/B ≪c W/B, W = B + (A ∩X). Again by Lemma 2.13 , W = X + (A ∩ B). Hence
W = X . Thus (A ∩ C)/(A ∩B) ≪c W/(A ∩B).

Proposition 2.16. Let W be a module and Z ≤ V ≤ W such that V ≤⊕ W . If Z ≪c W , then
Z ≪c V .

Proof. Let G < Z and G+ S = V for some S ≤ V . Since V is a DS, there exists a H ≤W and
V ⊕H =W . So we have G+S+H =W . Since Z ≪c W and G < Z, S+H = V +H =W .
Therefore S = V and Z ≪c V .

Proposition 2.17. Let W be an R-module and Z ≪c W . If there exists G < Z and W/G is
indecomposable, then W is indecomposable.

Proof. Let W = A⊕ B for some A,B ≤ W . So (A+G)/G+ (B +G)/G = W/G. We show
that (A+G)∩(B+G) = G. SinceG ≤W , we haveG = A′⊕B′ for someA′ ≤ A andB′ ≤ B.
Let x ∈ (A+G)∩ (B +G). Thus x = a+ g1 = b+ g2 for some a ∈ A, b ∈ B, g1, g2 ∈ G. Now
since G = A′ ⊕ B′, we have g1 = a1 + b1 and g2 = a2 + b2 where a1, a2 ∈ A′ and b1, b2 ∈ B′.
Therefore a+a1 + b1 = b+a2 + b2 and a+a1 −a2 = b+ b2 − b1. Since A∩B = 0, we conclude
a = a2 −a1 ∈ A′. Therefore a ∈ G and so x ∈ G. This implies that (A+G)/G⊕ (B+G)/G =
W/G. Since W/G is indecomposable, we may assume A+G =W . Since G < Z and Z ≪c W ,
G≪W . Thus A =W and B = 0. This implies W is indecomposable.

Remark 2.18. Let W be a module. If V ≤ W is hollow module, then V is C-small submodule
in W but the converse is not true. To see this, let V ≤ W a hollow module. If G < V , then
G ≪ V and so G ≪ W . Therefore V ≪c W . For the converse, let W = Z36 and A =
{0, 6, 12, 18, 24, 30}. Then A≪c W but it is not hollow module for we have B = {0, 12, 24} <
A and C = {0, 18} < A and B + C = A.
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Theorem 2.19. Let W be a module. Every C-small submodule of W which is a DS, is a hollow
module.

Proof. Let V ≪c W be a DS in W and G < V . Since V ≪c W we have that G≪W and since
V is a DS in W , G≪ V . Therefore V is hollow.

Proposition 2.20. Let W be a module and Z ≤W . Then the following are equivalent:

(1) There is a decomposition W = G⊕G′ with G ≤ Z and G′ ∩ Z ≪c W ;

(2) There is an idempotent e ∈ End(W ) such that (W )e ≤ Z and (Z)(1 − e) ≪c (W )(1 − e);

(3) There is a DS G of W such that G ≤ Z and Z/G≪c W/G.

Proof. (1) =⇒ (2) For W = G ⊕ G′, there exists an idempotent e ∈ End(W ) such that
(W )e = G and (W )(1 − e) = G′. Since G ≤ Z, we conclude (Z)(1 − e) ≤ Z ∩ (W )(1 − e) =
G′ ∩ Z ≪c W . Since G′ is a DS in W and G′ ∩ Z < G′ , we have G′ ∩ Z ≪c G

′ and so
(Z)(1 − e) ≪c (W )(1 − e).
(2) =⇒ (3) We can choose G = (W )e. So G ≤ Z. Then W = G ⊕ (W )(1 − e) and since
(Z)(1 − e) ≪c (W )(1 − e), we have Z/G≪c W/G.
(3) =⇒ (1) There exists G ⊕ G′ = M . So Z = G ⊕ (G′ ∩ Z) by modularity. Also we have
G′ ∩ Z ∼= Z/G≪c W/L ∼= G′. Thus G′ ∩ Z ≪c G

′ and so G′ ∩ Z ≪c W .

Proposition 2.21. Let W be a module and V ≤ W . If V is cyclic and has a unique maximal
submodule, then V ≪c W .

Proof. Let V be cyclic and has a unique maximal submodule G. Then V is finitely generated.
Now let F < V and F + S = V for some S ≤ V . Since V is finitely generated, every proper
submodule of V is contained in a maximal submodule and we have that G + S = V . By the
same way S can not be proper in V . Therefore S = V and F ≪ V . So F ≪ W . This implies
V ≪c W .

Proposition 2.22. Let W be a module and V ≤ W . If End(V ) is local ring and V is self-
projective, then V ≪c W .

Proof. Let G < V and G + Z = V for some Z ≤ V . Now since V = G + Z, for every
v ∈ V , we have v = g + z for some g ∈ G and z ∈ Z. Let f : V → V/G ∩ Z be defined by
f(n) = Z + G ∩ Z. It is easy to see that f is well-defined and is a homomorphism. Since V is
self-projective, there exists a homomorphism h : V → V such that the following diagram

V

f

��

h

{{
V

π // V/G ∩ Z // 0

commutes, where π : V → V/G∩Z is a natural epimorphism. Since π is natural epimorphism
and the diagram commutes, h(v) + G ∩ Z = z + G ∩ Z. This implies h(V ) ≤ Z. Let x ∈ Z,
then π(x−h(x)) = π(x)−πoh(x) = x+G∩Z−f(x)+G∩Z. This implies x−h(x) ∈ kerπ.
So Z = h(V ) +G ∩ Z. Now since V = G+ Z, then V = G+ h(V ) +G ∩ Z. But G ∩ Z ≤ G.
Therefore V = G+ h(V ). Hence h(V ) is not a small submodule of V . Thus h /∈ RadEnd(V )
that is h is a isomorphism. This implies Z ≤ V = h(V ) and so Z = V . Therefore G ≪ V and
so G≪W . This shows that V ≪c W .

Theorem 2.23. Let W be a module. If every proper submodule of W is contained in a maximal
submodule of W and if G/RadW < W/RadW is a C-small submodule in W/RadW , then
G/RadW is a DS.
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Proof. Let Z be a proper submodule of W that is contained in a maximal submodule say, H .
Since we have RadW = ∩{X ≤ W |X is maximal in W}, this implies RadW ≤ H . So
Z + RadW ≤ H ̸= W . By arbitrary choice of Z, RadW ≪ Z. This shows that W/RadW
has no non-zero small submodule. Cause if G/RadW is small, then G ≪ W . To see this, let
G+Z =W . Then (G/RadW )+(Z+RadW )/RadW =W/RadW , that implies Z+RadW =
W and Z = W and it is a contraction to proper assumption of Z. So G/RadW is a C-small
submodule of W/RadW which is not Small. Therefore there exists a S/RadW < W/RadW
and G/RadW + S/RadW = W/RadW . Since G/RadW ∩ S/RadW ≤ G/RadW , we have
G/RadW ∩ S/RadW = 0 and therefore G/RadW ≤⊕ W/RadW .

Proposition 2.24. Let W be semisimple module. Then Z ≤ W is C-small if and only if Z is
simple.

Proof. Let Z ≤ W be a simple. So it is clear that Z ≪c W . Conversely let 0 ̸= Z ≪c W and
G < Z. Since W is semisimple, every submodule of W is a DS. Since Z ≪c W , G ≪ W and
so G = 0.

Proposition 2.25. In a projective R-module P with endomorphism ring D = End(P ), Let e ∈
D. If for every G < Ime, there exists r ∈ J(D) such that Imr = G, then Ime≪c P .

Proof. Let G < Ime. So there exists r ∈ J(D) such that Imr = G. Let G+Z = Imr+Z = P
for some Z ≤ P . Then we readily see if nZ : P → P/Z is the natural epimorphism, rnZ :
P −→ P/Z is epic. So we can choose d ∈ D such that the diagram

P

nZ

��

d

}}
P

rnZ // P/Z // 0

commutes. We have (1 − dr)nZ = 0. But since r ∈ J(D), 1 − dr is invertible and nZ = 0.
Therefore Z = P . So G≪ P and then Ime≪c P .

Proposition 2.26. Let W be a self-projective module and V ≤ W . If for every G < V ,
Hom(W,G) = 0, then V ≪c W .

Proof. For proving that V is a C-small submodule inW , letG < V . By hypothesis,Hom(W,G) =
0. We show G≪W . Let G+ Z =W . Now we consider the following diagram

W

f

��

ψ

zz
W

π
// W/Z ∩G // 0

where π : W −→W/Z ∩G is the natural epimorphism and f : W −→W/Z ∩G is defines as
follow. For every w ∈W , f(w) = g + z ∩G where g ∈ G and z ∈ Z such that w = g + z. Now
we show f = 0. Let f ̸= 0. Since W is self-projective, then there exists ψ : W −→W such that
πoψ = f . Now for w ∈ W , we have (πoψ)(w) = f(w), that is ψ(w) + Z ∩ G = g + Z ∩ G,
where w = g + z for some g ∈ G and z ∈ Z. Now ψ(w) − g ∈ Z ∩ G ≤ G which implies that
ψ(w) ∈ G. Thus ψ(W ) ≤ G. But Hom(W,G) = 0. That is ψ = 0 which is a contradiction with
πoψ = f cause f ̸= 0. So f = 0. This implies G ≤ Z and hence W = G+ Z = Z. Therefore
G≪W and so V ≪c W .

3 C-supplemented modules

Let G and V be submodules of an R-module W . V is called a supplement of G in W if it is
minimal with respect to the property W = V +G, equivalently W = V +G and V +G≪ V .
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Let W be a module and V, V ′ ≤ W . V ′ is called C-supplement of V if V + V ′ = W and
V ∩ V ′ ≪c V

′. V ′ is called weak C-supplement of V if V + V ′ = W and V ∩ V ′ ≪c W . A
submodule V of W is called a C-supplement (weak C-supplement) submodule, if there exists a
submodule Z of W such that V is a C-supplement (weak C-supplement) of Z in W .

Module W is called C-supplemented (weakly C-supplemented) if every submodule of W has
a C-supplement (weak C-supplement) in W and W is called amply C-supplemented if W =
A+B implies A has a C-supplement Z contained in B.

For two submodules Z ≤ V ≤ W , we say Z is a C-cosmall submodule of V in W if
V/Z ≪c W/Z. The submodule V of W is called C-coclosed in W if V has no proper C-cosmall
submodule, equivalently V/Z ≪c W/Z implies V = Z for any submodule Z ≤ V .

Proposition 3.1. Let W be a module and Z ≤ V ≤ W . If V is a C-coclosed submodule of W
and Z ≪c W , then Z ≪c V .

Proof. LetG < Z andG+S = V for some S ≤ V . Suppose V ′/S < V/S for some S ≤ V ′ ≤ V
and V ′/S+Y/S =W/S for some S ≤ Y ≤W . So V ′+Y =W . This implies G+S+Y =W
and so S + Y =W = Y .Hence V/S′ ≪c W/S and this implies V = S.

Corollary 3.2. Let W be a weakly C-supplemented module. Then every C-coclosed submodule
of W has a C-supplemented.

Corollary 3.3. Let W be a module and every submodule of W is C-coclosed. Then W is C-
supplemented if and only if W is weakly C-supplemented.

Remark 3.4. (1) It is easy to see that if A is a C-coclosed submodule of W and B ≤ A, then
A/B is C-coclosed in W/B. For this (A/B)/(C/B) ≪c (W/B)/(C/B) where B ≤ C ≤ A,
then A/C ≪c W/C and so A = C.
(2) Let W be a module and G ≤ W a supplement submodule, then for every H ≤ G, G/H
is a supplement submodule in W/H . To see this, since G is supplement in W , there exists
Z ≤ W and W = G + Z and G ∩ Z ≪c G. Therefore G/H + (Z + H)/H = W/H . Now
G/H ∩ (Z+H)/H = G∩ (Z+H)/H = H+(G∩Z)/H . Now Let π : L→ G/H be a natural
epimorphism. Since G ∩ Z ≪c L so π(Z ∩G) = H + (Z ∩G) ≪c G/H .
(3) For a module W and Z ≤ G ≤ W , if Z is C-coclosed in W , it is clear that Z is C-coclosed
in G and when G is a C-supplement submodule in W , the inverse is also true that is if Z is
C-coclosed in G, then Z is C-coclosed in W . For proving this let Z/H ≪c W/H for some
H ≤ Z ≤ W . By (2) G/H is a C-supplement in W/H . So we have Z/H ≪c G/H . Hence
Z = H .

Proposition 3.5. Every DS of an amply C-supplemented module is amply C-supplemented.

Proof. LetW be a module andW = Z⊕Z ′. Now suppose Z = C+D, thenW = C+(D⊕Z ′).
SinceW is amply C-supplemented,W = E+(D⊕Z ′) andE∩(D⊕Z ′) ≪c E for someE ≤ C.
Thus Z = Z∩W = E+D andE∩D = E∩(D⊕Z ′) ≪c E. So Z is amply C-supplemented.

Theorem 3.6. Let W be a module and T ≤W . Then the following are equivalent:

(1) There is decomposition W = Q+Q′ with Q ≤ T and T ∩Q′ ≪c Q
′;

(2) There is an idempotent e ∈ End(W ) such that (W )e ≤ T and (T )(1 − e) ≪c (W )(1 − e);

(3) There is Q ≤⊕ W such that Q ≤ T and T/Q≪c W/Q;

(4) T has a C-supplement D in W such that T ∩D ≤⊕ T .

Proof. (1) =⇒ (2) For W = Q+Q′, there exists an idempotent e ∈ End(W ) such that (W )e =
Q and (W )(1−e) = Q′. Now sinceQ ≤ T , we have (T )(1−e) ≤ T∩(W )(1−e) ≪c (W )(1−e).
(2) =⇒ (3) We can take Q = (W )e. Then W = Q ⊕ (W )(1 − e) and since by modularity
T = Q⊕ ((W )(1 − e) ∩ T ), we have T/Q≪c W/Q.
(3) =⇒ (4) Let Q ≤⊕ W and Q ≤ T . So W = Q ⊕Q′ and T = Q ⊕ (Q′ ∩ T ). Take D = Q′.
Then T ∩D ≤⊕ T and T ∩D ∼= T/Q≪c W/Q ∼= D. Thus T ∩D ≪c D.
(4) =⇒ (1) Let D be a C-supplement of T in W and also T = Q ⊕ (T ∩D) for some Q ≤ T .
Then W = T +D = Q+(T ∩D)+D = Q+D and Q∩D = (Q∩T )∩D = Q∩ (T ∩D) = 0.
So Q ≤⊕ W and also Since D is a C-supplement of T , T ∩D ≪c D.
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Proposition 3.7. Let W be a module such that every submodule of W is C-supplemented. Then
W is amply C-supplemented.

Proof. Let A,B ≤ W and W = A + B. Then since A ∩ B is a submodule of A and A is
C-supplemented, there exists X ≤ A and (A ∩B) +X = A and (A ∩B) ∩X = B ∩X ≪c X .
Therefore W = A+B = (A ∩B) +X +B = X +B. So W is amply C-supplemented.

Corollary 3.8. Let R be a ring. Then every R-module is amply C-supplemented if and only if
every R-module is C-supplemented.

Proposition 3.9. Let W be a π-projective module. Then W is a C-supplemented module, if and
only if W is amply C-supplemented module.

Proof. Let W = Z + G for G,Z ≤ W . Then there is e ∈ End(W ) such that (W )e ≤ Z and
(W )(1 − e) ≤ G. Now suppose that V ≤ W be a C-supplement of Z in W . We have W =
(W )e+(W )(1−e) = (W )e+(Z+V )(1−e) ≤ Z+(V )(1−e). So W = Z+(V )(1−e) where
(V )(1−e) ≤ G. Now since Z∩V ≪c V we have Z∩(V )(1−e) = (Z∩V )(1−e) ≪c (V )(1−e).
Therefore W is amply C-supplemented. Converse is clear.

Proposition 3.10. Let W be a weakly C-supplemented module. Then

(1) Every C-coclosed submodule of W is weakly C-supplemented.

(2) Every factor module of W is weakly C-supplemented.

Proof. (1) Let Z be a C-coclosed submodule of W and V ≤ Z. Since W is weakly C-
supplemented, there exists a G ≤W and Z+G =W and Z∩G≪c W . Thus Z = V +(Z∩G).
Also V ∩ (Z ∩G) = V ∩G≪c Z.
(2) Let V be a submodule of W and G/V ≤ W/V . Since W is weakly C-supplemented, there
exists Z ≤W such that W = Z+G and G∩Z ≪c W . So we have W/V = G/V +(Z+V )/V .
Now Let ϕ : W →W/V be natural epimorphism. Then G/V ∩ (Z+V )/V = (V +G∩Z)/V =
ϕ(G ∩ Z) ≪c W/V . So W/V is weakly C-supplemented.

4 finite Z-module decomposition

In Examples 2.2 we showed some C-small submodule especially in finite Z-module Zn. Next
we classify all C-small submodules in Zn.

Theorem 4.1. Let Zn be the ring of integers modulo n and n = pα1
1 pα2

2 ...pαt
t where all of pi

are distinct prime and αi ≥ 0. Then kZn ≪c Zn if and only if k = qpβ1
1 p

β2
2 ...p

βt

t , where
gcd(q, n) = 1 and for any 1 ≤ i ≤ t, 1 ≤ βi ≤ αi, or k = qpα1

1 pα2
2 ...p

αi−1
i−1 p

αi+1
i+1 ...p

αt
t where

gcd(q, n) = 1.

Proof. Let W = Zn. It is clear to see that every submodule G of W can be written as G = kW
where k is an integer and if k = qpβ1

1 p
β2
2 ...p

βt

t , where gcd(q, n) = 1 and for any 1 ≤ i ≤ t, 1 ≤
βi ≤ αi, then kW = k′M such that k′ = pβ1

1 p
β2
2 ...p

βt

t where for any 1 ≤ i ≤ t, 1 ≤ βi ≤ αi.
Now let G be a submodule of W , satisfying the first condition in necessity and G+ S = W for
some S ≤W . Therefore there exists an integer f , such that S = fW and f = pβ1

1 p
β2
2 ...p

βt

t where
1 ≤ i ≤ t, 0 ≤ βi ≤ αi. Since G+ S = W , then for some g ∈ G and s ∈ S we have g + s = 1.
By Theory of Numbers we can conclude gcd(f, k′) = 1. This implies f = 1. Therefore S =W .
So G ≪ W and G ≪c M . Now let G satisfies the second condition, Then for every D < L, it
easy to see that D satisfies the first condition. So D ≪ W . Therefore G ≪c W . Conversely let
G = kW with k = qpβ1

1 p
β2
2 ...p

βt

t , where gcd(q, n) = 1 and for any 1 ≤ i ≤ t, 0 ≤ βi ≤ αi and
there is a 1 ≤ j ≤ t such that βj = 0 and there is 1 ≤ u ≤ t such that 0 ≤ βu < αu and u ̸= j.
Then S = sW with s = pα1

1 pα2
2 ...p0

j ...p
αt
t is proper a submodule of G. Now let D = p

αj

j M .
Since gcd(s, pαj

j ) = 1, by theory of numbers we have S + D = W . So G is not C-small in
W .

Example 4.2. Let W = Z900. Since 900 = 22 × 32 × 52, A = (32 × 52)W , B = (22 × 52)W ,
C = (22 × 32)W , D = (22 × 32 × 5)W , E = (22 × 3 × 52)W , F = (2 × 32 × 52)W ,
G = (2 × 3 × 52)W , H = (2 × 32 × 5)W , I = (22 × 3 × 5)W , and J = (2 × 3 × 5)W , are
C-small submodules, while A,B,C are not small in W .
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Let p be a prime number and W be a finite Z-module. W is called p-module if for every
x ∈W , there exists a positive integer n such that xp

n

= pnx = 0.

Lemma 4.3. For every prime number p, finite Z-moduleW has a submduleH andH is p-module
and maximal with this property.

Proof. If W = 0 or p ∤ |W |, then 0 is p-submodule and it is maximal as a p-module. Let p | |W |.
Therefore there is H ≤ W and |H| = p. Since W is finite, there is S ≤ W and S contains H
such that S is maximal as a p-module.

Proposition 4.4. Let W be finite Z-module and G ≤W . If G is cyclic p-module, then G≪c W .

Proof. Let |G| = Pn. Since G is cyclic, then G =< s > for some s ∈ G. Now let D < G and
D+T = G for some T ≤ G. Since G is P -module, D and T are also p-modules. Now s = d+ t
for d ∈ D, t ∈ T . Since o(s) = pn, we have o(d + t) = pn. Since D < G, |D| < pn and let
|D| = pn1 , n1 < n and let |T | = pn2 . If n2 ≤ n1, then o(d+ t) = pn1 and it is contradiction. If
n1 < n2, then o(d + t) = pn2 = o(s) = pn. Therefore n2 = n and T = G. So D ≪ G. Thus
D ≪W and G≪c W .

Example 4.5. Let W = Z9 × Z4 × Z2. For the prime 3, A = Z9 × Z0 × Z0 is a 3-module and
cyclic for A is generated by (1, 0, 0) and obviously A is maximal as a 3-module. Therefore A is
C-small. Now let B = Z0 × Z4 × Z0, C = Z0 × Z0 × Z2 and D = Z0 × Z4 × Z2. For every
x ∈ B, y ∈ C and s ∈ D, 22x = 22s = 2y = 0. So they are 2-modules. But D is not cyclic. So
B and C are C-small.

Lemma 4.6. Let p be a prime number and W be a finite Z-module. If W is p-module, then W is
direct sum of cyclic p-modules.

Proof. Let |W | = pn. If n = 1, then W is cyclic module and the result is obvious. Now let
a ∈ W such that for every b ∈ W , o(b) ≤ o(a). Then there is a submodule G of W such that
W =< a > ⊕G. Clearly G is p-module and |G| < |W |. So by induction G is direct sum of
Cyclic p-modules. Therefore W is direct sum of cyclic p-modules.

Theorem 4.7. Let W be finite Z-module. Then W = S1 ⊕ S2 ⊕ ...⊕ Sn such that Si ≪c W for
all 1 ≤ i ≤ n.

Proof. Let W be finite Z-module. If W = 0 then result is obvious. Let |W | = pα1
1 pα2

2 ...pαt
t

where pi’s be distinct prime numbers and αi’s be positives integer. By Lemma 4.3 for every
i = 1, 2, ..., t, W has a p-module D and D is maximal with this property. Now let for every
i = 1, 2, ..., t, |Di| = pαi

i . It is easy to see that Di ∩ (D1 + ...+Di−1 +Di+1 + ...+Dt) = 0 for
1 ≤ i ≤ t. Therefore |D1 + ... +Dt| = pα1

1 pα2
2 ...pαt

t = |W |. This implies W = D1 ⊕ ... ⊕Dt

which every Di is a p-module. Now by Lemma 4.6 W is direct sum of cyclic submodules and
now by proposition 4.4, W = S1 ⊕ S2 ⊕ ...⊕ Sn where Si ≪c W for any 1 ≤ i ≤ n.

Remark 4.8. In [1], authors have discussed chain conditions on small submodules, and in [7],
authors have discussed chain conditions on non-small submodules. It will be interesting to dis-
cuss chain conditions on the class of small submodules and non-small submodules related to
c-small submodules.
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