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Abstract In this paper, the SIQR-W mathematical model based on a system of ordinary dif-
ferential equations is formulated to study the dynamics of COVID-19 transmission with health
education campaigns and treatment through quarantine as controls against the epidemic. Bound-
edness and the existence of solutions for this system are shown. The basic reproduction number
is computed using the next-generation matrix method. The equilibrium points of the model are
determined and their stability is analyzed. Numerical simulation shows that when a health ed-
ucation campaign is efficient, the number of COVID-19-infected individuals decreases faster,
implying that a health education campaign is vital in controlling the spread of COVID-19 dis-
ease.

1 Introduction

The novel coronavirus pandemic also known as COVID-19 is still posing a stressful time for
humans around the globe. This infection first emerged in December of 2019, in Wuhan, a city
in Central China [24, 25]. The COVID-19 infection has now spread to more than 99,3 % of
countries worldwide. The countries or regions on the globe not yet infected with this infection
are still at risk of this novel pandemic. According to the recent WHO measurements, more than
771 million COVID-19 cases are confirmed and over 6.9 million people have died globally due
to this infection. Mostly, the severe cases and deaths due to this novel infection are reported
in people with older age. Additionally, people with co-morbidities and any chronic respiratory
disease that suppresses or compromises the immune system are at high risk from this infection
[20]. According to Statista [21], its well known that the mortality rate is about 2%, the infection
index is between 1.5 and 3.5, the critical cases is 6.1% and the mortality rate is 15% for persons
with an age greater than 80 years.

The main transmission pattern known so far is through direct social contact of one human to
an infectious person [5]. A person can also catch the virus via direct contact with contaminated
surfaces or objects and during the inhalation of droplets discharge from the nose while spitting,
coughing, or sneezing from both either symptomatic or asymptomatically infective humans [5].
Currently, the incubation period of the virus, referring to the time from exposure to the develop-
ment of symptoms, is estimated to be in the range of 5 to 14 days. Some most common symptoms
of COVID-19 are feverish body, tiredness, and dry cough. Whereas diarrhea, headache, pains,
or aches in the throat with sore feeling, skin rashes or discoloration developing in legs or fingers,
and feeling the loss of smell and taste will come under less common symptoms. Chest pain, high
blood pressure, feeling difficulty in breathing, and loss of speech or movement are considered to
be serious symptoms [1]. COVID-19 affects many people in various ways. The most infected
population will evolve from low to moderate ailment. And those populations will recover with-
out the need for hospital support. However, older individuals with underlying medical conditions
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such as diabetes, cancer, cardiovascular disease, and chronic respiratory disease are more prone
to developing severe symptoms. To prevent infection and to slow transmission of COVID-19,
we want to do the following: Maintain a social distance of at least one distance between you and
other people, and avoid unnecessary travel which will help us to stay away from large groups of
the population, wash the hands frequently with hand sanitizer or with soap water, refrain from
smoking and drinking since these activities may weaken your lungs and stay home if you feel
unfit [1].

Various mathematical models have been proposed by researchers to evaluate the dynamical
behavior and transmission of Coronavirus, which may aid in the prediction of future events and
even the control of the disease, for example, [4, 6, 9, 10, 17, 18, 22]. From this studies, Tang et al.
[22] considered, an SEIR-type mathematical model to estimate the transmission risk of COVID-
19 and its implication. The study in [18] , formulated a model for novel corona virus disease
2019 (COVID-19) in Lagos, Nigeria and shown the effect of control measures, specifically the
common social distancing, use of face mask and case detection on the dynamics of COVID-19.

Isolation and quarantine are two important measures by which asymptomatic or infected in-
dividuals could be detached from the population to stop further spread of the disease. Quarantine
is generally used for seemingly healthy but possibly infected individuals, while isolation applies
to already infected individuals. Quarantine was also applied as one of the effective intervention
strategies during the SARS epidemic of 2002–2003 [2]. Several mathematical models have been
formulated to study the role of quarantine and other intervention strategies in controlling the
spread of infectious diseases like COVID-19. These models typically integrate quarantine as a
control measure alongside other public health interventions such as vaccination, social distanc-
ing, and isolation of infected individuals. For example, Khan et.al, [13], formulated a fractional
mathematical model for the dynamics of COVID-19 with quarantine and isolation. D.K Mamo
[15], developed SHEIQRD corona virus pandemic spread model. He Identified that isolation
of exposed and infected individuals, reduction of transmission, and stay-at-home return rate
can mitigate COVID-19 pandemic. Atanu Bhattacharjee, et al. 2020, predict the trend of the
COVID-19 pandemic up to June 2020 with the application of statistics and available data. He
also asserts that the implementation of lockdowns and quarantine measures for individuals has
played a significant role in reducing the risk of the epidemic’s spread [3]. In contrast, another
study conducted by Quian Li et al. in 2020 explores the impact of mass influenza vaccination
models and public health interventions on COVID-19 epidemics [19]. A model in [16] describes
the prediction and control measures with the help of a mathematical model. Also, they computed
the equilibria and analyzed the stability control. At last, they conclude with some numerical sim-
ulations and present their results in graphs. The optimal control problem in an epidemic model
typically involves identifying control measures, like vaccination or quarantine, that minimize a
cost function representing the epidemic’s overall impact on the population.

To control the outbreak of COVID-19, different governments are actively restricting the
movement of people by imposing lockdowns, which may be known as one of the largest quar-
antines in history. Due to quarantine’s economic, social, and psychological repercussions, it
was necessary to search for alternative solutions to mitigate and reduce the spread of the epi-
demic. During the pandemic, governments, health organizations, and media outlets launched
widespread efforts to inform the public about how the virus spreads, its symptoms, and the im-
portance of preventive measures like wearing masks, social distancing, and vaccination. These
campaigns also focused on debunking misinformation, highlighting the severity of the disease,
and promoting health guidelines to reduce transmission. They emphasized the risks for vulnera-
ble populations, like the elderly and those with underlying health conditions, and explained how
individuals could protect themselves and others.

The novelty of this paper lies in its comprehensive exploration of a mathematical model based
on a system of ordinary differential equations designed to capture the dynamics of COVID-19,
with a specific focus on the influence of quarantine measures and the efficiency of health educa-
tion campaigns as controls against the epidemic. The remaining part of the paper is organized as
follows: Section 2 describes the proposed system; Section 3 represents the non-negativity and
boundedness; Section 4 discusses the equilibria and basic reproduction number; Section 5 proves
the stability of the possible steady; Section 6 demonstrates numerical simulation; and Section 7
concludes the paper.
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2 Mathematical model

We formulate a mathematical model with a concentration of SARS-COV-2 in the population
NW (t) which is denoted W (t) and human population NH(t). This model satisfies the following
assumptions:

• Human birth and natural death take place at different rates.

• Quarantined individuals do not shed the COVID-19 virus.

• All identified individuals with COVID-19 infection are quarantined.

dS
dt = Λ − (1 − ω) (βSI + βWW )S − µSS,
dI
dt = (1 − ω) (βSI + βWW )S − (ε+ δ)I,
dQ
dt = εI − (η + δ)Q,
dR
dt = ηQ− µRR,
dW
dt = (1 − ω)αI − σW,

S(0) = S0 > 0, I(0) = I0 ≥ 0, Q(0) = Q0 ≥ 0, R(0) = R0 ≥ 0,W (0) = W0 ≥ 0.

(2.1)

Where S, I , Q, and R are the total number of susceptible, infected, quarantined, and recovered
populations respectively. W is the concentration of the SARS-COV-2 virus caused by humans,
resulting in coughing and sneezing. All parameters are positive and defined in Table 1.

Table 1. Model parameters

Parameters Epidemiological interpretation

Λ Birth rate parameter of S population
βS Transmission rate from I to S
βW Transmission rate from W to S
µS Death rate of people S
η Recovery rate
δ Death rate of I population
ε Rate of quarantine of infected individuals
µR Death rate of R population
α Shedding coefficients from I to W
1
σ Lifetime of the virus in W

0 < ω < 1 A measure of education campaign and treatment efficacy

As the equation of recovered population R depends only on quarantined population Q, it suffices
to study the following reduced system:

dS
dt = Λ − (1 − ω) (βSI + βWW )S − µSS,
dI
dt = (1 − ω) (βSI + βWW )S − (ε+ δ)I,
dQ
dt = εI − (η + δ)Q,
dW
dt = (1 − ω)αI − σW,

S(0) = S0 > 0, I(0) = I0 ≥ 0, Q(0) = Q0 ≥ 0,W (0) = W0 ≥ 0.

(2.2)

3 Non-negativity and boundedness of solutions

For system (2.2) to be biologically meaningful, it is important to show that all the population
variables are nonnegative for all t ≥ 0; which implies that any trajectory that starts with a positive
initial condition will remain positive for t ≥ 0. It is an important feature of an epidemiological
model.
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Proposition 3.1. The set R4
+ is positively invariant with respect to the system (2.2). Furthermore,

all solutions of (2.2) are uniformly bounded in the compact subset.

Γ = {(S, I,Q,W ) ∈ R4
+;S + I +Q ≤ Λ

µs
;W ≤ (1 − ω)Λα

µsσ
}. (3.1)

Proof. From the first equation of system (2.2), we have

S(t) = S(0)× exp(

∫ t

0
−ϕ(s)ds) + exp(

∫ t

0
−ϕ(s)ds)×

∫ t

0
Λ × exp(

∫ u

0
ϕ(l)dl)du.

where ϕ(s) = −(1 − ω) (βSI(s) + βWW (s)). Thus S(t) > 0, ∀t > 0.
To establish that ∀t > 0, I(t) > 0, Q(t) > 0, W (t) > 0 whenever I(0) > 0, Q(0) > 0,
W (0) > 0, the above arguments can not be easily implemented. We then use an alternative trick.
We Consider the following sub-equations related to the time evolution of variables

dI
dt = (1 − ω) (βSI + βWW )S − (ε+ δ)I,
dQ
dt = εI − (η + δ)Q,
dW
dt = (1 − ω)αI − σW,

I(0) > 0, Q(0) > 0,W (0) > 0.

(3.2)

The system (3.2) can be written as follows:

Ẋ(t) = AX(t),

where X =

 I

Q

W

 and A =

 (1 − ω)βsS − (γ + µI) 0 (1 − ω)βWS

ε −(η + δ) 0
(1 − ω)α 0 −σ

.

From the expression of A, it’s a Metzler matrix and its exponential is positive. Then we deduce
the positivity of I(t), Q(t) and W (t) whenever I(0) > 0, Q(0) > 0 and W (0) > 0. This proves
the positively invariant property of R4

+ with respect to system (2.2).
Let N(t) = S(t) + I(t) +Q(t), then

dN

dt
= Λ − µSS − γI − (η + δ)Q ≤ Λ − µSN.

Hence,

lim sup
t−→∞

N(t) ≤ Λ

µS
.

This implies that S, I and Q are uniformly bounded in the region Γ. Furthermore, from the bound
of I and the last equation of (2.2), it follows that

lim sup
t−→∞

W (t) ≤ (1 − ω)Λα

µsσ
.

This guarantees the boundedness of W . This completes the proof.

4 Equilibria and basic reproduction number R0

The equilibrium points of model (2.2) are obtained by solving the algebraic system obtained by
canceling all derivatives of S(t), I(t), Q(t) and W (t).
The disease-free equilibrium point denoted by E0 is the steady-state solution of the model in the
absence of disease. Thus: E0 =

(
S0, 0, 0, 0

)
=

(
Λ

µs
, 0, 0, 0

)
.

R0 refers to the number of secondary infections generated by a single infective individual
in a completely susceptible population. We use next-generation matrix, the approach by [23] to
determine R0. Using this method the basic reproduction number is given by ρ

(
F0V

−1
0

)
where
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F0 is the Jacobian of fi at E0, where fi is the rate at which new infections appear in compartment
i and V0 is the Jacobian of vi at E0, where vi is the rate of transfer of individuals into and out of
compartment i. The infected population is captured in the following system of equations.

dI

dt
= (1 − ω) (βSI + βWW )S − (ε+ δ)I,

dQ

dt
= εI − (η + δ)Q,

dW

dt
= (1 − ω)αI − σW.

We have

fi(I,Q,W ) =

 (1 − ω) (βSI + βWW )S

0
0

 and vi(I,Q,W ) =

 (ε+ δ)I

(η + δ)Q− εI

σW − (1 − ω)αI

.

It follows that

F0 =


(1−ω)βsΛ

µs
0 (1−ω)βwΛ

µs

0 0 0
0 0 0

 , V0 =

 (ε+ δ) 0 0
−ε (η + δ) 0

−(1 − ω)α 0 σ


and

F0V
−1

0 =


(1−ω)βsΛ

µs(ε+δ) + (1−ω)2βwΛ

µs(ε+δ) 0 (1−ω)βwΛ

αµs

0 0 0
0 0 0

 .

Thus

R0 = ρ
(
F0V

−1
0

)
=

(1 − ω)βsΛ

µs(ε+ δ)
+

(1 − ω)2βwΛ

µs(ε+ δ)
= Rh +Rw.

where Rh = (1−ω)βsΛ

µs(ε+δ) represents the secondary infections caused directly by a single infective

while Rw = (1−ω)2βwΛ

µs(ε+δ) through the shedding of virus particles by infectious individuals.
The endemic equilibrium exists if R0 > 1: E∗ = (S∗, I∗, Q∗,W ∗), with its components given
by

S∗ =
Λ − (ε+ δ)I∗

µs
,

I∗ =
Λ

ε+ δ
− σµs

(1 − ω) (σβs + βwα(1 − ω))
,

Q∗ =
εI∗

η + δ
,

W ∗ =
(1 − ω)αI∗

σ
.

(4.1)

Then, we deduce the following result.

Proposition 4.1. • If R0 ≤ 1, the model (2.2) has only one disease-free equilibrium (DFE),
i.e., E0 =

(
Λ

µs
, 0, 0, 0

)
.

• If R0 > 1, in addition to the disease-free equilibrium E0, the model (2.2) has a unique
endemic equilibrium point E∗ = (S∗, I∗, Q∗,W ∗).
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5 Stability of equilibria

5.1 Local and global stability of E0

Proposition 5.1. The disease-free equilibrium E0 is locally asymptotically stable if R0 ≤ 1.

Proof. Linearizing system (2.2) around an equilibrium point E = (S, I,Q,W ), we get the fol-
lowing jacobian matrix:

JE=(S,I,Q,W ) =


−(1 − ω)(βsI + βwW )− µs −(1 − ω)βsS 0 −(1 − ω)βwS

(1 − ω) (βsI + βwW ) (1 − ω)βsS − (ε+ δ) 0 (1 − ω)βwS

0 ε −(η + δ) 0
0 (1 − ω)α 0 −σ

 .

Replacing E by E0 and calculating the characteristic equation, we have

det(λI − JE0) = (λ+ µs)(λ+ η + δ)(λ2 +Aλ+B) = 0. (5.1)

Clearly −µs and −(η + δ) are the eigenvalues, the remaining eigenvalues are given by solving
the equation

λ2 +Aλ+B = 0, (5.2)

where

A = σ + (ε+ δ)(1 −Rh),

B = (ϵ+ δ)(σ(1 −Rh) + αRw).

Clearly, A > 0 and B > 0 are satisfied when R0 ≤ 1. Hence, a disease-free equilibrium point
E0 is locally asymptotically stable.

Considering the approach by [7] Castillo-Chavez theorem, the system (2.2) can be expressed
as,

dX

dt
= F(X,Z),

dZ

dt
= G(X,Z), G(X, 0) = 0.

Where X ∈ R = (S), the number of non-infected individuals and Z ∈ R3 = (I,Q,W ), the
infected compartments.

The following conditions are for global stability of disease-free equilibrium point
E0 =

(
S0, 0, 0, 0

)
=

(
Λ

µs
, 0, 0, 0

)
=

(
X0, 0

)
, for X0 = Λ

µs
:

1- dX
dt = F(X, 0), X0 is globally asymptotically stable,

2- G(X,Z) = MZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ Γ,

where M = DZG
(
X0, 0

)
is an M-matrix (in that the off-diagonal elements of M are pos-

itive) and Γ is the region where the equations of the model make epidemiological sense. If
conditions 1 and 2 are satisfied by system (2.2), the following proposition holds.

Proposition 5.2. Provided that R0 ≤ 1 and the conditions 1 and 2 are satisfied, the disease-free
equilibrium point E0 =

(
X0, 0

)
of the system (2.2) is globally asymptotically stable.

Proof. Since X = (S) and Z = (I,Q,W),
the condition dX

dt = F(X, 0) can be written as; dS
dt = Λ − µsS, which gives:

Λ − µsS(t) = (Λ − µsS(0))e−µst

⇒ S(t) = Λ−(Λ−µsS(0))e−µst

µs

⇒ S(t) → Λ

µs
as t → ∞

hence E0 is globally asymptotically stable.
In view of G(X,Z) = MZ − Ĝ(X,Z), we have
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Ĝ(X,Z) = MZ −G(X,Z),

G(X,Z) =

 (1 − ω) (βSI + βWW )S − (ε+ δ)I

εI − (η + δ)Q

(1 − ω)αI − σW

 ,

M = DZG
(
X0, 0

)
=

 (1 − ω)βsS
0 − (ε+ δ) 0 (1 − ω)βwS

0

ε −(η + δ) 0
(1 − ω)α 0 −σ

 ,

MZ =

 (1 − ω)βsIS
0 − (ε+ δ)I + (1 − ω)βwWS0

εI − (η + δ)Q

(1 − ω)αI − σw

 .

Therefore

Ĝ(X,Z) =

 (1 − ω)βsI
(
S0 − S

)
+ (1 − ω)βwW

(
S0 − S

)
0
0

 .

Since all off diagonal entries of matrix M are positive, it implies that M is an M-matrix.
Also since 0 < ω < 1 and S0 ≥ S : ∀(X,Z) ∈ Γ, Ĝ(X,Z) ≥ 0.
Therefore, condition 2 can be expressed as dZ

dt ≤ WZ.
Since So = Λ

µ , the characteristic equation of M is given by

(λ− (η + δ))
(
λ2 +Bλ+ C

)
= 0,

or λ = −(η + δ + µ) and

λ2 +Aλ+B = 0, (5.3)
where

A = σ + (ε+ δ)(1 −Rh),

B = (ϵ+ δ)(σ(1 −Rh) + αRw).

Clearly equation (5.3) is the same as equation (5.2). So, A > 0 and B > 0 are satisfied when
R0 ≤ 1. Since the conditions 1 and 2 have been met and R0 ≤ 1, the proof is complete.

5.2 Local and global stability of E∗

Proposition 5.3. If R0 > 1 and condition (H) (5.6) are satisfied, then the endemic equilibrium
point E∗ of system (2.2) is locally asymptotically.

Proof. The jacobian matrix J evaluated at the endemic equilibrium point E∗ is given by

J (E∗) =


−X − µs −Y 0 −Z

X Y − L 0 Z

0 ε −M 0
0 N 0 −σ

 ,

where

X = (1 − ω)(βsI
∗ + βwW

∗),

Y = (1 − ω)βsS
∗,

Z = (1 − ω)βwS
∗,

L = (ε+ δ),

M = (η + δ),

N = (1 − ω)α.
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The characteristic equation is given by

(λ+M)(λ3 + a2λ
2 + a1λ+ a0) = 0.

As λ1 = −M is a root of the characteristic equation, the local study of the stability of E∗ is
reduced to the study of the roots of the equation

λ3 + a2λ
2 + a1λ+ a0 = 0, (5.4)

where

a2 = L+X − Y + µs + σ,

a1 = Lµs + LX + µsσ + Lσ +Xσ − Y σ − Y µs − ZN,

a0 = XYN −XZN + LXσ + Lµsσ − Y µsσ − ZNµs.

Applying Routh Hurwitz criterion [8], all roots of equation (5.4) are negative when a2 > 0,
a0 > 0 and a2a1 − a0 > 0.

To show that, we substitute equation (4.1) in the second equation of system (2.2) at endemic
equilibrium point to get

(1 − ω)

[
βs +

βw(1 − ω)α

σ

]
S∗ − (ε+ δ) = 0,

or,
βw(1 − ω)2αS∗

σ
= L− Y. (5.5)

Substituting (4.1) and (5.5) in a2, a1, and a0 appropriately, we obtain

a2 =
βw(1 − ω)2αS∗

σ
+X + σ + µs > 0,

a1 = LX + µsσ +Xσ +
βw(1 − ω)2αµsS

∗

σ
> 0,

a2a1 − a0 = XYN −XZN + LXσ + Lµsσ − Y µsσ − ZNµs.

Since a2 > 0, we consider the following hypotheses:

(H) : a0 > 0 and a2a1 − a0 > 0. (5.6)

From the hypothesis (H) and the Routh-Hurwitz stability criterion, equation (5.4) has no positive
root. Therefore, the endemic equilibrium E∗ is locally asymptotically stable.

Proposition 5.4. The endemic equilibrium point E∗ of the system (2.2) is globally asymptotically
stable if R0 > 1.

Proof. To prove global stability of E∗, we apply LaSalle [14] approach by constructing the
following Lyapunov function

V (S, I,Q,W ) =

(
S − S∗ ln

S

S∗

)
+

(
I − I∗ ln

I

I∗

)
+

(
Q−Q∗ ln

Q

Q∗

)
+

(
W −W ∗ ln

W

W ∗

)
.

Differentiating V, we get

dV

dt
=

(
1 − S∗

S

)
dS

dt
+

(
1 − I∗

I

)
dI

dt
+

(
1 − Q∗

Q

)
dQ

dt
+

(
1 − W ∗

W

)
dW

dt
.

Substituting dS
dt ,

dI
dt ,

dQ
dt and dW

dt from system (2.2), we obtain

dV

dt
=

(
1 − S∗

S

)
{Λ − (1 − ω) (βSI + βWW )S − µSS}

+

(
1 − I∗

I

)
{(1 − ω) (βSI + βWW )S − (ε+ δ)I}

+

(
1 − Q∗

Q

)
{εI − (η + δ)Q}+

(
1 − W ∗

W

)
{(1 − ω)αI − σW}.

(5.7)
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Rearranging system (2.2) at the endemic equilibrium point, we have

Λ = (1 − ω) (βSI
∗ + βWW ∗)S∗ + µSS

∗

(ε+ δ) =
(1 − ω)

I∗
(βSI

∗ + βWW ∗)S∗

(η + δ) =
εI∗

Q∗

σ =
(1 − ω)αI∗

W ∗ .

(5.8)

Substituting (5.8) in (5.7), we get

dV

dt
=

(
1 − S∗

S

)
[(1 − ω) {(βSI

∗S∗ + βWW ∗S∗)− (βSIS + βWWS)}+ µS(S
∗ − S)]

+

(
1 − I∗

I

)
(1 − ω)

[
(βSIS + βWWS)− I

I∗
(βSI

∗S∗ + βWW ∗S∗)

]
+

(
1 − Q∗

Q

)
ε

(
I − QI∗

Q∗

)
+

(
1 − W ∗

W

)
(1 − ω)α

[
I − WI∗

W ∗

]
.

When S = S∗, I = I∗, Q = Q∗ and W = W ∗, we obtain dV
dt = 0.

Hence by LaSalle’s invariance principle [14], every solution of the system (2.2) with initial
conditions in Γ =

{
(S, I,Q,W ) ∈ R4

+;S + I +Q ≤ Λ

µS
;W ≤ (1−ω)Λα

µSσ

}
tends to the endemic

equilibrium point E∗. It follows that E∗ is globally asymptotically stable.

6 Numerical simulation

Analytic studies cannot be complete without numerical verification of the results. In this section,
we present some numerical simulations with a hypothetical set of parameters to illustrate our
analytical results. We simulated the system (2.2) to investigate the importance of education
campaigns and treatment through quarantine. This is achieved using parameter values in Table
2.

Table 2. Parameter values

Parameters Values
Λ 30-100
βS 0.06
βW 0.05
µS 0.03
η 0.03
δ 0.03
α 0.07
σ 0.2
ε 0.5
ω 0 < ω < 1

The initial values of the state variables are provided as follows: S(0) = 100000, I(0) = 100
and Q(0) = W (0) = 0. The results of the simulation are presented in the figures below.
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Figure 1. Stability of E0 and nonexistence of E∗ for R0 ≤ 1.

For E0, the reproduction number R0 = 0.81 ≤ 1 and E0(67, 0, 0, 0). Figure 1 depicts the
stability of E0. That means each infected individual does not transmit the disease to enough new
individuals to cause further infections, and eventually, the infection dies out. Essentially, the
pool of susceptible individuals is large enough that the number of new infections declines over
time, and the disease cannot persist in the population.

Figure 2. Instability of E0 and stability of E∗ for R0 > 1.

For E∗, the reproduction number R0 = 4.52 > 1 and E∗(85.82, 183.82, 1531.84, 6.43).
Figure 2 shows the increase in infected individuals and the concentration of the SARS-COV-2
virus in the early days due to the rapid spread of the disease. The increase in the number of
infected people consequently reduces the number of susceptible. Then we notice a decrease in
the number of infected people and an increase in the number of quarantined individuals (since we
assumed that all individuals who were identified with COVID-19 infection were quarantined).
The system then goes to its stable solution E∗ as the number of susceptible people becoming
infectious decreases to the lowest level and the infected individuals, quarantined individuals,
and the concentration of the SARS-COV-2 virus increases to the saturation level.
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Figure 3. The effect of education campaign and treatment on infected individuals, quarantined
individuals, and concentration of SARS-COV-2.

Figure 3 demonstrates the variation of infected individuals, quarantined individuals and con-
centration of the SARS-COV-2 virus respectively with different values of ω. Particularly, we ob-
serve that the value of the infected population declines as the education campaign and treatment
efficacy increases. Additionally, if education campaign is 100 percent effective in preventing
disease transmission, i.e., ω = 1, the value of R0 becomes zero, and the disease will not spread
from one person to another in that scenario. This means that it is necessary to educate people
about COVID-19 infection and how it can be prevented especially those in major and crowded
cities and institutions as well as treat the quarantined individuals. Education campaigns should
target direct and indirect transmissions. This can be achieved through posters, radio, social me-
dia, television, and word-of-mouth communication.

7 Discussion and Conclusion

In this work, we formulated SIQR-W a mathematical model of COVID-19 taking into account
the effects of direct and indirect transmissions with education campaigns and treatment through
quarantine. Boundedness and the existence of solutions is shown. We studied the stability of the
disease-free and endemic equilibrium. The results of the disease-free equilibrium showed that
the model is both locally and globally asymptotically stable when R0 ≤ 1. This implies that
when R0 is below unity, the spread of COVID-19 disease reduces. Next, we studied the endemic
equilibrium which we found to be both locally and globally asymptotically stable when R0 > 1.
Numerical simulation indicates that when effective health education campaigns and treatment
are in place as control strategies for COVID-19, they lead to a faster reduction of the disease,
and eventually the disease decreases to zero.
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