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Abstract The goal of this work is to solve the ill-posed problem composed by the sum of
two compact operators, one from Volterra and the other from Fredholm. Noting that the tradi-
tional regularization of theses problems is based on the adjoint operators where in our cases the
Volterra adjoint operator is not suitable. Using our regularized problem based on the perturba-
tion of the equation and solving this latter by the third and the fourth Chebyshev polynomials,
we obtain the good precision as well as the efficiency of this technique by means of examples.

1 Introduction

One calls two problems inverse to each other if the formulation of one problem involves the other
one. (J. Keller). If a plane lacks kerosene, it risks a crash, this is direct problem, whereas if a
plane crashes, we cannot determine the causes, there are many ones, this is inverse problem,
because to determine what causes a plane to crash we can take in-depth research and investiga-
tion to understand what happened. Among the family of inverse problems we find the ill-posed
problem is a problem where it has no solutions or has many solutions or it has solutions but
unstable say, for an arbitrarily small errors in the measurement data lead to a large errors in
the solutions. Most difficulties in solving ill-posed problems are caused by the instability of so-
lutions, so ill-posed problems correspond to all problems have unstable solutions.
Most studies of ill-posed problems are made for Volterra and Fredholm integrals of the first kind
but never both. In [1, 5] for solving Fredholm integral equations of the first kind the authors
utilize Chebyshev and the Legendre wavelets method constructed on the unit interval as basis
in Galerkin method. A direct method for solving Volterra integral equation of the first kind by
using block-pulse functions and their operational matrix of integration [2]. In [3, 6, 10, 11, 12]
the authors suggest a method for solving Fredholm and Volterra integral equations of the first
kind based on the wavelet bases. The Haar, continuous Legendre, CAS, Chebyshev wavelets.
Comparison between Taylor and perturbed method for Fredholm and Volterra integral equation
of the first kind are studied in [2, 7, 8]. Approxamation method to Volterra-Fredholm integral
equations of the first kind [9].
Let A = V +F be the sum of two linear compact operators Volterra-Fredholm integral equation
of first kind defined from Hilbert space H into itself over R . We explicit this problem as

Aφ = V φ+ Fφ = f, (1.1)

where V is Volterra compact operator and F Fredholm compact operator defined for φ ∈ H by

V φ =

∫ x

a

k1(x, t)φ(t)dt (1.2)
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and

Fφ =

∫ b

a

k2(x, t)φ(t)dt (1.3)

or sill the equation (1.1) becomes∫ x

a

k1(x, t)φ(t)dt+

∫ b

a

k2(x, t)φ(t)dt = f(x), (1.4)

where the kernels k1 and k1 are continuous functions non-degenerates on [a, b] × [a, b], we will
suppose that f is such that there exists a unique solution φ ∈ H of the equation (1.1). Noting that
the equation (1.1) admits a unique solution in direct sense or in the last square sense provided
the right-hand side f is in R(A) or in R(A)+R(A)⊥, respectively. Due to the non closedness of
range R(A) the solution is not stable. This means that for any approximation data fδ of f with
the relation

∥f − fδ∥ ≤ δ, (1.5)

for some δ > 0 and small, the solution ϕδ of the equation Aφδ = fδ may be so far from the
solution φ of the initial problem (1.1).

2 Regularization by differentiation of Volterra-Fredholm integral equation

Supposing the smoothness of functions k1, k2 and f . By the differentiation t0 x of two sides of
the equation (1.1) we ontain a regularized equation say, Volterra-Fredholm integral equation of
the second kind.

k1(x, x)φ(x) +

∫ x

a

∂k1

∂x
(x, t)φ(t)dt+

∫ b

a

∂k2

∂x
(x, t)(x, t)φ(t)dt = f ′(x), (2.1)

If k1(x, x) ̸= 0 for all x ∈ [a, b], we obtain the well-posed problem Volterra-Fredholm inte-
gral equation of the second kind by the mean of the division of the equation (2.1) by the factor
k1(x, x).

φ(x) +

∫ x

a

k3(x, t)φ(t)dt+

∫ b

a

k4(x, t)φ(t)dt = g(x), (2.2)

where the functions

k3(x, t) =
1

k1(x, x)

∂k1

∂x
(x, t), (2.3)

k4(x, t) =
1

k1(x, x)

∂k2

∂x
(x, t) and g(x) =

f ′(x)

k1(x, x).
(2.4)

If k(x, x) = 0 for x ∈ [a, b], we derive several times until obtaining ∂qk1
∂xq (x, t) ̸= 0 for all x ∈

[a, b], with k1, k2 and f in Cq+1([a, b] × [a, b]) and Cq+1([a, b]) respectively, where q represents
the smallest integer for which the derivative k1 of order q does not null.

∂qk1

∂xq
(x, t)φ(x) +

∫ x

a

∂q+1k1

∂xq+1 (x, t)φ(t)dt+

∫ b

a

xq+1(x, t)

∂xq+1 (x, t)φ(t)dt = f (q+1)(x). (2.5)

3 Regularization by perturbation of Volterra-Fredholm integral equation

Theorem 3.1. If for any positive constant α > 0 and small, such that

∥(I + 1
α
V )−1∥∥F∥ < α. (3.1)

Then one can repleace the equation (1.1) by its auxiliary one

αφα + V φα + Fφα = fδ, (3.2)

where we add the term αφα to the operator Aφ = V φ+ Fφ for α positive and small, the equa-
tion (3.2) admits a unique stable solution φα,



Volterra-Fredholm integral equations of the first kind 17

Indeed, The Volterra integral operator of the second kind (I + 1
αV ) is invertible and the ex-

pression (3.1) leads us to the relation ∥(αI + V )−1∥∥F∥ < 1 which gives the existence and
uniqueness of the solution of the equation (3.2) as a sum of two operators the first invertible and
the second compact.

Lemma 3.2. [8] The problem (3.2) is well posed with the norm ∥(aI+A)−1∥ = O( 1√
α
) provided

that the operator A verified the relation (3.1) and positive definite

Proposition 3.3. The relation (3.1) for operator A leads to the existence and uniqueness of the
solution of the auxiliary problem (3.2) Besides, the solution φα converges to the exact solution
φ of the initial problem (1.1), provided that δ√

α
→ 0 as α goes to zero, say

lim
α→0

∥φ− φα∥ = 0 (3.3)

Indeed,

∥φ− φα∥ = ∥φ− (αI +A)
−1

fδ∥

≤ ∥ (αI +A)
−1 ∥∥αφ+ f − fδ∥

≤ α∥ (αI +A)
−1 ∥∥φ∥+ ∥ (αI +A)

−1 ∥∥f − fδ∥.

Therefore

∥φ− φα∥ = O(
√
α) +

δ√
α
.

i. The third-kind polynomial Vn

The Chebyshev polynomial Vn(x) of the third kind is a polynomial in x of degree n; defined by
the relation

Vn(x) =
cos(n+ 1

2)θ

cos 1
2θ

when x = cos θ (3.4)

The three term recurrence formula satisfied by Chebyshev polynomials is the translation of the
elementary trigonometric identity

cos(n+
1
2
)θ + cos(n− 2 +

1
2
)θ = 2 cos θ cos(n− 1 +

1
2
)θ,

which becomes
Vn(x) = 2xVn−1(x)− Vn−2(x), n = 2, 3, ....

With
V0(x) = 1, V1(x) = 2x− 1

Noting that the functions {Vn(x), n = 0, 1, 2, ....} form an orthogonal system on the interval

[−1, 1] with respect to the weight w(x) =
√

1+x
1−x and so the polynomial system Sn(x) given by{

S0(x) =

√
1
π
V0(x), S1(x) =

√
1
π
V1(x), S2(x) =

√
1
π
V2(x), ...Sn(x) =

√
1
π
Vn(x)...

}
,

form an orthonormal system on the interval [−1, 1] with respect to the weight w(x) =
√

1+x
1−x . In

other words

⟨Sk(x), Sl(x)⟩ =
∫ 1

−1
Sk(x)Sl(x)

√
1 + x

1 − x
dx =

{
0 if k ̸= l

1 if k = l

ii. Shifted third Chebyshev Polynomial V s
n

For the construction of the shifted Chebyshev polynomials we use the change of variable x =
2

b−a t −
b+a
b−a . So, the shifted Chebyshev polyno- mials V s

n (t), t ∈ [a, b], a, b ∈ R is given as
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V s
n (t) = Vn(

2
b−a t −

b+a
b−a) and so V s

0 (x) = 1, V s
1 (x) = 2( 2

b−ax − b+a
b−a). Therefore, we get the

fundamental relation for the shifted polynomial

V s
n (x) = 2(

2
b− a

t− b+ a

b− a
)V s

n−1(x)− V s
n−2(x)

Noting that the functions {V s
n , n = 0, 1, ..} form an orthogonal system on the interval [a,b] with

respect to the weight function

ws(x) =

√√√√1 + ( 2
b−ax− b+a

b−a)

1 − ( 2
b−ax− b+a

b−a)

and so the polynomial system Ss
n(x) given by

{Ss
n(x) =

√
2

b− a
Sn(

2
b− a

x− b+ a

b− a
)}

form an orthonormal system on the interval [a,b] with respect to the weight function (10)
iii. The fourth-kind polynomial Wn

The Chebyshev polynomial Wn(x) of the fourth kind is a polynomial in x of degree n; defined by
the relation

Wn(x) =
sin(n+ 1

2)θ

sin 1
2θ

when x = cos θ (3.5)

The three term recurrence formula satisfied by Chebyshev polynomials is the translation of the
elementary trigonometric identity

sin(n+
1
2
)θ + sin(n− 2 +

1
2
)θ = 2 cos θ sin(n− 1 +

1
2
)θ,

which becomes
Wn(x) = 2xWn−1(x)−Wn−2(x), n = 2, 3, ....

With
W0(x) = 1, W1(x) = 2x+ 1.

Noting that the functions {Vn(x), n = 0, 1, 2, ....} form an orthogonal system on the interval

[−1, 1] with respect to the weight w(x) =
√

1+x
1−x and so the polynomial system Sn(x) given by{

S0(x) =

√
1
π
W0(x), S1(x) =

√
1
π
W1(x), S2(x) =

√
1
π
W2(x), ...Sn(x) =

√
1
π
Wn(x)...

}
,

form an orthonormal system on the interval [−1, 1] with respect to the weight w(x) =
√

1−x
1+x . In

other words

⟨Sk(x), Sl(x)⟩ =
∫ 1

−1
Sk(x)Sl(x)

√
1 − x

1 + x
dx =

{
0 if k ̸= l

1 if k = l

iv. Shifted fourth Chebyshev Polynomial W s
n

For the construction of the shifted Chebyshev polynomials we use the change of variable x =
2

b−a t −
b+a
b−a . So, the shifted Chebyshev polyno- mials Us

n(t), t ∈ [a, b], a, b ∈ R is given as
Us
n(t) = Un(

2
b−a t −

b+a
b−a) and so Us

0 (x) = 1, Us
1 (x) = 2( 2

b−ax − b+a
b−a). Therefore, we get the

fundamental relation for the shifted polynomial

Us
n(x) = 2(

2
b− a

t− b+ a

b− a
)Us

n−1(x)− Us
n−2(x)

Noting that the functions {Us
n, n = 0, 1, ..} form an orthogonal system on the interval [a,b] with

respect to the weight function

ws(x) =

√√√√1 − ( 2
b−ax− b+a

b−a)

1 + ( 2
b−ax− b+a

b−a)
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and so the polynomial system Ss
n(x) given by

{Ss
n(x) =

√
2

b− a
Sn(

2
b− a

x− b+ a

b− a
)}

form an orthonormal system on the interval [a,b] with respect to the weight function (10)
Discretization of integral equation

Applying a collocation method to the equation (3.2) in order to discredit and convert this equa-
tion to a system of linear equations on the interval [a, b] . Approximate the unknown function
φ(x) by a finite sum of the form

φα(x) ≃
N∑
k=0

αkS
s
k(x), (3.6)

where Ss
n(x) denotes the nth shifted Chebyshev polynomial of the third or the fourth kind. After

substitution of the expansion (3.6) into the equation (3.2) this latter becomes an approximate
equation as

α

N∑
k=0

αkS
s
k(x)− V

(
N∑
k=0

αkS
s
k(t)

)
− F

(
N∑
k=0

αkS
s
k(t)

)
= fδ(x). (3.7)

Choosing the Fourier’s coefficients αk such that (3.7) is satisfied on the interval [a, b]. For this
technical we take the equidistant collocation points as follows

tj = a+ jh, h =
b− a

N
, j = 0, 1, ...N, (3.8)

and define the residual as

RN (x) = α

N∑
k=0

αkS
s
k(x)− V

(
N∑
k=0

αkS
s
k(t)

)
− F

(
N∑
k=0

αkS
s
k(t)

)
− fδ(x). (3.9)

Then, by imposing conditions at collocation points

RN (xj) = 0, j = 0, 1, ....N, (3.10)

the integral equation (3.7) is converted to a system of linear equations.

4 Illustrating examples

Example 1. Consider the linear Volterra-Fredholm integral equation∫ x

0
cos(x− t)φ(t)dt+

∫ 1

0
sin(x− t)φ(t)dt = f (x) ,

where the function f(x) = 1
2e

x−cosx+ 1
2e (cos (x− 1) + sin (x− 1)) chosen so that the solution

φ(x) is given by
φ(x) = ex

Applying the shifted third Chebyshev polynomial V s
8 (x) to approximate the solution φα(x), that

is to say solution of the algebraic system of linear equations for α = 10−10

Points of x Exact sol Approx sol Error N=8
0.0000e+00 1.0000e+00 1.0000e+00 4.4283e-10
2.5000e-01 1.2840e+00 1.2840e+00 5.5645e-11
3.7500e-01 1.4549e+00 1.4549e+00 1.9957e-10
5.0000e-01 1.6487e+00 1.6487e+00 4.0386e-10
7.5000e-01 2.1170e+00 2.1170e+00 1.3097e-10
8.7500e-01 2.3988e+00 2.3988e+00 2.7559e-10
1.0000e+00 2.7182e+00 2.7182e+00 7.6849e-09

Table 1. The exact and approximate solutions of example 1
in some arbitrary points, using the shifted third Chebyshev polynomial V s

8 (x)
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Example 2. Consider the linear Volterra-Fredholm integral equation∫ x

0

(
3x+ t2)φ(t)dt+ ∫ 1

0

(
t3 sinx

)
φ(t)dt = f (x) ,

where the function f (x) = (3x+ 1) ln (x+ 1)+
1
2
x2 −x− 1

6
(sinx) (6 ln 2 − 5) chosen so that

the solution φ(x) is given by

φ(x) =
1

x+ 1

Applying the shifted fourth Chebyshev polynomial W s
8 (x) to approximate the solution φα(x),

that is to say solution of the algebraic system of linear equations for α = 10−10

Points of x Exact sol Approx sol Error N=8
0.0000e+00 1.0000e+00 1.0000e+00 3.8242e-06
2.5000e-01 8.0000e-01 8.0000e-01 5.5706e-08
3.7500e-01 7.2727e-01 7.2727e-01 4.2328e-08
5.0000e-01 6.6666e-01 6.6666e-01 3.6107e-08
7.5000e-01 5.7142e-01 5.7142e-01 2.8193e-08
8.7500e-01 5.3333e-01 5.3333e-01 3.2583e-08
1.0000e+00 5.0000e-01 5.0000e-01 2.4834e-07

Table 2. The exact and approximate solutions of example 2
in some arbitrary points, using the shifted fourth Chebyshev polynomial Ss

8(x)

Example 3. Consider the linear Volterra-Fredholm integral equation∫ x

0
−3(x−t)φ(t)dt+

∫ 1

0
(1)φ(t)dt = f (x) ,

where the function f(x) =−3x (x+ e−x − 1)−
1

(ln 3) (ln 3 − 1)
(
3e−1 ln 3 − 3 ln 3 + 2

)
chosen

so that the solution φ(x) is given by

φ(x) = 3x
(
1 − e−x

)
Applying the shifted third Chebyshev polynomial V s

8 (x) to approximate the solution φα(x), that
is to say solution of the algebraic system of linear equations for α = 10−10

Points of x Exact sol Approx sol Error N=8
0.0000e+00 0.0000e+00 1.6607e-07 1.6607e-07
2.5000e-01 1.5163e-01 1.5163e-01 2.7685e-09
3.7500e-01 1.7713e-01 1.7713e-01 2.0420e-09
5.0000e-01 1.8393e-01 1.8393e-01 4.8908e-09
7.5000e-01 1.6734e-01 1.6734e-01 5.1049e-09
8.7500e-01 1.5205e-01 1.5205e-01 5.6365e-09
1.0000e+00 1.3533e-01 1.3533e-01 3.9496e-08

Table 3. The exact and approximate solutions of example 3
in some arbitrary points, using the shifted third Chebyshev polynomial Ss

8(x)

Example 4. Consider the linear Volterra-Fredholm integral equation∫ x

0
(exp(x+ t))φ(t)dt+

∫ 1

0
(x− t)φ(t)dt = f (x) ,
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where the function f (x) =
1
4

exp (−2) (5−3x)− 1
4
(5+3x)+exp(x) chosen so that the solution

φ(x) is given by
φ(x) = x exp(−2x)

Applying the shifted fourth Chebyshev polynomial W s
8 (x) to approximate the solution φα(x),

that is to say solution of the algebraic system of linear equations for α = 10−10

Points of x Exact sol Approx sol Error N=8
0.0000e+00 1.0000e+00 1.0000e+00 3.8242e-06
2.5000e-01 8.0000e-01 8.0000e-01 5.5706e-08
3.7500e-01 7.2727e-01 7.2727e-01 4.2328e-08
5.0000e-01 6.6666e-01 6.6666e-01 3.6107e-08
7.5000e-01 5.7142e-01 5.7142e-01 2.8193e-08
8.7500e-01 5.3333e-01 5.3333e-01 3.2583e-08
1.0000e+00 5.0000e-01 5.0000e-01 2.4834e-07

Table 4. The exact and approximate solutions of example 2
in some arbitrary points, using the shifted fourth Chebyshev polynomial Ss

8(x)

Example 5. Consider the linear Volterra-Fredholm integral equation∫ x

−1
(xt)φ(t)dt+

∫ 1

−1
cosh (x+ t)φ(t)dt = f (x) ,

where the function f(x) =
1
4

coshx(4 + e2 − e−2) + x2 sinhx− x(coshx− e−1) chosen so that

the solution φ(x) is given by
φ(x) = coshx

Applying the third Chebyshev polynomial V8(x) to approximate the solution φα(x), that is to say
solution of the algebraic system of linear equations for α = 10−10

Points of x Exact sol Approx sol Error N=8
-1.0000e+00 1.5430e+00 1.5430e+00 1.9541e-09
-7.5000e-01 1.2946e+00 1.2946e+00 2.0075e-10
-5.0000e-01 1.1276e+00 1.1276e+00 1.3849e-11
0.0000e+00 1.0000e+00 1.0000e+00 6.8679e-10
5.0000e-01 1.1276e+00 1.1276e+00 8.6020e-12
7.5000e-01 1.2946e+00 1.2946e+00 1.8078e-10
1.0000e+00 1.5430e+00 1.5430e+00 2.2303e-09

Table 5. The exact and approximate solutions of example 4
in some arbitrary points, using the third Chebyshev polynomial V8(x)

Example 6. Consider the linear Volterra-Fredholm integral equation∫ x

−1
(x+ t)φ(t)dt+

∫ 1

−1
e(x+t)φ(t)dt = f (x) ,

where the function f(x) = 2ex − e−x − 2xe−x + xe chosen so that the solution φ(x) is given by

φ(x) = e−x

Applying the fourth Chebyshev polynomial W8(x) to approximate the solution φα(x), that is to
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say solution of the algebraic system of linear equations for α = 10−10

Points of x Exact sol Approx sol Error N=8
-1.0000e+00 2.7182e+00 2.7182e+00 2.5395e-08
-7.5000e-01 2.1170e+00 2.1170e+00 8.8042e-09
-5.0000e-01 1.6487e+00 1.6487e+00 2.4954e-09
0.0000e+00 1.0000e+00 1.0000e+00 1.8502e-09
5.0000e-01 6.0653e-01 6.0653e-01 5.8265e-09
7.5000e-01 4.7236e-01 4.7236e-01 4.1970e-09
1.0000e+00 3.6787e-01 3.6787e-01 3.7479e-08

Table 6. The exact and approximate solutions of example 5
in some arbitrary points, using the fourth Chebyshev polynomial W8(x)

5 Conclusion remarks

We can see that the sum of two compact operators is compact operator and so its range R(V+F)is
not closed, consequently the inverse operator (V + F )−1 is never a continuous operator from
its range to the whole space. The goal of this work is to replace the equation (1.1) ill posed
Volterra-Fredholm integral equations of the first kind by a perturbed equation using Chebyshev
polynomials of the third and the fourth kind to convert this perturbed equation to the system of
linear equations. Finally, some numerical examples indicate the accuracy and the efficiency of
this method.
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