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Abstract In this paper, we propose an enhanced version of a third order finite difference
WENO-L3 scheme to improve order of accuracy and resolutions of one- and two- dimensional
hyperbolic conservation laws. Similar to other third order WENO schemes, the improved WENO
scheme uses three points stencil {xi−1, xi, xi+1}. The reconstruction process of numerical flux
approximation is the convex combination of a second degree polynomial and two linear poly-
nomials. We add an extra weight to less smooth sub-stencils of the domain which plays an
important role to improve high resolution of the solutions especially at sharp gradients or dis-
continuities. We have shown the behaviour of the proposed scheme for a collection of scalar,
one-dimensional as well as two-dimensional test problems. Numerous computational solutions
strongly support that the proposed third order WENO scheme provides less truncation errors in
L1 and L∞ norms with better resolution near discontinuities than other WENO schemes.

1 Introduction

Hyperbolic conservation laws describe a wide collection of developments in different disciplines
such as astrophysical modelling, gas dynamics, meteorology, weather prediction, aerodynamics,
also, in mathematical physics like shock turbulence interaction, hypersonic flying objects, etc.
In the last three decades, several methodologies on higher order shock capturing schemes are de-
veloped by research community to explore the approximated solutions at critical and non-critical
points for hyperbolic conservation laws. The aim of the present article is to propose a new third
order finite difference weighted essentially non-oscillatory (WENO) scheme. Initially, the first
WENO scheme was developed by Liu, Osher and Chan [1] as an extension of essentially non-
oscillatory (ENO) scheme to explore the approximate solutions for the hyperbolic conservation
laws, given by {

ut +∇.f(u) = 0,
u(x1, x2, ..., xn, 0) = u0(x1, x2, ..., xn).

These type of non-linear complex systems do not have the analytical solutions, if they have, they
contain strongly irregular solutions which also may obtain complicated smooth solution region
structures. The existence of shocks, rarefaction waves and contact discontinuities in the solution
profile make it difficult to be high order accurate and stable numerical schemes due to the growth
of numerical instabilities and spurious oscillations.

Weighted essentially non-oscillatory (WENO) scheme is one of the most important shock
capturing and high resolution scheme which is improved by various authors as central WENO
[2] and compact WENO [3] and Hermite WENO [4] schemes to solve problems coming up in
science and engineering in past two decades. Jiang and Shu [5] developed the WENO scheme
with finite difference framework (WENO-JS) which contains a stencil with (2r − 1) points and
r substencils with r points. A general framework for designing a new non-linear weighting
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procedure is also presented in this paper that provides the final approximation to be of order (2r−
1). They developed a fifth order WENO-JS (r = 3) scheme by using these formulations. Balsara
and Shu [6] constructed a class of monotonicity preserved schemes which are a higher order
extension of finite difference WENO-JS scheme up to eleventh order. Borges et al. [7] developed
a new technique of weight formulation with high order smoothness indicators to improve the
WENO-JS scheme which is marked as WENO-Z. They showed that the fifth order WENO-Z
scheme achieves better accuracy and higher resolutions with lower dissipation than WENO-JS.
The WENO-Z scheme also avoids the loss of accuracy near critical points similar as WENO-M
but with better computational efficiency. Yamaleev et al. [8] presented a third order energy stable
finite difference WENO (ESWENO) scheme to improve the approximate solutions of piece-
wise continuous initial problems for hyperbolic conservation laws. However, the ESWENO
scheme works for limited applications. Castro et al. [9] constructed a generalized approach for
global smoothness indicator to improve the desired order of accuracy of all odd order WENO-Z
schemes. The accuracy analysis of a finite difference WENO scheme has been carried out by
Borges et al. in [10] to derive the alternative proof of the sufficient condition. A hybrid WENO
scheme [11] is introduced by applying a novel switch of third order WENO and fourth order
central WENO schemes, recognized as WENO-N3. An improved third order WENO scheme
by presenting a new global smoothness indicator is pronounced as WENO-NP3 [12, 13, 14].
Various third order WENO schemes were also further improved and reported in [15, 16, 17, 18]
as well as by Xu and Wu in [19, 20]. A third order WENO-AB3 scheme with modified global
smoothness indicator is constructed to improve order of accuracy at critical points by Anurag
and Bhavneet in [21]. They have also introduced a modified fifth order WENO-NZ5 scheme
in [22]. Zhu et.al have proposed a fifth order finite difference WENO (WENO-ZQ5) scheme
[23] by defining a different polynomial reconstruction procedure which is written in the convex
combination of a second degree polynomial with two linear polynomials in traditional WENO
fashion. The related optimal weights are set to be any random positive numbers with their sum
equals one. Later, they have introduced the same criteria for finite volume framework [24] also.
Guodong Li et al. [25] presented an improved third order finite difference WENO scheme for the
optimal stencil for hyperbolic conservation laws which is an extension of WENO-ZQ5 scheme.
The authors also made a small difference from WENO-ZQ scheme on the global smoothness
indicator. Xu and Wu have presented the WENO-P3 scheme [20] by adding new term in the non-
linear weights of the WENO-N3 scheme. Several authors have presented important concepts in
[26, 27, 28, 29, 30, 31, 32, 33, 34] to understand the methods. Based on above status of research,
we present an improved version of third order WENO-L3 scheme to achieve desired convergence
order. A new polynomial reconstruction procedure is defined by using the information of a three-
points stencil and two smaller two-points substencils. The non-linear weighting procedure is
also formulated by using a new global smoothness indicator in the form of linear combination
of first derivative of the smoothness indicator of the stencil S0{xi−1, xi, xi+1} and two lower
order smoothness indicators for S1{xi−1, xi}, S2{xi, xi+1}. For convenience, we denote as the
proposed scheme as WENO-L3+ scheme.

The article proceeds as follows: In section 2, we deal with usual preliminaries of basic formu-
lation of conventional third order finite difference WENO schemes. In section 3, we introduce
the new finite difference WENO scheme in third order manner and analyze its basic properties
by using the Taylor series expansion in detail. In section 4, the computational results of the
proposed scheme are compared with other variants of third order WENO scheme for a number
of benchmark smooth initial test cases or test cases where the solution has shocks and disconti-
nuities. In the end, the conclusion and related discussion are presented in the section 5.

2 Finite difference WENO schemes

For simplicity, we describe the brief formulation of the conservative finite difference weighted
essentially non-oscillatory (WENO) scheme. We apply it to one-dimensional hyperbolic equa-
tions in conservative form with the initial condition

∂u

∂t
+

∂f(u)

∂x
= 0, (2.1)

u(x, 0) = u0(x).
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The solution u(x, t) is a function of x as spatial variable and t as time variable. The flux
function f(u) is divided into two parts as f(u) = f+(u) + f−(u) to preserve the numerical
stability and avoid entropy violating solution where both functions f+(u) and f−(u) satisfy
the derivative conditions df+(u)

du ≥ 0 and df−(u)
du ≤ 0, respectively. We distribute the uni-

form mesh into the cells [xi−1/2, xi+1/2] with the cell sizes h = xi+1/2 − xi−1/2 and the cell
centers as xi = 1

2(xi+1/2 + xi−1/2). Several flux splitting methods are used in the research
papers but the global Lax-Friedrichs splitting criterion is heavily applied because of its capa-
bility to produce smooth fluxes. According to this criterion, the functions f+(u), f−(u) are
written as f+(u) = 1

2(f(u) + λu) and f−(u) = 1
2(f(u) − λu), respectively. The constant

λ = maxu(|f ′(u)|) comes out from the whole applicable range of u. We determine the semi-
discrete form [5] by integrating eqn. (2.1) with respect to x while keeping the time variable
continuous.

dui

dt
= −1

h

(
f i+1/2 − f i−1/2

)
= L(ui). (2.2)

The eqn. (2.2) is a system of time dependent ordinary differential equations (ODEs) which holds
the spatial accuracy of the scheme. The reconstruction procedure is defined only for the positive
flux function f

+
i+1/2. For convenience, we drop the superscript ‘+’. Similarily, we can evaluate

the negative numerical flux function f
−
i+1/2 about xi+1/2 by using mirror symmetric rule then a

numerical flux approximation is set to be f i+1/2 = f
+
i+1/2 + f

−
i+1/2.

2.1 WENO-JS3 scheme [5]

A third order WENO reconstruction process uses a three-point stencil S0{xi−1, xi, xi+1} which
is split into two- point substencils S1{xi−1, xi}, S2{xi, xi+1}. The numerical flux approximation
at xi+ 1

2
is defined as the convex combination of the interpolated values for both substencils. The

interpolated values f1,i+1/2, f2,i+1/2 for S1 and S2 are given, respectively as:

f1,i+1/2 = −1
2
fi−1 +

3
2
fi,

f2,i+1/2 =
1
2
fi+1 +

1
2
fi.

The resultant approximation flux at xi+ 1
2

for third order WENO scheme is

f i+1/2 = w1f1,i+1/2 + w2f2,i+1/2,

where w1 and w2 are the non-linear weight functions suggested by Jiang and Shu. The authors
provide the classical weighting procedure as follows:{

wk = αk

α1+α2
,

αk = dk

(βk+ε)2 , k = 1, 2.
(2.3)

The constants d1 = 1
3 , d2 = 2

3 are the optimal weights and a small positive number ε = 10−6

is used to avoid the division to be zero in the denominator. The general smoothness indicator
formula for an interpolated polynomial with respect to a stencil can be written as:

βk = h

∫ x
i+ 1

2

x
i− 1

2

(
dfk

dx

)2

dx+ h3
∫ x

i+ 1
2

x
i− 1

2

(
d2fk

dx2

)2

dx. (2.4)

βk =
.

βk +
..

βk (2.5)

where
.

βk,
..

βk are the first and second integrals of the smoothness indicator formula given in eqn.
(2.4). The β1 and β2 are the smoothness indicators for both substencils which are expressed to
determine the numerical flux approximation fk,i+1/2.

β1 = (fi − fi−1)
2,

β2 = (fi+1 − fi)
2.

(2.6)

The weighting procedure expressed in eqn. (2.3) fails to achieve the desired convergence rate.



Computational Partial Differential Equations 167

2.2 WENO-Z3 scheme

Borges et al. [7] presented a non-linear weighting procedure by using a global smoothness
indicator τZ containing whole three-point stencil S0{xi−1, xi, xi+1} which obtains higher order
accuracy than the classical smoothness indicator. An analysis of the convergence rate has been
done by the authors to solve the issue for vanishing the lower order derivatives at critical points.
A global smoothness indicator τZ for third order WENO scheme is given by

τZ = |β1 − β2|.

The non-linear weight functions by using τZ are presented as:wk = αk

α1+α2
,

αk = dk

(
1 + τZ

βk+ε

)
, k = 1, 2.

with ε = 10−40.

2.3 WENO-L3 Scheme

The interpolated polynomial for whole stencil S0{xi−1, xi, xi+1} is given by

f0,i+1/2 =
1
6
(−fi−1 + 5fi + 2fi+1). (2.7)

The authors obtain the local smoothness indicator for the reconstructed polynomial (2.7) which
is written as

β0 =
13
12

(fi−1 − 2fi + fi+1)
2 +

1
4
(fi+1 − fi−1)

2. (2.8)

wk =
αk

α0 + α1 + α2
, k = 0, 1, 2 (2.9)

where
αk = dk

(
1 +

τ

βk + ε

)
, (2.10)

and

τ =

(
(β0 − β1) + (β0 − β2)

2

)2

, ε = 10−40. (2.11)

The final reconstruction of the numerical flux approximation at x = xi+ 1
2

is written as:

f i+1/2 = w0f0,i+1/2 + w1f1,i+1/2 + w2

( 1
d2

f2,i+1/2 −
d0

d2
f0,i+1/2 −

d1

d2
f1,i+1/2

)
.

Guodong Li et al. [25] have performed all numerical results of WENO-L3 with different type
of linear weights same as WENO-ZQ5 [23] scheme which are (1) d0 = 0.98, d1 = 0.01 and
d2 = 0.01 (2) d0 = 1

3 , d1 = 1
3 and d2 = 1

3 (3) d0 = 0.01, d1 = 0.495 and d2 = 0.495. The
authors have shown that the WENO-L3 scheme achieves desired rate of convergence where first
and second derivatives vanish but the third derivative is nonzero.

Sufficient condition

A sufficient condition to develop a new third order accurate WENO scheme is obtained in [35]
by Henrick et al., also in [8] by Yamaleev et al.. The condition for an overall third order accurate
WENO scheme is given as:

w±
k − dk = O(h2), k = 0, 1 (2.12)

where the non-linear weights w+
k and w−

k are used to make the combinations of fk,i+1/2 and
fk,i−1/2, respectively.
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3 Improved scheme

With the choice of one entire stencil S0{xi−1, xi, xi+1} and two sub-stencils S1{xi−1, xi}, S2{xi, xi+1}
already chosen, we write the smoothness indicator β0 for S0 by using the smoothness indicator
formula (2.4) as

β0 =
13
12
(
fi−1 − 2fi + fi+1

)2
+

1
4
(
fi−1 − fi+1

)2
. (3.1)

We write β0 as the sum of
.

β0 and
..

β0

β0 =
.

β0 +
..

β0 . (3.2)

Hence, eqn. (3.1) can be written as

β0 =
1

12
(
fi−1 − 2fi + fi+1

)2
+

1
4
(
fi−1 − fi+1

)2
+
(
fi−1 − 2fi + fi+1

)2
. (3.3)

By comparing eqns. (3.2) and (3.3), the first and second derivatives of β0 are as follows{ .

β0=
1
12

(
fi−1 − 2fi + fi+1

)2
+ 1

4

(
fi−1 − fi+1

)2
,

..

β0=
(
fi−1 − 2fi + fi+1

)2
.

(3.4)

We write the Taylor series expansions at xi of the local smoothness indicators given in eqn. (2.6)
and

.

β0 from eqn. (3.4) as

β1 = f ′
i

2
h2 − f ′f ′′

i h
3 +

(1
4
f ′′
i

2
+

1
3
f ′
if

′′′
i

)
h4 − 1

12
f ′
if

(4)
i h5 − 1

6
f ′′
i f

′′′
i h5 +

(
1
60

f ′
if

(5)
i +

1
24

f ′′
i f

(4)
i +

1
36

f ′′′
i

2
)
h6 − 1

360
f ′
if

(6)
i h7 − 1

120
f ′′
i f

(5)
i h7 − 1

72
f ′′′
i f

(4)
i h7 +

1
2520

f ′
if

(7)
i h8 +

1
720

f ′′
i f

(6)
i h8+

1
360

f ′′′
i f

(5)
i h8 +

1
576

f ′
i(f

(4)
i )2h8 +O(h9).

(3.5)

β2 = f ′
i

2
h2 + f ′f ′′

i h
3 +

(1
4
f ′′
i

2
+

1
3
f ′
if

′′′
i

)
h4 +

1
12

f ′
if

(4)
i h5 +

1
6
f ′′
i f

′′′
i h5 +

(
1
60

f ′
if

(5)
i +

1
24

f ′′
i f

(4)
i +

1
36

f ′′′
i

2
)
h6 +

1
360

f ′
if

(6)
i h7 +

1
120

f ′′
i f

(5)
i h7 +

1
72

f ′′′
i f

(4)
i h7 +

1
2520

f ′
if

(7)
i h8 +

1
720

f ′′
i f

(6)
i h8+

1
360

f ′′′
i f

(5)
i h8 +

1
576

f ′
i(f

(4)
i )2h8 +O(h9).

.

β0= f ′
i

2
h2 +

(
1
12

f ′′
i

2
+

1
3
f ′
if

′′′
i

)
h4 +

(
1
60

f ′
if

(5)
i +

1
72

f ′′
i f

(4)
i +

1
36

f ′′′
i

2
)
h6 +O(h8).

(3.6)

We rewrite β1, β2 and
.

β0 as 
β1 = D(1 +O(h)),

β2 = D(1 +O(h)),
.

β0= D(1 +O(h2)),

where D = h2(f ′
i)

2 is a non-zero constant.
The two difference expansions

.

β0 −β1 and
.

β0 −β2 in Taylor series about f ′
i can be written as:

.

β0 −β1 = f ′f ′′
i h

3 − 1
6
f ′′
i

2
h4 +

( 1
12

f ′
if

(4)
i +

1
6
f ′′
i f

′′′
i

)
h5 − 1

36
f ′′
i f

(4)h6 +
( 1

360
f ′
if

(6)
i +

1
120

f ′′
i f

(5)
i +

1
72

f ′′′
i f

(4)
i

)
h7 +O(h8). (3.7)



Computational Partial Differential Equations 169

.

β0 −β2 = −f ′f ′′
i h

3 − 1
6
f ′′
i

2
h4 −

( 1
12

f ′
if

(4)
i +

1
6
f ′′
i f

′′′
i

)
h5 − 1

36
f ′′
i f

(4)h6 −
( 1

360
f ′
if

(6)
i +

1
120

f ′′
i f

(5)
i +

1
72

f ′′′
i f

(4)
i

)
h7 +O(h8). (3.8)

The modified nonlinear un-normalized weights are expressed as

wk =
αk∑2
s=0 αs

, k = 0, 1, 2 (3.9)

where

αk = dk

(
1 +

(τL+ + ε

βk + ε

)
+ ζk

)
, (3.10)

and ‘ε’ is a small positive number. The criteria to choose the value of ε is presented in subsection
(3.2). The proposed WENO scheme is termed as “ WENO-L3+ ” scheme which is an improved
varient of WENO-L3 scheme. The computational cost also can be minimized by using the
weights in aforesaid form.
By using the procedure of Acker et al. [17] and Gande et al. [36], we have studied the nature
and properties of ζk and is formulated as

ζk = λ
( βk + ε

τL+ + ε

)
. (3.11)

The parameter λ controls the increase in the weight given to the less smooth substencils and
maintains the non-oscillatory property of the scheme as well. The improved global smoothness
indicator τL+ is defined as

τL+ =
{(

.

β0 −β1) + (
.

β0 −β2)}2

32
. (3.12)

By adding eqns. (3.7) and (3.8), we obtain

(
.

β0 −β1) + (
.

β0 −β2) = −1
3
f ′′
i

2
h4 − 1

18
f ′′
i f

(4)h6 +O(h8). (3.13)

From eqns. (3.12) and (3.13), we derive

τL+ =

(
− 1

3f
′′
i

2
h4 − 1

18f
′′
i f

(4)h6 +O(h8)
)2

32
= O(h8). (3.14)

The final reconstruction of the numerical flux approximation at x = xi+ 1
2

is written as:

f i+1/2 = w0

( 1
d0

f0,i+1/2 −
d1

d0
f1,i+1/2 −

d2

d0
f2,i+1/2

)
+ w1f1,i+1/2 + w2f2,i+1/2.

3.1 Convergence analysis of the proposed scheme

In this section, we satisfy the optimality condition (2.12) for the third order WENO scheme. The
optimality condition requires that the value of the control parameter λ does not increase as h
decreases. It should not be very insignificant too because the intention of adding an extra weight
is to improve the resolution of the computational solutions. Hence, we choose λ = O(ht) where
0 < t < 1, implying λ = O(1).
The truncation error analysis of the non-linear weights (3.9) for the proposed scheme is given as
follows:

αk = dk

(
1 +

(
O(h8) + ε

O(h2) + ε

)
+ ht

(
O(h2) + ε

O(h8) + ε

))
. (3.15)

We assume ε = 0 in the eqn. (3.15) as it does not effect the overall scheme but plays an important
role in finding better resolution in the computational solutions. We thus obtain

αk = dk

(
1 +

(
O(h8)

O(h2)

)
+ ht

(
O(h2)

O(h8)

))
= dk

(
1 +O(ht−6)

)
, (3.16)
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where 0 < t < 6. This is contradiction as 0 < t < 1. Therefore, the convergence of the nonlinear
weights wk in eqn. (3.9) can not be assured to the optimal weights dk as h → 0. It may effect
the computational results of the WENO-L3+ scheme to obtain higher resolution and order three.
The ENO property [1] for continuous region wk = O(1) is also not satisfied because of negative
powers of h in eqn. (3.16).

3.2 The role of ε in the proposed scheme

Now, we determine the nature of ε in terms of cell size h for the proposed scheme. We prefer
ε = O(hq). It can be easily noted that O(hq) → 0 as h → 0 only if q > 0. Therefore, we obtain
the following inequality from eqn. (3.15).

min{min{8, q} − min{2, q}, t+ min{2, q} − min{8, q}} ≥ 0. (3.17)

The eqn. (3.17) implies {
min{8, q} − min{2, q} ≥ 0,
t+ min{2, q} − min{8, q} ≥ 0.

(3.18)

We observe that the inequalities (3.18) are satisfied for q ≤ 2. While choosing the value ε ≥ h2,
it should be noticed that the larger value of ε may also obtain greater dissipation. We can write
the above analysis as the proposition form.

Proposition 1: Suppose there are arbitrary number of vanishing derivatives in the problem and
αk = dk(1 +O(hm)). Then the dominating term containing the cell size, i.e., O(hm) tends to 0
only when ε ≥ h2.[36]

3.3 Time discretization

For the time discretization, we use strong stability preserving (SSP) Runge-Kutta time-stepping
[37] method of order three for all the test problems:

u(1) = un + ∆tL(un),

u(2) =
3
4
un +

1
4
u(1) +

1
4

∆tL(u(1)),

u(n+1) =
1
3
un +

2
3
u(2) +

2
3

∆tL(u(2)).

4 Computational results

In this section, a series of various computational results involving one- and two-dimensional
initial test problems taken from many literatures are illustrated to assess the performance of new
proposed scheme (WENO-L3+). We perform all numerical results of WENO-L3+ scheme by
choosing linear weights as: d0 = 0.98, d1 = 0.01 and d2 = 0.01. The values of ε and control
parameter λ are set to be h2 and h

1
3 , respectively. We use the third-order TVD Runge–Kutta

method with the time step ∆t ∼ h
3
2 to ensure Third-order convergence rate for accuracy test.

The value of CFL=0.95 is chosen for all Lax and shock wave interaction test problems, also
CFL=0.55 for all two dimensional test problems. We test the convergence order and accuracy
of the WENO-JS3, WENO-Z3, WENO-L3 and WENO-L3+ schemes for linear as well as non-
linear equations. The accuracy of the WENO schemes are obtained by using L1 and L∞ error
norms which are defined for error ‘e’over the domain [c, d] as

∥e∥∞ = maxi|ui − (uh)i|,

∥e∥1 =
d− c

N + 1

∑
i

|ui − (uh)i|,

where N is the number of subdivisions of the domain and ui and (uh)i are the exact and approx-
imate solutions (h = d−c

N ) at the point xi, respectively.



Computational Partial Differential Equations 171

Linear advection equation

In order to verify the accuracy and rate of convergence, we discuss the linear advection equation
with various initial test problems.

ut + ux = 0, −1 ≤ x ≤ 1, t > 0 (4.1)

u(x, 0) = u0(x).

4.1 Test problem: 1

We consider an smooth initial test problem

u0(x) = sin(πx). (4.2)

Tables 1 and 2 present the comparison of L1 and L∞ errors and their orders between WENO-JS3,
WENO-Z3, WENO-L3 and WENO-L3+ schemes. We can easily observe that the WENO-L3+
scheme attains third order of accuracy at critical points. The rate of convergence for WENO-JS3
scheme is greater than three at number of grid points 640 or more because the computational
results are also dependent on the value of ε. The errors for WENO-L3+ scheme are smaller
than WENO-JS3 and WENO-Z3 schemes. The magnitude of L1 and L∞ errors with their cor-
responding rate of convergence of WENO L3+ scheme are comparable with WENO-L3 scheme
as the number of grid points increases.

N WENO-JS3 WENO-Z3 WENO-L3 WENO-L3+

20 1.79747e-01(-) 1.42386e-01(-) 2.12105e-02(-) 2.02677e-02(-)
40 7.60505e-02(1.24) 4.05018e-02(1.81) 2.69084e-03(2.98) 2.57342e-03(2.98)
80 1.86722e-02(2.03) 9.57580e-03(2.08) 3.37381e-04(2.99) 3.22697e-04(2.99)
160 3.79179e-03(2.30) 2.10029e-03(2.19) 4.22018e-05(2.99) 4.03645e-05(2.99)
320 4.83703e-04(2.97) 4.46723e-04(2.23) 5.27625e-06(2.99) 5.04635e-06(3.00)
640 3.33412e-05(3.86) 9.41140e-05(2.25) 6.59554e-07(3.00) 6.30817e-07(3.00)
1280 1.93457e-06(4.11) 1.94948e-05(2.26) 8.24450e-08(3.00) 7.88528e-08(3.00)

Table 1: A comparison study of L1 errors and their orders of WENO schemes for eqn. (4.1)
with eqn. (4.2) at the time till t = 2.0.

N WENO-JS3 WENO-Z3 WENO-L3 WENO-L3+

20 2.07938e-01(-) 1.49746e-01(-) 1.68512e-02(-) 1.60638e-02(-)
40 8.69414e-02(1.26) 5.87657e-02(1.35) 2.11516e-03(2.99) 2.04724e-03(2.97)
80 3.41233e-02(1.35) 2.21041e-02(1.41) 2.65011e-04(2.99) 2.55598e-04(3.00)
160 1.10823e-02(1.62) 8.11044e-03(1.44) 3.31461e-05(2.99) 3.18399e-05(3.00)
320 2.35907e-03(2.23) 2.92558e-03(1.47) 4.14399e-06(2.99) 3.98256e-06(3.00)
640 2.12643e-04(3.47) 1.04116e-03(1.49) 5.18014e-07(3.00) 4.95444e-07(3.00)
1280 7.98942e-06(4.73) 3.66408e-04(1.50) 6.47522e-08(3.00) 6.19310e-08(3.00)

Table 2: A comparison study of L∞ errors and their orders of WENO schemes for eqn.
(4.1) with eqn. (4.2) at the time till t = 2.0.
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4.2 Test problem: 2

We opt another initial condition
u0(x) = sin3(πx), (4.3)

which contains first order critical points such that ux = 0, uxx = 0 and uxxx ̸= 0. The L1, L∞
errors and their corresponding rate of convergence for WENO-JS3, WENO-Z3, WENO-L3 and
WENO-L3+ schemes are given in the tables 3 and 4 which show that the WENO-L3+ scheme
achieves better errors and their corresponding orders than WENO-JS3 and WENO-Z3 schemes.
We also observe from the figure (1) that WENO-L3+ provides equivalent results as WENO-L3
scheme. The rest of the discussion is same as test problem: 1.

N WENO-JS3 WENO-Z3 WENO-L3 WENO-L3+

20 4.11849e-01(-) 3.73408e-01(-) 2.37566e-01(-) 2.29743e-01(-)
40 1.83414e-01(1.17) 1.14999e-01(1.70) 4.96542e-02(2.26) 4.76774e-02(2.27)
80 5.62879e-02(1.70) 2.98665e-02(1.94) 6.72928e-03(2.88) 6.44750e-03(2.89)
160 1.57866e-02(1.83) 6.72226e-03(1.49) 8.52962e-04(2.98) 8.16219e-04(2.98)
320 2.81026e-03(2.49) 1.42261e-03(2.24) 1.06828e-04(2.99) 1.02203e-04(3.00)
640 3.27085e-04(3.10) 2.94554e-04(2.27) 1.33595e-05(2.99) 1.27774e-05(3.00)
1280 2.31055e-05(3.82) 6.01963e-05(2.29) 1.67004e-06(3.00) 1.59728e-06(3.00)

Table 3: A comparison study of L1 errors and their orders of WENO schemes for eqn. (4.1)
with eqn. (4.3) at the time till t = 2.0.

N WENO-JS3 WENO-Z3 WENO-L3 WENO-L3+

20 3.72710e-01(-) 3.24539e-01(-) 1.90565e-01(-) 1.86013e-01(-)
40 2.22210e-01 (0.75) 1.60482e-01(1.02) 4.03852e-02(2.24) 3.89236e-02(2.26)
80 9.47450e-02(1.23) 6.39015e-02(1.33) 5.48482e-03(2.88) 5.31596e-03(2.87)
160 3.71811e-02(1.35) 2.40272e-02(1.41) 6.94374e-04(2.98) 6.76573e-04(2.97)
320 1.15724e-02(1.68) 8.73997e-03(1.46) 8.69841e-05(2.99) 8.43167e-05(3.00)
640 2.29871e-03(2.33) 3.11926e-03(1.49) 1.08773e-05(2.99) 1.04052e-05(3.00)
1280 1.87727e-04(3.61) 1.09874e-03(1.51) 1.35977e-06(3.00) 1.30055e-06(3.00)

Table 4: A comparison study of L∞ errors and their orders of WENO schemes for eqn.
(4.1) with eqn. (4.3) at the time till t = 2.0.

4.3 Test problem 3

We consider an smooth initial test problem for critical points problems

u0(x) = sin
(
πx− sin(πx)

π

)
. (4.4)

Tables 5 and 6 present the L1, L∞ errors and their corresponding rate of convergence for WENO-
JS3, WENO-Z3, WENO-L3 and WENO-L3+ schemes. We notice from the numerical results
that WENO-L3+ scheme achieves the desired order of accuracy. The magnitude of numerical
errors of WENO-L3+ are obtained much better than WENO-JS3 and WENO-Z3 schemes but
comparable with WENO-L3 scheme at each number of uniform grid points. The rest of the
discussion is same as test problem: 1.
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Figure 1: Numerical solutions (a) and enlarged portion (b) of eqn. (4.1) with eqn. (4.3) at the
uniform grid points N = 160 and time t = 2.0.

N WENO-JS3 WENO-Z3 WENO-L3 WENO-L3+

20 2.25871e-01(-) 1.52977e-01(-) 4.69852e-02(-) 4.51026e-02(-)
40 8.34609e-02(1.44) 4.73838e-02(1.69) 6.63191e-03(2.82) 6.34304e-03(2.83)
80 2.20960e-02(1.92) 1.13565e-02(2.06) 8.48426e-04(2.97) 8.11532e-04(2.97)
160 4.67512e-03(2.24) 2.53201e-03(2.17) 1.06499e-04(2.99) 1.01868e-04(2.99)
320 6.51804e-04(2.84) 5.44613e-04(2.22) 1.33237e-05(2.99) 1.27433e-05(3.00)
640 4.91290e-05(3.73) 1.13588e-04(2.26) 1.66568e-06(3.00) 1.59311e-06(3.00)
1280 2.90020e-06(4.08) 2.34699e-05(2.27) 2.08218e-07(3.00) 1.99146e-07(3.00)

Table 5: A comparison study of L1 errors and their orders of WENO schemes for eqn. (4.1)
with eqn. (4.4) at the time till t = 2.0.

N WENO-JS3 WENO-Z3 WENO-L3 WENO-L3+

20 2.44722e-01 (-) 1.74287e-01(-) 5.32808e-02 (-) 5.12690e-02(-)
40 1.03930e-01(1.24) 6.97696e-02(1.32) 8.18187e-03(2.70) 7.81961e-03(2.71)
80 4.11544e-02(1.34) 2.66582e-02(1.39) 1.06377e-03(2.94) 1.01625e-03(2.94)
160 1.38541e-02(1.57) 9.85738e-03(1.43) 1.33976e-04(2.99) 1.28119e-04(2.99)
320 3.20311e-03(2.11) 3.55935e-03(1.47) 1.67650e-05(2.99) 1.60336e-05(3.00)
640 3.40994e-04(3.23) 1.25137e-03(1.50) 2.09603e-06(3.00) 2.00467e-06(3.00)
1280 1.43233e-05(4.57) 4.40886e-04(1.51) 2.62014e-07(3.00) 2.50613e-07(3.00)

Table 6: A comparison study of L∞ errors and their orders of WENO schemes for eqn.
(4.1) with eqn. (4.4) at the time till t = 2.0.
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4.4 Burger’s equation

We study the numerical results for the non-linear scalar Burger’s equation:

ut +
(u2

2

)
x
= 0, −1 ≤ x ≤ 1, t > 0 (4.5)

along with the initial condition

u(x, 0) =
3
10

+
7
10

sin(πx). (4.6)

The exact solution for eqn. (4.6) is smooth with time up to t = 0.6363, after this time it produces
a moving shock which moves with a rarefaction wave. In order to verify the order of accuracy, we
compute the solution when it is continuous. We take the final computational time t = 1

π for all
the WENO schemes. Tables 7 and 8 present the L1 and L∞ errors for WENO-JS3, WENO-Z3,
WENO-L3 and WENO-L3+ schemes along with their convergence rate. The magnitude of the
errors of WENO-L3+ and WENO-L3 schemes are comparable in both norms but smaller than
WENO-JS3 and WENO-Z3 schemes. We can easily observe from the tables that both WENO-
L3+ and WENO-L3 schemes converge to the solution with convergence order of three for each
number of grid points but are better than WENO-JS3 and WENO-Z3 schemes.

N WENO-JS3 WENO-Z3 WENO-L3 WENO-L3+

20 3.44081e-02(-) 2.65937e-02(-) 1.74451e-02(-) 1.75132e-02(-)
40 8.79416e-03(1.97) 6.18841e-03(2.10) 3.04977e-03(2.51) 3.04605e-03(2.52)
80 2.34149e-03(1.91) 1.72589e-03(1.84) 4.24281e-04(2.84) 4.25338e-04(2.84)
160 4.81458e-04(2.28) 3.70445e-04(2.22) 5.25857e-05(3.01) 5.27335e-05(3.01)
320 5.23394e-05(3.20) 7.90443e-05(2.23) 6.42646e-06(3.03) 6.44744e-06(3.03)
640 6.49785e-06(3.01) 1.67867e-05(2.24) 7.87868e-07(3.03) 7.90449e-07(3.03)
1280 1.34434e-06 (2.27) 3.56533e-06(2.24) 9.72743e-08(3.02) 9.76008e-08(3.02)

Table 7: A comparison study of L1 errors and their orders of WENO schemes for eqn. (4.5)
with eqn. (4.6).

N WENO-JS3 WENO-Z3 WENO-L3 WENO-L3+

20 5.19033e-02(-) 4.05149e-02(-) 6.48653e-02(-) 6.49257e-02(-)
40 1.99475e-02(1.38) 1.49669e-02(1.44) 1.61400e-02(2.00) 1.62219e-02(2.00)
80 7.44081e-03(1.42) 5.46402e-03(1.45) 3.64398e-03(2.14) 3.62615e-03(2.16)
160 2.19468e-03(1.76) 2.12052e-03(1.37) 5.24850e-04(2.80) 5.25170e-04(2.79)
320 3.01743e-04(2.86) 7.61980e-04(1.48) 6.54603e-05(3.00) 6.56249e-05(3.00)
640 1.95281e-05(3.95) 2.82273e-04(1.43) 7.97059e-06(3.04) 7.97970e-06(3.04)
1280 5.09557e-06(1.94) 1.03137e-04(1.45) 9.79481e-07(3.02) 9.80704e-07(3.02)

Table 8: A comparison study of L∞ errors and their orders of WENO schemes for eqn.
(4.5) with eqn. (4.6).

One-dimensional Euler system of conservation laws

In this subsection, we consider the one-dimensional Euler system of conservation laws which is
given by:
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ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

Et + (u(E + p))x = 0,

where E is the total energy which can be determined by the equation p = (γ − 1)(E − 1
2ρu

2)
with γ = 1.4. ρ is the density variable and p is the pressure variable. The component u is the
velocity vector towards x co-ordinate direction.

4.5 Lax test problem

Consider the Lax’s shock tube test problem [38] for which the Riemnnn initial data is given by

(ρ, p, u) =

{
(1, 1, 0), 0 ≤ x < 0.5
(0.125, 0.1, 0), 0.5 ≤ x ≤ 1

(4.7)

The density solution for eqn. (4.7) are computed with grid points N = 200 up to time t =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.2

0.4

0.6

0.8

1

1.2

1.4

D
e
n
s
i
t
y

(a)

WENO-JS3

WENO-Z3

WENO-L3

WENO-L3+

Exact

0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72

0.3

0.4

0.5

0.6

0.79 0.795 0.8 0.805 0.81 0.815 0.82 0.825 0.83 0.835

1.2

1.25

1.3

(b)

0.68 0.7 0.72 0.74

1.2

1.25

1.3

Figure 2: Density profile of Lax test problem (a) and enlarged portions (b) near the discontinu-
ities.

0.13 along space direction. We study the density solutions obtained by WENO-JS3, WENO-Z3
and WENO-L3 schemes and compare them with WENO-L3+ scheme. The “exact”solution is
computed at the grid points N = 10, 000 with WENO-JS3 scheme. We can easily recognize from
figure (2) that WENO-L3+ scheme provides better resolutions at the contact discontinuities and
shocks accurately without overshoot and undershoot. The enlarged portions are given in figure
(2b) in which we observe that the WENO-L3 scheme contains the overshoot and undershoot (see
figure (7) in [25]). Finally, we observe that the performance of WENO-L3+ scheme is better than
WENO-JS3, WENO-Z3 and WENO-L3 schemes.

4.6 Two blast wave interaction test problem

We consider one-dimensional two blast wave interaction test problem [39] which contains the
initial data with reflective boundary conditions on both ends as follows:

(ρ, p, u) =


(1, 0, 1000), 0 ≤ x < 0.1
(1, 0, 0.01), 0.1 ≤ x < 0.9
(1, 0, 100), 0.9 ≤ x ≤ 1

(4.8)
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The density solution with its enlarged portions near discontinuities for eqn. (4.8) are displayed
in figures (3a), (3b) on the uniform grid points of N = 800, respectively. The CFL value for
this test problem is taken as 0.95 and time up to t = 0.038. The “exact” solution is shown
with WENO-JS3 scheme at the grid points N = 10, 000. It can be clearly examined from the
enlarged portions that all the WENO schemes provide accurate results at the extreme as well as
discontinuities. Therefore, we conclude that WENO-L3+ scheme provides better resolution and
converges to the exact solution better than WENO-JS3, WENO-Z3, WENO-L3 schemes.
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Figure 3: Density profile of two blast wave interaction test problem (a) and enlarged portions (b)
near the discontinuities.

Two-dimensional Euler system of conservation laws

In this subsection, we consider the two-dimensional Euler system of conservation laws which is
given by:

Ut + F (U)x +G(U)y = 0, (4.9)

with F (U) = (ρu, p+ρu2, ρuv, u(E+p))T , U = (ρ, ρu, ρv, E)T , G(U) = (ρv, p+ρv2, ρuv, v(E+
p))T ,
where E is the total energy determined by the equation p = (γ − 1)(E − 1

2ρ(u
2 + v2)) with

γ = 1.4. ρ is the density variable, p is the pressure variable. The components u, v are the ve-
locity vectors towards x and y co-ordinate directions. We demonstrate the computational results
of various two-dimensional test problems for WENO-L3+ scheme and compare the results with
WENO-JS3, WENO-Z3 and WENO-L3 schemes.

4.7 Configuration 3

We analyze the system of two-dimensional Euler equations with configuration 3 provided in
detail by Lax and Liu [40]. We choose the square computational domain as [0, 1] × [0, 1]. The
initial constant values into four quadrants are divided by the lines x = 0.8 and y = 0.8 as
follows:

(ρ, p, u, v) =


(1.5, 1.5, 0, 0), 0.8 ≤ x ≤ 1, 0.8 ≤ y ≤ 1
(0.5323, 0.30, 1.206, 0), 0 ≤ x < 0.8, 0.8 ≤ y ≤ 1
(0.138, 0.029, 1.206, 1.206), 0 ≤ x < 0.8, 0 ≤ y < 0.8
(0.5323, 0.30, 0, 1.206), 0.8 < x ≤ 1, 0 ≤ y < 0.8

The density profiles for WENO-JS3, WENO-Z3, WENO-L3 and WENO-L3+ schemes are com-
puted in figure 4 with uniform grid points of 800 × 800. The computational time is taken upto
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t = 0.8. According to a careful study of these results, it can be observed that the WENO-L3+
scheme provides better improvement in the resolution of portion of discrete vortices through the
slip line roll-up than WENO-JS3, WENO-Z3 and WENO-L3 schemes.

Figure 4: Density solutions for configuration 3 of WENO-JS3, WENO-Z3, WENO-L3 and
WENO-L3+ schemes

4.8 Double Mach reflection (DMR) problem of a strong shock

The double Mach reflection problem, firstly introduced by Woodward and Colella (1984) is an
important and standard test case which is widely used to check the ability of shock capturing
and small scaled structure resolutions in two dimensional cases. According to the test problem,
A right moving Mach 10 shock is placed at the beginning point x = 1

6 , y = 0 on the wall and
the intersection angle between the shock and x-axis is 60◦. The exact postshock condition is
inflicted for the bottom boundary in the domain from x = 0 to x = 1

6 and the reflective boundary
condition is started from the point x = 1

6 to x = 4. In the present simulation, the specific heat
ratio γ is chosen as 1.4. The computational experiments are executed on the domain 4 units long
and 1 unit high with fine grid points 1920 × 480 at the final time up to t = 0.2 and the CFL
number 0.55. The initial data for the double Mach reflection problem is given by

(ρ, p, u, v) =

{
(8.0, 116.5, 7.145,−4.125), x < 1

6 + y√
3

(1.4, 1.0, 0, 0), x ≥ 1
6 + y√

3

We present the numerical results in figure (5) for density contours obtained with WENO-JS3,
WENO-Z3, WENO-L3 and WENO-L3+ schemes on the computational region [0, 3] × [0, 1].
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Each of the schemes captures the shock waves really well. We also display partially close-up
regions around the double Mach stems in figure (6) for all considered schemes. We can easily
observe that the resolutions at the point of contact discontinuity for WENO-L3+ scheme are
captured more clearly and yield improvement in the vortical structures. The resolving power of
WENO-L3+ scheme is better than WENO-JS3, WENO-Z3 and WENO-L3 schemes.

5 Conclusion

In this article, a new method of third order finite difference WENO scheme for solving hyper-
bolic conservation laws, termed as WENO-L3+ is proposed. We have demonstrated a significant
improvement in the computational results for third order WENO-L3+ scheme. In the proposed
WENO scheme (WENO-L3+), a new polynomial reconstruction procedure is defined by using
the information of a three-points and two smaller two-points spatial substencils. The non-linear
weighting procedure is also formulated by using a new global smoothness indicator in the form of
linear combination of first derivative of the smoothness indicator of the stencil S0{xi−1, xi, xi+1}
and two lower order smoothness indicators for S1{xi−1, xi}, S2{xi, xi+1}. We have shown the
convergence analysis of the WENO-L3+ scheme by using Taylor series expansions and deter-
mined the desirable values of control parameter ‘λ’and ‘ε’. The computational experiments for
several appropriate test problems are carried out to show the improvement of the WENO-L3+
scheme. The results obtained for several critical points problems have shown that the WENO-
L3+ scheme achieves third order accuracy. It provides better performance than WENO-JS3
and WENO-Z3 schemes but comparable with WENO-L3 scheme. It can also be observed that
WENO-L3+ scheme provided better resolution of solutions across shocks and discontinuities
without producing spurious numerical oscillations than WENO-JS3, WENO-Z3 and WENO-
L3 schemes. As a future topic of interest, the presented method can also be extended of the
converegence order more than three.
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Figure 5: Density plots for double Mach reflection problem for WENO-JS3, WENO-Z3,
WENO-L3 and WENO-L3+ schemes at time up to t = 0.2 with the grid points of 1920 × 480.
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Figure 6: Close-up regions of density plots near double Mach stems for WENO-JS3, WENO-Z3,
WENO-L3 and WENO-L3+ schemes at time up to t = 0.2 with the grid points of 1920 × 480.
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