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Abstract In this article, we obtained a special type of generalized involute curve in E4
1 from

null cartan curve. This study provides the conditions that are sufficient and required for a curve
in E4

1 to have both a generalized evolute and an involute curve.

1 Introduction

In differential geometry, curves have various significant implications and attributes. These
curves are vastly being studied by several researchers. Subsequently, researchers often introduce
new curves based on previous studies. Among them are Involute [26] and evolute curves. Our
knowledge of the local and global geometry of the general theory of curves in a Euclidean space,
or more specifically in a Riemannian manifold, is now very extensive due to its long history of
revelation. If two curves have been present and tangent line of second curve is perpendicular to
the tangent line of the first curve, the second curve is referred to as the involute of the first curve.
Moreover, a new approach to studying surface curves has been taken recently by Shaikh et al.
[17]. They focus on rectifying, osculating, and normal curves on a surface by taking into account
isometry and conformal maps between two surfaces and examining their invariance under such
maps. In addition, curves on a smooth surface were also studied by Shaikh et al. [16]. Conse-
quently, the position vector constantly remains in the surface’s tangent plane, demonstrating the
isometry of surfaces. However, a plenty of significant and compelling work has been done on nor-
mal curves, rectifying and osculating curves, rectifying curves under conformal transformation,
and rectifying and osculating curves. [1],[18],[19],[20],[21],[22],[23],[24]. In a further step,
orthonormal of the same space can be achieved by producing an evolute Frenet apparatus by an
involute apparatus in four-dimensional Euclidean space, as discovered by Ozyilmaz and Yilmaz
[14]. Frenet frame of involute curves depends on the curvatures of the provided curve, according
to Bukcu and Karacan [4]. Sato [15] explored the singularities and geometric characteristics of
pseudo-spherical evolutes of curves on a space-like surface in 3-dimensional Minkowski space.
According to Izumiya. S.and Takahashi. M. [10], iteration of involutes generates a pair of curve
sequences with respect to the Minkowski metric and its dual. Null curves have different prop-
erties than the other curves, such as time-like, space-like, or Euclidean curves. So, the partner
curves of a null curve are also interesting and fascinating. For null curves, there are different
conditions for the cases of space-like or time-like curves. According to Nolasco and Rui 12,
the correspondence between plane curves and null curves exists in Minkowski 3-space, and the
geometry of null curves according to the curvature of the corresponding plane curves was de-
scribed. In 4-dimensional Minkowski space, Coken and Ciftci [5] differentiate pseudo-spherical
null curves from Bertrand null curves. Sakaki 16 made two specific contributions: firstly, the
evolute of a null curve in R4

1; secondly, the involute of a spacelike curve in R4
1, and the corre-

spondence between them, which is very similar to the plane evolute and involute. We also refer
to the papers [6], [7], [8],[25] for more results of finding involute and evolute. In the present
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study, we define a novel class of specialized involute and evolute curves from null cartan curves
in a 4-dimensional Minkowski space. We were successfully able to come up with the required
and adequate conditions for the curve to have both evolute and involute properties.

2 Preliminaries

The Minkowski spacetime E4
1 is the Euclidean 4-space E4 with a metric defined by

g(y) = −dy2
1 + dy2

2 + dy2
3 + dy2

4

where (y1, y2, y3, y4) represents the rectangular coordinate system of E4
1 . Vector v ∈ E4

1 \ {0}
can be space-like if g(v, v) > 0, time-like if g(v, v) < 0, and light-like (null) if g(v, v) = 0.
||v|| =

√
|g(v, v)| is the norm of vector v. We call two vectors v and w orthogonal if g(v, w) = 0.

An arbitrary curve γ(s) in E4 can be locally space-like, time-like, or light-like if all of its velocity
vectors α′(s) are respectively space-like, time-like, or light-like. A curve γ(s) in E4

1 can be
space-like, time-like, or light-like if its velocity vectors γ′(s) are commonly space-like, time-
like, or null. Consider I ⊂ (a, b) to be an open interval in R and γ : I ⊂ (a, b) → E4

1 is a
regular curve in E4

1 parameterized by the arc length parameter s, and {T,N1, N2, N3} denote
the moving Frenet Frame along γ, which consists of the tangent vector T , the principal normal
vector N1, the first binormal vector N2, and the second binormal vector N3, respectively. so that
T ∧N1 ∧N2 ∧N3, coincides with the standard orientation of E4

1 . Then
g(T, T ) = ϵ1, g(N1, N1) = ϵ2, g(N2, N2) = ϵ3, g(N3 ·N3) = ϵ4, ϵ1ϵ2ϵ3ϵ4 = −1, ϵi ∈ {1,−1}, i ∈
{1, 2, 3, 4}.
In particular, the following conditions hold:
g(T,N1) = g(T,N2) = g(T,N3) = g(N1, N2) = g(N1, N3) = g(N2, N3) = 0.
From [20] the Frenet-Serret Formula for α in E4

1 is given by

T ′ = ϵ2k1N

N ′ = −ϵ1k1T + ϵ3k2B1

B′
1 = −ϵ2k2N − ϵ1ϵ2ϵ3k3B2

B′
2 = −ϵ3k3B1

(2.1)

. A null curve γ is parameterized by pseudo-arc s if g(γ′′(s), γ′′(s)) = 1 [21]. Further more
non-null curve γ, we have this condition g(γ′(s), γ′(s)) = ±1. From [22] if γ is null Cartan
curve, the Cartan Frenet frame is given by

T ′ = κ1N1

N ′
1 = κ2T − κ1N2

N ′
2 = −κ2N1 + κ3N3

N ′
3 = −κ3T

(2.2)

, where g(T, T ) = g(N2, N2) = 0, and g(N1, N1)=g(N3, N3) = 1, also g(T,N1) = g(T,N3) =
g(N1, N2) = g(N1, N3) = g(N2, N3) = 0, and g(T,N2) = 1.

3 A null cartan curve’s generalized involute curve in E4
1

In this portion we present generalized involute curves of a light-like(null) cartan curve in E4
1 .

First, we define two types of involute curves of a light-like cartan curve as follows:
Definition 3.1.((1,2)-type of generalized involute curve):
A curve α is called (1,2)-type of generalized involute of β in 4-dimensional Minkowski space if
α = β + λTβ , where Tβ is orthogonal to (1,2)-plane spanned by {Tα, Nα}.
Definition 3.2.((1,3)-type of generalized involute curve):
A curve α is called (1,3)-type of generalized involute of β in 4-dimensional Minkowski space if
α = β + λTβ , where Tβ is orthogonal to (1,3)-plane spanned by {Tα, Bα}.
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The tangent T ∗ of evolute Γ∗ of a null cartan curve is colinear with N3, where N3 is binormal of
null cartan curve. We generalized this condition by assuming that T ∗ lies in the planes {N3, T},
{N3, N1}, {N3, N2}. In special case, T ∗ which lies in the plane {N3, T} can be collinear with
N3 and then we get ordinary Evolute.

Let γ be a Cartan light-like curve in E4
1 with Cartan frame {T,N1, N2, N3}. Then Sakaki

[16] gives the evolute of gamma,

γ∗(s∗) = γ(s) +

(
1
κ3

)
N3.

Differentiating, we get

ds∗

ds
T ∗ = T (s) +

(
1
κ3

)′

N3 +

(
1
κ3

)
(−κ3T ) =

(
1
κ3

)′

N3.

Therefore
T ∗ = N3.

This implies that γ∗ is a space-like curve. We will generalize this condition assuming that space-
like planes coincide, i.e

span{T ∗, N∗
2 } = span{N1, N3}.

This condition implies that time-like planes coincide, that is

span{N∗
1 , N

∗
3 } = span{T,N2}.

Since T ∗ ∈ span{N1, N3}, we have

T ∗ = Φ(s)N1(s) + Ψ(s)N3,

where Φ2 + Ψ2 = 1. Hence parametric equation of Generalized evolute of γ reads

γ∗(s∗) = γ(s) +

(
1
κ3

)
T ∗ = γ(s) +

(
1
κ3

)
(Φ(s)N1(s) + Ψ(s)N3),

for Φ(s) = 0 and Ψ(s) = 1, we get standered evolute.

3.1 Theorem

Let γ : I → E4
1 be a Cartan light-like curve with arc-length parameter s such that κ1 = 1 and

κ2, κ3 ̸= 0. Then the curve γ is an (1, 3)-evolute curve, and its evolute mate curve is a space-like
or time-like curve with curvatures not equal to zero iff ∃ Φ, Ψ scaler functions of arc-length
parameter s and real constants Λ ̸= ±, Ω satisfying

(Φ′κ3 − Φκ′
3) = Λ(Ψ′κ3 − Ψκ′

3), (3.1)

ΩΛκ1 = Λκ2 − κ3, (3.2)

−2Λ
3κ1κ2 + Λ

2κ1κ3 ̸= 0. (3.3)

Proof. Let γ : I → E4
1 be a regular curve with an arc-length parameter s, so thatκ1, κ2, κ3 ̸=

0. Let γ∗ : I → E4
1 be the (1, 3)-evolute of γ. Denote{T ∗, N∗

1 , N
∗
2 , N

∗
3 }to be the Frenet frame

along γ∗ and κ∗
1 , κ∗

2 , and κ∗
3 are the curvatures of γ∗. Then

span{T,N2} = span{N∗
1 , N

∗
3 }, span{N1, N3} = span{T ∗, N∗

2 }.

Further, we may express the curve γ∗ as follows:

γ∗(s∗) = γ∗(g(s)) = γ(s) +
1
κ3

(Φ(s)N1(s) + Ψ(s)N3), (3.4)

∀s∗ ∈ I∗, s ∈ I where Φ(s) and Ψ(s) are C∞ functions on I .
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Differentiating (3.4) by using equation (2.2), we will get

T ∗g′ =

(
1 +

1
κ3

(Φκ2 − Ψκ3)

)
T (s)+

(
Φ′κ3 − Φκ′

3
κ3κ′

3

)
N1−

(
Φκ1

κ3

)
N2+

(
Ψ′κ3 − Ψκ′

3
κ3κ′

3

)
N3.

(3.5)
Taking inner product of (3.5) by T and N2 respectively, we get

g
′
T ∗ =

(
Φ′κ3 − Φκ′

3
κ3κ′

3

)
N1 +

(
Ψ′κ3 − Ψκ′

3
κ3κ′

3

)
N3. (3.6)

So equation (3.6) gets the form

T ∗ =

(
Φ′κ3 − Φκ′

3
g′κ3κ′

3

)
N1 +

(
Ψ′κ3 − Ψκ′

3
g′κ3κ′

3

)
N3. (3.7)

Multiplying (3.7) by itself, we get

ϵ∗1(g
′
)2 =

(
Φ′κ3 − Φκ′

3
κ3κ′

3

)2

+

(
Ψ′κ3 − Ψκ′

3
κ3κ′

3

)2

. (3.8)

If we denote

α =

(
Φ′κ3 − Φκ′

3
g′κ3κ′

3

)
, β =

(
Ψ′κ3 − Ψκ′

3
g′κ3κ′

3

)
. (3.9)

Using equation (3.9) in (3.7), we get

T ∗ = αN1 + βN3. (3.10)

Taking derivative of equation (3.10) using (2.2), we get

ϵ∗2g
′κ∗

1N
∗
1 = (ακ2 − βκ3)T + α′N1 − ακ1N2 + β′N3. (3.11)

Since {N∗
1 , N

∗
3 }⊥{N1, N3}, so we get

α′ = 0, β′ = 0. (3.12)

using equation (3.12) in equation (3.11), we will get

ϵ∗2g
′κ∗

1N
∗
1 = (ακ2 − βκ3)T − ακ1N2. (3.13)

Multiplying equation (3.13) by itself, we get

ϵ∗2(g
′κ∗

1)
2 = −2ακ1(ακ2 − βκ3). (3.14)

From equation (3.9), we get the result (3.1)

(Φ′κ3 − Φκ′
3) = Λ(Ψ′κ3 − Ψκ′

3), (3.15)

where Λ =
(

α
β

)
, β ̸= 0.

Using (3.9) in (3.14), we get

ϵ∗2(g
′)2(κ∗

1)
2 = −2

(
Φ′κ3 − Φκ′

3
g′κ3κ′

3

)2

κ1

(
Λκ2 − κ3

Λ

)
(3.16)

Using (3.15) in (3.8), we acquire

ϵ∗1g
′2 =

(
Ψ′κ3 − Ψκ′

3
κ3κ′

3

)2

(Λ2 + 1). (3.17)

Substituting equation(3.17) in (3.16), we get

(g′)2(κ∗
1)

2 = −2
1

(Λ2 + 1)
[Λκ1(Λκ2 − κ3)]. (3.18)
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Denote

∆1 =
ακ2 − βκ3

g′κ∗
1

=

(
Ψ′κ3 − Ψκ′

3
g′2κ∗

1κ3κ′
3

)
[Λκ2 − κ3], (3.19)

∆2 =
ακ1

g′κ∗
1
=

(
Ψ′κ3 − Ψκ′

3
g′2κ∗

1κ3κ′
3

)
(Λκ1). (3.20)

Dividing (3.19)by (3.20), we accruire the result (3.2)

ΩΛκ1 = Λκ2 − κ3, (3.21)

where Ω = −
(

∆1
∆2

)
.

Using (3.19) and (3.20) in equation (3.13), we get

N∗
1 = ∆1T + ∆2N2. (3.22)

Differentiating equation (3.22) by using equation (2.2), we obtain

−ϵ∗1g
′κ∗

1T
∗ + ϵ∗3g

′κ∗
2N

∗
2 = ∆

′

1T + (∆1κ1 − ∆2κ2)N1 + ∆
′

2N2 + ∆2κ3N3. (3.23)

Since {T ∗, N∗
2 }⊥{T,N2}, so we obtain

∆
′

1 = 0,∆
′

2 = 0. (3.24)

Using (3.24) in (3.23), we obtain

−ϵ∗1g
′κ∗

1T
∗ + ϵ∗3g

′κ∗
2N

∗
2 = (∆1κ1 − ∆2κ2)N1 + ∆2κ3N3. (3.25)

Using the (3.6), (3.19) and (3.20) in (3.25), we obtain

ϵ∗3g
′κ∗

2N
∗
2 = P (s)N1 +Q(s)N3, (3.26)

where

P (s) =

(
Ψ′κ3 − Ψκ′

3
g′2κ∗

1κ3κ′
3

)
[−2Λ

3κ1κ2 + Λ
2κ1κ3], (3.27)

Q(s) =

(
Ψ′κ3 − Ψκ′

3
g′2κ∗

1κ3κ′
3h

)
[−2Λ

3κ1κ2 + Λ
2κ1κ3]. (3.28)

Since
ϵ∗3g

′κ∗
2N

∗
2 ̸= 0.

So, we get the result (3.3)
−2Λ

3κ1κ2 + Λ
2κ1κ3 ̸= 0

Conversely, let γ : I ⊂ R → E4
1 be an evolute curve whose arc length parameter s is such that

k1, k2, k3 ̸= 0. And relations (3.1), (3.2) and (3.3) hold for some functions Φ and Ψ that are
differentiable of arc length parameters s and real constants Λ ̸= ±1, Ω. Then the curve γ∗ can
be expressed like this

γ∗(s∗) = γ(s) +
1
κ3

(Φ(s)N1(s) + Ψ(s)N3). (3.29)

Differentiating (3.29) by using equation (2.2), we obtain

dγ∗

ds
=

(
1 +

Φk2 − Ψk3

k3

)
T +

(
Φ′k3 − Φk′3

k2
3

)
N1 −

(
Φk1

k3

)
N2 +

(
Ψ′k3 − Ψk′3

k2
3

)
N3.

Taking inner product with T and N2

dγ∗

ds
=

(
Φ′κ3 − Φκ′

3
κ3κ′

3

)
N1 +

(
Ψ′κ3 − Ψκ′

3
κ3κ′

3

)
N3. (3.30)
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From (32) and (3), we get

dγ∗

ds
=

(
Ψ′κ3 − Ψκ′

3
κ3κ′

3

)
[ΛN1 +N3]. (3.31)

From this

g′ =
ds∗

ds
= ||dΓ∗

ds
|| = c1

(
Ψ′κ3 − Ψκ′

3
κ3κ′

3

)√
c2(Λ2 + 1) > 0, (3.32)

such that c1(
Ψ

′κ3−Ψκ′
3

κ3κ
′
3

) > 0 where c1 = ±1 and c2 = ±1 such that c2(Λ2 + 1) > 0. rewrite
equation (32)

T ∗g′ =

(
Ψ′κ3 − Ψκ′

3
κ3κ′

3

)
[ΛN1 +N3]. (3.33)

Using (3.32) in (3.33), we get

T ∗ =
c1√

c2(Λ2 + 1)
[ΛN1 +N3], (3.34)

which indicates that g(T ∗, T ∗) = c2 = ϵ∗1 , where c1 = ±1.
differentiating equation (3.34) by using (2.2), we acquire

dT ∗

ds∗
=

c1

g′
√

c2(Λ2 + 1)
[(Λκ2 − κ3)T − Λκ1N2]. (3.35)

Using (3.35), we have

k∗1 = ||dT
∗

ds
|| =

√
(−2Λκ1)(Λκ2 − κ3)

g′
√
c2(Λ2 + 1)

> 0 (3.36)

From equation (3.35) and (3.36), we obtain

N∗
1 =

1
κ∗

1

dT ∗

ds∗
=

c1√
(−2Λκ1)(Λκ2 − κ3)

[(Λκ2 − κ3)T − Λκ1N2], (3.37)

which indicates that g(N∗
1 , N

∗
1 ) = 1.

Let

∆3 =
c1(Λκ2 − κ3)√

(−2Λκ1)(Λκ2 − κ3)
, ∆4 =

−c1Λκ1√
(−2Λκ1)(Λκ2 − κ3)

, (3.38)

we acquire
N∗ = ∆3T + ∆4N2. (3.39)

differentiating (3.39) by using equation (2.2), we obtain

g′
dN∗

1
ds∗

= ∆
′

3T + (∆3κ1 − ∆4κ2)N1 + ∆
′

4N2 + ∆4κ3N3. (3.40)

Differentiating (3.2),we will get

(Λκ
′

2 − κ
′

3)Λκ1 − (Λκ2 − κ3)Λκ
′

1 = 0. (3.41)

differentiating (3.38) with respect to s by using (3.41), we heve

∆
′

3 = 0, ∆
′

4 = 0. (3.42)

Substituting the values (3.38) and (3.42) in (3.40), we get

dN∗
1

ds∗
=

2c1Λκ1κ2 − c1κ1κ3

g′
√
(−2Λκ1)(Λκ2 − κ3)

N1 −
c1Λκ1κ3

g′
√
(−2Λκ1)(Λκ2 − κ3)

N3. (3.43)

Using equation (3.34) and (3.36), we obtain

ϵ∗1κ
∗
1T

∗ =
c1
√
(−2Λκ1)(Λκ2 − κ3)

g′(Λ2 + 1)
[ΛN1 +N3]. (3.44)
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From (3.43) and (3.44), we obtain

dN∗
1

ds∗
+ ϵ∗1κ

∗
1T

∗ =
c1(Λ2κ1κ3 + 2Λκ1κ2 − κ1κ3)

g′(Λ2 + 1)
√
(−2Λκ1)(Λκ2 − κ3)

[N1 − ΛN3], (3.45)

From (3.45), we have

k∗2 =
|(Λ2κ1κ3 + 2Λκ1κ2 − κ1κ3)|

g′(Λ2 + 1)
√
(−2Λκ1)(Λκ2 − κ3)

> 0. (3.46)

Considering (3.45) and (3.46) together, we obtain

N∗
2 =

ϵ∗3
κ∗

2

[
dN∗

1
ds∗

+ ϵ∗1κ
∗
1T

∗
]
= c2ϵ

∗
3 [N1 − ΛN3], (3.47)

where c2 =
|(Λ2κ1κ3+2Λκ1κ2−κ1κ3)|
|(Λ2κ1κ3+2Λκ1κ2−κ1κ3)|

= ±1 and ϵ∗3 = ±1.
From (3.47), we acquire g(N∗

2 , N
∗
2 ) = c1 = ϵ∗3 = −ϵ∗1 , a unit vector N∗

3 can be represented like
this N∗

3 = −∆4T + ∆3N2; that is,

N∗
3 =

c1ϵ3√
(−2Λκ1)(Λκ2 − κ3)

[(Λκ1)T − Λ(κ2 − κ3)N2] , (3.48)

which indicates that g(N∗
3 , N

∗
3 ) = 1. In the end we find κ∗

3

κ∗
3 = H(

dN∗
2

ds∗
, N∗

3 ) =
c1c2κ1ϵ

∗
3(Λ

2 + 1)κ3

g′
√
c3(Λ2 + 1)

√
(−2Λκ1)(Λκ2 − κ3)

̸= 0.

Hence we find that γ∗ is (1,3)-Evolute curve of the curve γ since span{T,N2} = span{N∗
1 , N

∗
3 },

span{N1, N3} = span{T ∗, N∗
2 }.

3.2 Theorem

let γ : I → E4
1 be a Cartan light-like (null) curve by an arc-length parameter s such that κ1 = 1

and κ2, κ3 ̸= 0. Then curve γ is a (0, 2)-evolute curve, and its evolute mate curve is a space-like
or time-like curve with curvatures not equal to zero iff there exist constant functions x, y, h, and
µ± 1 satisfying,

(xκ1 − yκ2) = hyκ3, (3.49)

−µhκ1 = hκ2 − κ3, (3.50)

h2κ1κ3 − 2hκ1κ2 − κ1κ3 ̸= 0, (3.51)

for all s ∈ I .
Proof. Let γ : I → E4

1 be a Cartan light-like curve with an arc-length parameter s such that
κ1, κ2, κ3 ̸= 0. Let γ∗ : I → E4

1 be the (0, 2)-evolute curve of γ. Let {T ∗, N∗
1 , N

∗
2 , N

∗
3 } be The

Frenet frame along γ∗ and κ∗
1 , κ∗

2 , and κ∗
3 are its curvatures of γ∗. Then

span{T,N2} = span{N∗
1 , N

∗
3 }, span{N1, N3} = span{T ∗, N∗

2 }.

Furthermore, we may express the curve γ∗ as follows:

γ∗(s∗) = γ(s) +
1
κ3

[x(s)T (s) + y(s)N2] (3.52)

∀ s∗ ∈ I∗ and s ∈ I here x(s) and y(s) are the C∞ functions on I .
Differentiating (3.52) by using equation (2.2), we will get

T ∗g′ =

(
1 +

x′κ3 − xκ′
3

κ3κ′
3

)
T (s) +

(
xκ1 − yκ2

κ3

)
N1 +

(
y′κ3 − yκ′

3
κ3κ′

3

)
N2 + yN3 (3.53)
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By taking the inner product of (3.53) on both sides with T and N2, respectively, we acquire
x′ = 0 and y′ = 0, implying that x and y are constants. As a result, (3.53) turns into

T ∗g′ =

(
xκ1 − yκ2

κ3

)
N1 + yN3. (3.54)

Multiplying (3.54) by itself, we get

ϵ∗1(g
′)2 =

(
xκ1 − yκ2

κ3

)2

+ y2. (3.55)

If we denote

α =

(
xκ1 − yκ2

g′κ3

)
, β =

(
y

g′

)
. (3.56)

So, (3.54) gets the form
T ∗ = αN1 + βN3. (3.57)

Taking derivative of equation (3.57) using equation (2.2) , we acquire

ϵ∗1g
′κ∗

1N
∗
1 = (ακ2 − βκ3)T + α′N1 − ακ1N2 + β′N3. (3.58)

Taking inner product of (3.58) by N1 and N3 respectively, we obtain

α′ = 0, β′ = 0. (3.59)

Using (3.59) in (3.58), we get

ϵ∗2g
′κ∗

1N
∗
1 = (ακ2 − βκ3)T − ακ1N2. (3.60)

Multiplying (3.60) by itself, we obtain

ϵ∗2(g
′)2(κ∗

1)
2 = −2Λ

(
y

g′

)2

[Λκ1κ2 − κ1κ3]. (3.61)

From (3.56), we obtain
(xκ1 − yκ2)β = α(yκ3). (3.62)

From this, we acquire the result (3.49)

(xκ1 − yκ2) = hyκ3, (3.63)

where h = α
β , β ̸= 0.

Using (3.63) in (3.55), we obtain
ϵ∗1g

′2 = y2(h2 + 1). (3.64)

Substituting (3.64) in (3.61), we get

(g′)2(κ∗
1)

2 =

(
−2h
h2 + 1

)
[(hκ1κ2 − κ1κ3)]. (3.65)

If we denote

∆1 =
ακ2 − βκ3

g′κ∗
1

=

(
yκ3

g′2κ∗
1κ2

)
[(hκ2 − κ3)], (3.66)

∆2 = − α

g′κ∗
1
= −

(
yκ3

g′2κ2κ∗
1

)
hκ1. (3.67)

Dividing (3.66) by (3.67), we obtain the result (3.50)

−µhκ1 = hκ2 − κ3,

where µ = ∆1
∆2

, ∆2 ̸= 0.
Using (3.66) and (3.67) in (3.60), we will get

N∗
1 = ∆1T + ∆2N2. (3.68)
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Differentiating (3.68) by following equation (2.2), we acquire.

−ϵ∗1g
′κ∗

1T
∗ + ϵ∗3g

′κ∗
2N

∗
2 = ∆

′

1T + (∆1κ1 − ∆2κ2)N1 + ∆
′

2N2 + ∆2κ3N3. (3.69)

By multiplying equation (3.69) by T and N2, we acquire.

∆
′

1 = 0,∆
′

2 = 0. (3.70)

Using the (3.66), (3.67) and (3.70) in (3.69), we obtain

ϵ∗3g
′k∗2N

∗
2 = R(s)N1 +Q(s)N3, (3.71)

where

R(s) =

(
yκ3

g′2(h2 + 1)κ∗
1κ2

)
[h2κ1κ3 − 2hκ1κ2 − κ1κ3], (3.72)

Q(s) =

(
yκ3

g′2(h2 + 1)κ∗
1κ2

)
[h2κ1κ3 − 2hκ1κ2 − κ1κ3]. (3.73)

Since
ϵ∗3g

′k∗2N
∗
2 ̸= 0.

So we get the result (3.51)
Λ

2κ1κ3 − 2Λκ1κ2 − κ1κ3 ̸= 0. (3.74)

In reverse, we assume that γ : I ⊂ R → E4
1 be a Cartan light-like curve by arc-length param-

eter s and κ1, κ2, κ3 ̸= 0, and the relations (3.49), (3.50), (3.51) hold for differentiable scalar
functions of arc-length parameter s x, y, Λ, Ω ̸= 0. The curve γ∗ can be described as follows:

γ∗(s∗) = γ(s) +
1
κ3

[x(s)T (s) + y(s)N2]. (3.75)

Differentiating equation (3.75) by using equation (2.2), we acquire

dγ∗

ds
=

(
xκ1 − yκ2

κ3

)
N1 + yN3. (3.76)

From (3.49), we get
dγ∗

ds
=

(
hyκ3

κ3

)
N1 +

(
yκ3

κ3

)
N3.

dγ∗

ds
= y[hN1 +N3]. (3.77)

From this
g′ =

ds∗

ds
= ||dγ

∗

ds
|| = c1y

√
c2(h2 + 1) > 0, (3.78)

such that c1(
yκ3
κ2

) > 0 where c1 = ±1 and c2 = ±1 such that c2(h2 − 1) > 0. Rewrite equation
(3.77)

T ∗g′ = y[hN1 +N3]. (3.79)

Substituting (3.78) in (3.79), we get

T ∗ =
c1√

c2(h2 + 1)
[hN1 +N3], (3.80)

which shows that H(T ∗, T ∗) = c2 = ϵ∗1 .
Differentiating equation (3.80) s by using equation (2.2), we acquire

dT ∗

ds∗
=

c1

g′
√
c2(h2 + 1)

[(hκ2 − κ3)T − hκ1N2]. (3.81)

Using (3.81), we get

k∗1 = ||dT
∗

ds
|| =

√
−2hκ1(hκ2 − κ3)

f ′
√

c2(h2 + 1)
> 0 (3.82)
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From (3.81) and (3.82), we have

N∗
1 =

1
κ∗

1

dT ∗

ds∗
=

c1√
−2hκ1(hκ2 − κ3)

[(hκ2 − κ3)T − hκ1N2], (3.83)

which indicate that g(N∗
1 , N

∗
1 ) = 1.

If we denote

∆3 =
c1(hκ2 − κ3)√

−2hκ1(hκ2 − κ3)
, ∆4 = − c1hκ1√

−2hκ1(hκ2 − κ3)
. (3.84)

Using (3.84) in (3.83), we get
N∗

1 = ∆3T + ∆4N2. (3.85)

Taking derivative of (3.85) using equation (2.2), we acquire

g′
dN∗

1
ds∗

= ∆
′

3T + (∆3κ1 − ∆4κ2)N1 + ∆
′

4N2 + ∆4κ3N3. (3.86)

Differentiating (3.50), we get

hκ′
1(hκ2 − κ3) + hκ1(hκ

′

2 − κ
′

3) = 0. (3.87)

Differentiating equation (3.84) with respect to s by using (3.87), we acquire

∆
′

3 = 0, ∆
′

4 = 0. (3.88)

Substituting (3.84) and (3.88) in (3.86), we get

dN∗
1

ds∗
=

c1(2hκ1κ2 − κ1κ3)

g′
√

−2hκ1(hκ2 − κ3)
N1 +

c1hκ1κ3

g′
√
−2hκ1(hκ2 − κ3)

N3 (3.89)

From (3.80) and (3.82), we get

ϵ∗1κ
∗
1T

∗ =
c1
√
−2hκ1(hκ2 − κ3)

g′(h2 + 1)
[hN1 +N3]. (3.90)

Adding (3.89),(3.90), we get

dN∗
1

ds∗
+ ϵ∗1κ

∗
1T

∗ =
c1(2hκ1κ2 + h2κ1κ3 − κ1κ3)

g′(h2 + 1)
√

−2hκ1(hκ2 − κ3)
[N1 + hN3], (3.91)

From (3.91), we have

k∗2 =
|(2hκ1κ2 + h2κ1κ3 − κ1κ3)|
g(h2 + 1)

√
−2hκ1(hκ2 − κ3)

> 0. (3.92)

Considering (3.91) and (3.92) together, we obtain

N∗
2 =

ϵ∗3
κ∗

2
[
dN∗

1
ds∗

+ ϵ∗1κ
∗
1T

∗] = c2c3ϵ
∗
3 [N1 + hN3], (3.93)

where c3 = |(2hκ1κ2+h2κ1κ3−κ1κ3)|
|(2hκ1κ2+h2κ1κ3−κ1κ3)| = ±1 and ϵ∗3 = ±1. From (3.93) g(N∗

2 , N
∗
2 ) = c1 = ϵ∗3 = −ϵ∗1

, also unit vector N∗
3 can be expressed like this N∗

3 = −∆4T + ∆3N2; i.e,

N∗
3 =

c2(hκ2 − κ3)√
−2hκ1(hκ2 − κ3)

T +
c2hκ1√

−2hκ1(hκ2 − κ3)
N2, (3.94)

which indicates that g(N∗
3 , N

∗
3 ) = 1. In the end, we find κ∗

3 as,

κ∗
3 = g(

dN∗
2

ds∗
, N∗

3 ) =
c3ϵ

∗
3κ3

g′
√
−2hκ1(hκ2 − κ3)

̸= 0.

Thus, we examine that γ∗ is space-like or time-like curve and a (1,2)-evolute curve of the curve
Γ assuming span{T,N2} = span{N∗

1 , N
∗
3 }, span{N1, N3} = span{T ∗, N∗

2 }.
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4 Conclusion Remarks

Null curves have different properties than the other curves, such as time-like, space-like,or Eu-
clidean curves. So, the partner curves of a null curve are also interesting and fascinating. The
popular examples of a couple of curves are Bertrand curves, quaternionic Bertrand curves,
mannheim curves, and involute and evolute curves. Of course, in 4-dimensional Minkowski
space-time, the partner curves of a null Curves have different types and characterizations. This
paper gives two new types of involute curves of a null Cartan curve in E4

1 called (1,2)-type and
(1,3)-type generalized involutes. Sufficient and required conditions for a curve to be an evolute
of a null Cartan curve are introduced as two systems of equations, one of which is differentiable
while the other is not.
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