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Abstract We studied linear mappings in Beidleman near-vector spaces and explored their
matrix representations using R-bases of R-subgroups. In contrast to the theory of vector spaces,
the sets of normal linear mappings and linear mappings do not form nearrings. Additionally,
we developed algorithms for determining the seed number and seed sets of R-subgroups within
finite-dimensional Beidleman near-vector spaces. We introduced the notion of γ-linearly inde-
pendent of vectors and gave a sufficient condition for a set of vector to be 1-linearly independent
after performing the EGE algorithm.

1 Introduction

Nearfields, first studied by Dickson [6] in 1905, found immediate applications in geometry.
Despite their close resemblance to fields, the absence of one-sided distributive laws makes the
study of nearfields challenging.

Nearfields, also known as skewfields or division rings, lack the distributive law on one
side. Dickson’s pioneering work in 1905 initiated their exploration, revealing connections to
geometry and automata theory [20, 21, 22]. Most finite nearfields are constructed by distort-
ing multiplication in finite fields through Dickson’s method, with seven exceptional examples
[11]. For a comprehensive overview, consult books by Pilz [8] and Meldrum [3], among others
[11, 1, 4, 14, 12, 13]. In 1966, Beidleman introduced the concept of near-vector spaces over
nearfields, employing nearring modules and the left distributive law [5]. A different notion of
near-vector spaces defined by André in 1974, utilizing automorphisms, results in the right dis-
tributive law [17, 18, 24, 16].

More recent contributions to the theory of Beidleman near-vector spaces were made by
Djagba and Howell [10, 7, 9]. These contributions delve into subspaces and subgroups of near-
vector spaces over nearfield notions like R-dimension, R-basis, seed set, and seed number of
an R-subgroup were introduced. Due to the lack of distributivity, near-vector spaces exhibit
more anomalous behavior compared to vector spaces over fields. An R-subgroup of a near-
vector space is a subset closed under vector addition and vector-scalar multiplication. It can be
generated by a set of vectors, with explicit procedures like ’Expanded Gaussian Elimination’
[7, 9] characterizing R-subgroups generated by finite sets of vectors. This result implies that a
near-vector space Rm over a proper nearfield R can be generated by fewer than m vectors.

This paper primarily delves into the original Beidleman definition, specifically concentrating
on the subgroup structure within finite-dimensional Beidleman near-vector spaces, with a special
emphasis on the canonical scenario of Rm. Our research involves the derivation of matrix rep-
resentations for both linear and normal linear mappings between finite-dimensional Beidleman
near-vector spaces. It is noteworthy that, unlike vector spaces, the collection of linear mappings
originating from near-vector spaces does not exhibit the properties of a nearring. This distinction
underscores the unique and intricate mathematical characteristics of near-vector spaces, which
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we aim to elucidate and understand further in this study. Furthermore, we have undertaken the
development of sophisticated algorithms geared towards efficiently ascertaining both the seed
number and seed sets of R-subgroups within finite-dimensional Beidleman near-vector spaces.
In our research, we have also introduced the concept of γ-linearity among vectors, and have es-
tablished a sufficient condition for a set of vectors to exhibit 1-linearity independence, following
the execution of the EGE algorithm. This innovation represents a significant advancement in
our understanding of near-vector spaces and offers a practical tool for exploring their inherent
structural properties.

2 Preliminaries

Let R be a non-empty set.

Definition 2.1. ([3]) The triple (R,+, ·) is a (left) nearring if (R,+) is a group, (R, ·) is a semi-
group, and a(b+ c) = ab+ ac for all a, b, c ∈ R.

A nearfield is an algebraic structure similar to a skew-field, also known as a division ring.
The key distinction is that it has only one of the two distributive laws.

Definition 2.2. ([8]) Let R be nearring. If
(
R∗ = R \ {0}, ·

)
is a group then (R,+, ·) is called

nearfield.

In this paper, we will utilize left nearfields and right nearring modules. Various mathemati-
cians, including Dickson, Zassenhauss, Neumann, Karzel, and Zemmer, have independently
demonstrated that the additive group of a nearfield is abelian.

Theorem 2.1. ([8]) The additive group of nearfield is abelian.

To construct finite Dickson nearfields, we require two concepts:

Definition 2.3. ([8]) A pair of numbers (q, n) ∈ N2 is called a Dickson pair if q is some power
pl of a prime p, each prime divisor of n divides q − 1, q ≡ 3 mod 4 implies 4 does not divide n.

Definition 2.4. ([8]) Let R be a nearfield and Aut(R,+, ·) the set of all automorphisms of N . A
map

ϕ : R∗ → Aut(R,+, ·)
n 7→ ϕn

is called a coupling map if for all n,m ∈ R∗, ϕn ◦ ϕm = ϕϕn(m)·n.

Dickson’s pioneering work in 1905 led to the discovery of the first proper finite nearfield. He
achieved this by distorting the multiplication operation of a finite field. For any pair of Dickson
numbers (q, n), there exist corresponding finite Dickson nearfields with an order of qn. These
nearfields are obtained by starting with the Galois field GF (qn) and modifying the multiplica-
tion operation. Thus DN(q, n) = (GF (qn),+, ·)ϕ =

(
GF (qn),+, ◦

)
. We will denote a Dickson

nearfield arising from the Dickson pair (q, n) as DN(q, n). For more details regarding the con-
struction of the new multiplication operation denoted by ’◦’, we refer the reader to [6, 8].

Example 2.5. ([8]) Consider the field (GF (32), +, ·) with

GF (32) := {0, 1, 2, x, 1 + x, 2 + x, 2x, 1 + 2x, 2 + 2x},

where x is a zero of x2 + 1 ∈ Z3[x] with the new multiplication defined as

a ◦ b :=

{
a · b if a is a square in (GF (32), +, ·)
a · b3 otherwise

This gives the smallest finite Dickson nearfield DN(3, 2) := (GF (32), +, ◦), which is not a
field. Here is the table of the new operation ◦ for DN(3, 2).
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◦ 0 1 2 x 1 + x 2 + x 2x 1 + 2x 2 + 2x
0 0 0 0 0 0 0 0 0 0
1 0 1 2 x 1 + x 2 + x 2x 1 + 2x 2 + 2x
2 0 2 1 2x 2 + 2x 1 + 2x x 2 + x 1 + x

x 0 x 2x 2 1 + 2x 1 + x 1 2 + 2x 2 + x

1 + x 0 1 + x 2 + 2x 2 + x 2 2x 1 + 2x x 1
2 + x 0 2 + x 1 + 2x 2 + 2x x 2 1 + x 1 2x

2x 0 2x x 1 2 + x 2 + 2x 2 1 + x 1 + 2x
1 + 2x 0 1 + 2x 2 + x 1 + x 2x 1 2 + 2x 2 x

2 + 2x 0 2 + 2x 1 + x 1 + 2x 1 x 2 + x 2x 2

We will refer to this example in later sections.

The concept of a ring module can be extended to a more general concept called a nearring
module where the set of scalars is taken to be a nearring.

Definition 2.6. An additive group (M,+) is called (right) nearring module over a (left) nearring
R if there exists a mapping,

η : M ×R→M

(m, r)→ mr

such that m(r1 + r2) = mr1 +mr2 and m(r1r2) = (mr1)r2 for all r1, r2 ∈ R and m ∈M.
We write MR to denote that M is a (right) nearring module over a (left) nearring R.

Definition 2.7. ([7]) A subset A of a nearring module MR is called a R-subgroup if A is a
subgroup of (M,+), and AR = {ar|a ∈ A, r ∈ R} ⊆ A.

Definition 2.8. ([7]) A nearring module MR is said to be irreducible if MR contains no proper
R-subgroups. In other words, the only R-subgroups of MR are MR and {0}.

Corollary 2.9. ([7]) Let MR be a unitary R-module. Then MR is irreducible if and only if
mR = MR for every non-zero element m ∈M.

Definition 2.10. ([7])Let MR be a nearring module. N is a submodule of MR if :

• (N,+) is normal subgroup of (M,+),

• (m+ n)r −mr ∈ N for all m ∈M,n ∈ N and r ∈ R.

Proposition 2.11. ([7]) Let N be a submodule of MR. Then N is a R-subgroup of MR.

Note that the converse of this proposition is not true in general. In his thesis ([7], page 14)
Beidleman gives a counter example. However,

Lemma 2.12. If MR is a ring module, then the notions of R-subgroup and submodule of MR

coincide.

Proof. By Proposition 2.11, every R-submodule is a R-subgroup. Let H be a R-subgroup of
MR. Then hr ∈ H for all h ∈ H and r ∈ R. But hr = (m+ h)r −mr for all m ∈M. Hence H
is a submodule of MR.

Theorem 2.2. ([7]) Let R be a nearring that contains a right identity element e ̸= 0. R is division
nearring if and only if R contains no proper R-subgroups.

Remark 2.13. Let R be a nearfield. By Theorem 2.2, RR is irreducible R-module. Thus R
contains only {0} and R as submodules of RR.
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Definition 2.14. ([7]) Let {Mi|i ∈ I} be a collection of submodules of the nearring module MR.
MR is said to be a direct sum of the submodules Mi, for i ∈ I, if the additive group (M,+) is a
direct sum of the normal subgroups (Mi,+), for i ∈ I . In this case we write MR =

⊕
i∈I Mi.

Proposition 2.15. ([7]) MR =
∑

i∈I Mi and every element of MR has a unique representation
as a finite sum of elements chosen from the submodules Mi if and only if MR =

∑
i∈I Mi and

Mk ∩
∑

i∈I,i̸=k Mi = {0}.

We also have that

Proposition 2.16. ([7]) Let {Mi| i ∈ I} be a collection of submodules of the nearring module
MR. Then MR =

⊕
i∈I Mi implies that MR =

∑
i∈I Mi and the elements of any two distinct

submodules permute.

According to the definition of a nearring module, there is no distributivity of elements of
R over the elements of M . If we consider MR as direct sum of the collection of submodules
{Mi| i ∈ I} of the nearring module MR, the following result enables us to distribute the elements
of R over elements contained in distinct submodules within the direct sum. This result holds
significant utility within the concept of Beidleman near-vector spaces.

Lemma 2.17. ([7])Let MR =
⊕

i∈I Mi, Mi is a submodule of MR. If m =
∑

i∈I mi where
mi ∈Mi and r ∈ R then

mr =
(∑

i∈I

mi

)
r =

∑
i∈I

(mir).

Definition 2.18. ([7]) A nearring module MR is called strictly semi-simple if MR is a direct sum
of irreducible submodules.

We now have,

Definition 2.19. ([7]) Let (M,+) be a group. MR is called Beidleman near-vector space if MR

is a strictly semi-simple R-module where R is a nearfield.

Theorem 2.3 ([7, 5]). Let R be a (left) nearfield and MR a (right) nearring module. MR is a
finite dimensional near-vector space if and only if MR is isomorphic to Rn for some positive
integer n.

Definition 2.20 (R-module isomorphism). Let MR and NR be two modules. A function Φ :
M → N is a R-module isomorphism if it is a bijection that respects Φ(m+ n) = Φ(m) +Φ(n)
and Φ(mr) = Φ(m)r for every m,n ∈M and r ∈ R.

Definition 2.21 (Linear map). Let MR and NR be two near-vector spaces. A function Φ : M →
N is a linear map if it respects Φ(m + n) = Φ(m) + Φ(n) and Φ(mr) = Φ(m)r for every
m,n ∈M and r ∈ R.

Definition 2.22 (Normal linear map). Let MR and NR be two near-vector spaces. A function
Φ : M → N is a normal linear map if it Φ is linear map and Φ(MR) is subspace of NR.

2.23 Subgroups of Rn

In [7], R-subgroups of finite-dimensional near vector spaces were classified using the Expanded
Gaussian Elimination (EGE) algorithm. This algorithm constructs the smallest R-subgroup con-
taining a given finite set of vectors. It’s important to note that such an R-subgroup always exists
since the intersection of subgroups is also a subgroup.

Definition 2.24. Let V be a set of vectors. Define gen(V ) to be the intersection of all R-
subgroups containing V .
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Let LC0(v1, v2, . . . , vk) := {v1, v2, ..., vk} and for n ≥ 0, let LCn+1 be the set of all linear
combinations of elements in LCn(v1, v2, . . . , vk), i.e.

LCn+1(v1, v2, . . . , vk) =

{
ℓ∑

i=1

wiλi | ℓ ≥ 0, wi ∈ LCn, λi ∈ R ∀1 ≤ i ≤ ℓ

}
.

Theorem 2.4 (Theorem 5.2 in [7]). Let v1, v2, . . . , vk ∈ Rn. We have

gen(v1, . . . , vk) =
∞⋃
i=0

LCi(v1, . . . , vk).

Let MR be a nearring module. Let V ⊆MR and let T be an R-subgroup of MR.

Definition 2.25 (Seed set). We say that V generates T if gen(V ) = T . In that case we say that
V is a seed set of T . We also define the seed number seed(T ) to be the cardinality of a smallest
seed set of T .

In [12], it was demonstrated that each R-subgroup can be expressed as a direct sum of mod-
ules uiR of a special kind:

Theorem 2.5 (Theorem 5.12 in [7]). Let R be a proper nearfield and {v1, . . . , vk} be vectors in
Rn. Then, gen(v1, . . . , vk) =

⊕ℓ
i=1 uiR, where the ui are rows of some matrix U = (uij) ∈

Rℓ×n such that each of its columns has at most one non-zero entry.

The EGE algorithm, is presented below, illustrates the proof of the theorem mentioned above.
It is employed to compute the smallest R-subgroup for a given set of vectors.

Proof. Given a particular set of vectors v1, . . . , vk, arrange them in a matrix V whose i-th row is
composed of the components of vi, i.e., V = (vji ) where 1 ≤ j ≤ n. Then gen(v1, . . . , vk) is the
R-row space of V , which is a R-subgroup of Rn. We can then do the usual Gaussian elimination
on the rows. The gen spanned by the rows will remain unchanged with each operation (swopping
rows, scaling rows, adding multiples of a row to another). When the algorithm terminates, we
obtain a matrix W ∈ Rk×n in reduced row-echelon form (denoted by RREF (V )). Let the
non-zero rows of W be denoted by w1, w2, . . . , wt where t ≤ k.

Case 1: Suppose that every column has at most one non-zero entry, then

gen(v1, . . . , vk) = gen(w1, . . . , wt) = w1R+ w2R+ · · ·+ wtR

where the sum is direct. In this case we are done.

Case 2: Suppose that the j-th column is the first column that has two non-zero entries, say wj
r ̸=

0 ̸= wj
s with r < s, (we necessarily have r, s ≤ j) where wj

r is the j-th entry of row wr and
wj

s the j-th entry of row ws. Let α, β, γ ∈ R such that (α+β)λ ̸= αλ+βλ. We apply what
we will call the distributivity trick :

Let α′ = (wj
r)

−1α and β′ = (wj
s)

−1β. Then consider the new row

θ = (wrα
′ + wsβ

′)λ− wr(α
′λ)− ws(β

′λ).

Since θ ∈ LC2(wr, ws) we have θ ∈ gen(w1, . . . , wt).

For 1 ≤ l < j, either wl
r or wl

s is zero because the j-th column is the first column that has
two non-zero entries, thus θl = 0. Note that by the choice of α, β, λ, we have

θj = (wj
r)α

′ + wj
sβ

′)λ− (wj
rα

′)λ− (wj
sβ

′)λ

=
(
wj

r(w
j
r)

−1α+ wj
s(w

j
s)

−1β
)
λ−

(
wj

r(w
j
r)

−1α
)
λ−

(
wj

s(w
j
s)

−1β
)
λ

= (α+ β)λ− αλ− βλ ̸= 0.

It follows that θj ̸= 0. Hence θ = (0, . . . , 0, θj , θj+1, . . . , θn). We now multiply the row θ
by (θj)−1, obtaining the row ϕ = (0, . . . , 0, 1, θj+1(θj)−1, . . . , θn(θj)−1) ∈ gen(w1, . . . , wk)
where ϕj = 1 is the pivot that we have created.
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As a next step, we form a new matrix of size (t+1)×n by adding ϕ to the rows w1, . . . , wt.
On this augmented matrix we replace the rows wr, ws with yr = wr − (wj

r)ϕ, ys = wr −
(wj

s)ϕ respectively. This yields another new matrix composed of the rows w1, . . . , wr−1, yr, . . . , ys, ϕ, ws+1, . . . , wt

which has only one non-zero entry in the j-th column. By Lemma ??, the gen of the rows
of the augmented matrix is the gen of the rows of W (which in turn is gen(v1, . . . , vk)).
Hence

gen(v1, . . . , vk) = gen(w1, . . . , wr, . . . , ws, . . . , wt)

= gen(w1, . . . , yr, . . . , ys, ϕ, . . . , wt).

Continuing this process, we can eliminate all columns with more than one non-zero entry.
Let the final matrix have rows u1, u2, . . . , uk′ . Then

gen(v1, . . . , vk) = gen(w1, . . . , wt) = gen(u1, . . . , uk′) = u1R+ u2R+ . . .+ uk′R,

where the sum is direct.
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3 Developing Algorithms for a construction of a seed set

In contrast to the concept of vector spaces, in which there do not exist k vectors that span the
entire finite-dimensional vector space Fm when k < m and F is a field, the case of finite-
dimensional Beidleman near-vector spaces exhibits different behavior. Here, there exist vectors
that, when combined, span the entire space Rm where R is a proper nearfield. This phenomenon
is exemplified in Theorem 5.12 of [7], where the authors classified the R-subgroups of Rm

generated from a finite set of vectors.
During the process of explicitly describing the smallest R-subgroup containing a given set

of vectors, Theorem 5.12 in [7] demonstrated that the union of p-linear combinations of these
finite sets of vectors is utilized. If there exists a finite set of vectors in Rm such that the smallest
R-subgroup containing these vectors generates the entire space Rm, then there exists a minimum
positive integer p for which the p-linear combinations of these vectors yield the entire space Rm.
An intriguing open question pertains to finding tight bounds on positive integers p for which
p-linear combinations of a finite set of vectors yield the entire space and investigating potential
constructions of seed sets that yield finite-dimensional near-vector spaces. We now introduce the
following concepts.

Definition 3.1. A vector u is left multiple of v if there exists r ∈ R such that u = rv.

Definition 3.2. Let V ∈ Rk×m be a matrix of k rows and m columns for m ≥ 2. We will say
that V is 1-column independent if for all 1 ≤ i < j ≤ m, α ∈ R, vi ̸= αvj .

Definition 3.3. Let R be a finite nearfield. A finite set vectors V = {v1, . . . , vk} in Rm is
called γ-linearly dependent for some positive integer γ if there exists vi ∈ V such that vi ∈
LCγ(v1, . . . , vi−1, v̂i, vi+1, . . . , vk). We define V to be γ-linearly independent if V is not γ-
linearly dependent.

Definition 3.4. Let m ≥ 3. Let R be a finite nearfield and v1, . . . , vk ∈ Rm be a finite set of
vectors such that k ≥ 2. The set LCp(v1, . . . , vk) will be called the p-linear combinations of the
vectors v1, . . . , vk. We define the index of R-linearity of v1, . . . , vk ∈ Rm to be

I(v1, . . . , vk) = min{p ∈ N : LCp(v1, . . . , vk) = Rm}

the smallest positive integer for which the p-linear combination of the vectors
v1, . . . , vk yields the whole space Rm.

Suppose that there exists V = {v1, . . . , vk} a finite set of vectors in Rm such that gen(V ) =
Rm. Since N is an ordered set then I(V ) is well-defined.

Example 3.5. Taking m = 3, it has been shown by Theorem 5.12 in [7] that there exists v1 =
(1, 0, 1) and v2 = (1, 1, 0) in R3 such that gen(v1, v2) = R3. Note that LC2(v1, v2) = R3 and
LC1(v1, v2) ̸= R3. Hence I(v1, v2) = 2.

We have the following interesting observation.

Theorem 3.1. Let V (t) be the matrix after t steps of the EGE algorithm on the columns vectors
{(a1, . . . , al), . . . , (bl, . . . , bl)}. We have the following:

(i) If V (t) is 1-column dependant then V (t+1) is also 1-column dependant.

(ii) If V t is 1-column independent then V t+1 is also 1-column independent.

Proof. We prove the two statements.
1. We want to show that if V (t) is 1-column dependent then V (t+1) is also 1-column depen-

dent. Consider, Without loss of generality after t steps of EGE, the following vectors columns
(v1

1 , . . . , v
1
k) and (v2

1 , . . . , v
2
k). In the EGE process, we take the linear combinations of the rows

to form new rows. For example, let α1, . . . , αk, λ ∈ R. Consider z1 = (
∑k

i=1 viαi)λ. Then
z1

1 = (
∑k

i=1 v
1
iαi)λ. Assume that z2

1 = sz1
1 for some s ∈ R i.e, the columns (z1

1 , 0, . . . , 0) and
(zn1 , 0, . . . , 0) are not 1-column independent. Then

(
k∑

i=1

v2
iαi)λ = s(

k∑
i=1

v1
iαi)λ = (

k∑
i=1

sv1
iαi)λ
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It follows that v2
i = sv1

i for i = 1, . . . , k. Thus (v1
1 , . . . , v

1
k) and (v2

1 , . . . , v
2
k) are 1-column

dependent.
2. Let’s assume that there are no s ∈ R such that ai = sbi for all i. In the process of EGE

we take the linear combination of the rows to form the new rows. Our additional row is of the
form (

∑l
i=1 aiαi)λ, (

∑l
i=1 biαi)λ. The update matrix of size (l + 1) × 2 will be constituted of

the columns
(a1−(

∑l
i=1 aiαi)λ, a2, . . . , al, (

∑l
i=1 aiαi)λ) and (b1−(

∑l
i=1 biαi)λ, b2, . . . , bl, (

∑l
i=1 biαi)λ).

Let’s assume that there exists s such that for 1 ≤ i ≤ l + 1 we have ui = svi. For i = l + 1
we have, al+1 = sbl+1 which implies that (

∑l
i=1 aiαi)λ = s(

∑l
i=1 biαi)λ. Hence

∑l
i=1 aiαi =

s(
∑l

i=1 biαi). Furthermore,

a1 − (a1 −
l∑

i=1

aiαi)λ = s(b1 − (
l∑

i=1

biαi)λ) = sb1 − s(
l∑

i=1

biαi) = sb1 − (
l∑

i=1

aiαi)λ.

It follows that a1 = sb1 which leads to contradiction.

We also have.

Lemma 3.6. Let R be a finite nearfield and V = {v1, . . . , vk} be a finite set of vectors in Rm

and |R| = t. Then |LC1(V )| ≤ tk. Furthermore, if V is 2-linearly independent every element of
LC1(V ) is unique, |LC1(V )| = tk and k ≤ m.

Proof. Let u, v ∈ LC1(V ) such that u =
∑k

i=1 viαi and v =
∑k

j=1 viβj where (α1, . . . , αk) ̸=
(β1, . . . , βk). Without loss of generality, we can assume that α1 ̸= β1. Suppose that u = v. Then
v1α1 − v1β1 =

∑k
i=2 viαi −

∑k
j=2 viβj . It follows that

v1 =
( k∑
j=2

vi(βi − αi

))
(α1 − β1)

−1.

Thus v1 ∈ LC2(v2, . . . , vk). So V is 2-linearly dependent. We reach to contradiction. Therefore
if V is 2-linearly independent then |LC1(V )| = tk. Suppose that V is 2-linearly independent and
k > m, we have |LC1(V )| = tk > tm and all the tk are distinct. It contradicts the fact that we
have at most tm vectors in the space. Hence t ≤ m.

In analogy to the notion of a basis of a subspace in the theory of vector spaces, we also have
R-basis and R-dimension of an R-subgroup of the finite-dimensional Beidleman near-vector
spaces Rm. In the following, we count the R-subgroups of R-dimension k of Rm.

Definition 3.7. The number of R-subgroups of Rm of dimension k of Rm up to the reordering
of coordinate is the number of matrix obtained after EGE without reordering the column.

Proposition 3.8. Let R be a finite nearfield. The number of R-subgroups of R-dimension k of
Rm up to the reordering of coordinates is

m∑
t=k

pk(t)(|R| − 1)t−k,

where pk(t) is the number of partitions of t into k parts and t is the total number of non-zero
entries in all the rows.

Proof. Let t =
∑k

i=1 #ui where #ui is the number of non-zero entries in the row ui. It is clear
that t ≤ n. For #ui = 1 for all i = 1, . . . , k then t = k. Hence k ≤ t ≤ n. Note that t is the total
number of non-zero entries in all columns or in all the rows.

Given t, we can partition t into k parts where each part (containing some non-zeros entry)
will represent each row vector. We have (|R| − 1)t possible choice of non-zero elements from
R∗ to fill in the t places of each partition.
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Since the gen is unchanged for any permutations of row vectors and is unchanged for any
scalar multiplies to others rows, then, for a given t, N = 1

(|R|−1)k pk(t)(|R| − 1)t is the num-
ber of R-subgroups of dimension k up to reordering of coordinate. For k ≤ t ≤ m yield to∑m

t=k pk(t)(|R| − 1)t−k is the number of R-subgroups of R-dimension k of Rm up to the re-
ordering

The form of the seed set of DN(3, 2)m for 2 ≤ m ≤ 9, as described in [7], motivates us
to seek a possible general construction of seed sets for Rm, where R is a nearfield and m is a
natural number. Consequently, we have developed Algorithm 1 to provide such a construction.
The following algorithm derives the explicit expression of the seed number k to generate a given
R-subgroups.
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Algorithm 1 Create a seed set Vm of Rm and give its number of row
Require: m ∈ N, R is a finite nearfield with unity 1, the indexing of matrices, vector start from

0
Ensure: Vm and k such that gen(Vm) = Rm and V −m has k columns.

if m = 1 then
return (1)

else
K ← (1)
S ← R− {0, 1}
k ← 1 {number of row}
numcol← 1 { the index of column to fill next time/number of column already filled}
while numcol < m do
k ← k + 1 {need to add one more row}
Kprim← Ik(R) {Identity matrix of order k}
numcol← column_number(Kprim)
if numcol = m then

show k
return Kprim

end if
K ← sub-matrix of k from column k − 1 { Matrices column of K}
if K ̸= () then

K ←
K

0 . . . 0
{add a row of zero in K}

K ← Kprim|(K) {Merge Kprim and K by column}
else
K ← Kprim

end if
numcol← column_number(K)
if numcol = m then

return K
end if
counter ← 0
S1← copy(S)
while counter < k − 1 do

while numcol < m and S1 ̸= ∅ do
newcolumn← []
for i in [0; counter] do

append [R[2]] to new column {fill the first counter rows with 1}
end for
for i in [counter + 1, k − 1] do

new column.append([S1[0]]) {Complete the other rows with S[0]}
end for
remove S1[0] from S1
newcolumn← matrix(newcolumn)
K ← K.augment(newcolumn)
numcol← numcol+ 1
if numcol = m then

show k
return K

end if
end while
counter ← counter + 1
S1← copy(S)

end while
end while

end if
show k
return K
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We will use the notation Vm to represent the matrix output of Algorithm 1 for a given input
value of m, and Sm to denote the ordered set of its row vectors, with ordering determined by
their respective row numbers in Vm.

First, we found the following:

Theorem 3.2. Let k ≥ 1 be an integer. Then, the maximal value of integer m such that Vm has
k-rows is given by the sequence (uk)k≥1 defined by:

u1 = 1

uk+1 = uk + (|R| − 2)k + 1

The range of values of integer m such that Vm has k-rows is given by:
[uk−1 + 1, uk]

Proof. Let uk be the maximal value of integer m such that Vm has k-rows.
We see that the construction of Vm is obtained by adding eventual row/column to Vm−1. Also,

we only add an additional column when the maximum number of columns that can be created
with a given number of rows is complete. Thus, if we find Vm has a number of rows greater than
k, then m > k. And if we find Vm has a number of rows less than k, then m < k.

We have u1 = 1 because, for m = 1, Algorithm 1 return (1), and for m = 2, as we enter
already in the while loop, we add a new row so 1 ≤ u1 < 2. It implies that u1 = 1 as u1 is an
integer.

Let us now prove that uk+1 = uk + (|R| − 2)k + 1. From the construction, to construct
a matrix of k + 1 rows, we need to complete the maximal number of columns that can have a
matrix of k rows.

So first, we replace the identity matrix of range k with a new identity matrix of range k + 1
and complete the row with 0. This means that the minimum number of column for k+1 is uk+1.
Then, we will be able to add a new column to this new construction as long as the counter does
not reach k − 1 which means the counter can take k values. Then, for a given counter, we can
add |R| − 2 columns as we remove 0 and 1 to R. So, we have uk+1 = uk + 1 + (|R| − 2)k.

Here we give an explicit form of uk in function of k.

u(0) = 0

u(1) = u(0) + (|R| − 2) ∗ 0 + 1

u(2) = u(1) + (|R| − 2) ∗ 1 + 1

...
...

u(k) = u(k − 1) + (|R| − 2) ∗ (k − 1) + 1

u(k) = (|R| − 2) ∗
k−1∑
i=0

+k

u(k) = (|R| − 2)
(k − 1) ∗ k

2
+ k

u(k) =
(|R| − 2)(k − 1) ∗ k + 2k

2

u(k) =
((|R| − 2)(k − 1) + 2) k

2

Solving this second degree equality in regard to k and taking the only one positive value, we
have:
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Lemma 3.9. From Theorem 3.2, the explicit expression of k is given by

k =
|R|+

√
|R|2 + 8 (|R| − 2)uk − 8 |R|+ 16− 4

2 (|R| − 2)
.

Then we notice that the function f : m 7→ |R|+
√

|R|2+8 (|R|−2)m−8 |R|+16−4
2 (|R|−2) is strictly increas-

ing (because |R|2 + 8 (|R| − 2)m − 8 |R| + 16 is an affine function of m of positive leading
coefficient, square root is an increasing function and addition of number followed by multiplica-
tion with positive number does not change the variation of a function) such that f(uk) = k for
any integer k ≥ 1.

As we have f(uk−1) = k − 1 and f(uk) = k, for any element m in [uk−1 + 1; k] we have
k − 1 < f(m) ≤ k. It means that any element m is in [uk−1 + 1; k], k = ceil(f(m)). So we
have:

Lemma 3.10. Let m be a positive integer, then the number of rows of Vm is given by:

k =

⌈
|R|+
√

|R|2+8 (|R|−2)m−8 |R|+16−4
2 (|R|−2)

⌉
Now, we are ready to give the Theorem:

Theorem 3.3. For any Vm obtained by the Algorithm 1, we have that the set of its row vectors
Sm is R-linearly independent and gen(Sm) = Rm (i.e., Sm is a seed set of Rm).

Proof. Note that Sm is R-linearly independent since by the construction of Vm it is in reduced
row echelon form. We will do the proof of gen(Sm) = Rm by induction in m For m = 1, we
know that {1} generates Rm. Let us assume that gen(Sm) = Rm for m ≥ 1. We have 2 cases:

Case 1: m = u(k) for a certain value of k and m+1 = u(k)+1. From Algorithm 1 described
above, the first k rows of Vm+1 are obtained by inserting one 0 in the (k+ 1)th position of every
row of Vm of the same position. When we perform the EGE Algorithm on the matrix Vm+1,
the first k columns and they will behave bijectively as for Vm. The new rows will have the
component 0 in the k + 1th column since the k + 1th components of each above vector are all 0
and the last row will not be involved in the distributivity trick (by Theorem 5.12 in [7], we see
that the first two non-zero elements of the column j will all have number of row less than j). For
the k+1th column, we don’t need to add any additional row since it has only one zero component
which is already the only one in its column. The algorithm will work on the remaining columns
with the same behavior as for Vm for its sub-matrix from column k. It means that the m columns
will generate m − k additional rows (By our hypothesis gen(Sm)) and at the end of the EGE
Algorithm we have k + 1 +m− k = m+ 1 rows. Thus, gen(Sm+1) = Rm+1.

Case 2: m and m − 1 is in the same interval [u(k − 1) + 1, u(k)]. From the algorithm
described in the Appendix, each row vector of Vm+1 is obtained by adding only one 1 or an
element s of S in its last column. It means that the column 1 to m generates m − k additional
vectors in the running of the EGE algorithm. The last column generates only one new non-zero
row (0, . . . , 1) by definition of the EGE algorithm, and we will not delete any of the previous
rows because the other rows have already one non-zero element in one of the previous column
(by our hypothesis, it generate already Rm). Thus, the number of rows we obtain is k+m− k+
1 = m+ 1.

In both cases we have gen(Sm+1) = Rm+1. Thus, for any positive integer m, gen(Sm) =
Rm.

4 Representation of linear maps

In vector spaces, matrix representation is motivated by the fact that, for a given basis, a linear
mapping is well-defined when we specify the images of all elements in the basis. In a vector
space MR with a basis X = xi, i ∈ I , we can define a linear mapping T by specifying the
images of each element of X . This can be expressed as

(∑
i∈I xiri

)
T =

(∑
i∈I xiT

)
ri. Any
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matrix can serve as a representation of such a linear mapping, where each column of the matrix
corresponds to the image of an element in the basis.

In a vector space, a linear mapping is uniquely determined when we specify its behavior on a
basis. However, in a near-vector space, setting the image of the elements of a basis and following
the same rules as in vector spaces may lead to a function that is not a linear mapping.

We consider the mapping T from R2 to itself, where R is the Dickson Nearfield DN(3, 2). It
is defined as follows: (0, 1)T = (1, 1), (1, 0)T = (1, 2), and for all (a, b) in R2, (a, b)T =
(0, 1)Tb + (1, 0)Ta. Under this mapping, we find that (1, X)TX = (X + 2, X + 1) but
(1, X)XT = (2X + 1, 2X + 2) for X satisfying X2 + 1 = 0.

4.1 Case for DN(3, 2)2

In this section, we will examine the case of DN(3, 2) and its finite-dimensional near-vector
spaces.

We will start by considering R2, and letM be the set of all mappings from R2 to itself. These
mappings are defined by specifying the images of (1, 0) and (0, 1), and for all (x1, x2) in R2,
(x1, x2)T = (1, 0)Tx1 + (0, 1)Tx2. It’s worth noting that |M| = 6561. We see that.

(x1, x2)T + (x′
1, x

′
2)T = (1, 0)Tx1 + (0, 1)Tx2 + (1, 0)Tx′

1 + (0, 1)Tx′
2

= (1, 0)Tx1 + (1, 0)Tx′
1 + (0, 1)Tx2 + (0, 1)Tx′

2

= (1, 0)T (x1 + x′
1) + (0, 1)T (x2 + x′

2) (Left distributivity),

but

((x1, x2)T )r = ((1, 0)Tx1 + (0, 1)Tx2)r

((x1, x2)r)T = (x1r, x2r)T = (1, 0)Tx1r + (0, 1)Tx2r

which can be different because of the lack of right distributivity. We want to explore the
characterizations of linear mappings.

Proposition 4.2. If T in is defined by (1, 0)T = a and (0, 1)T = b is a linear mapping then all
mappings T ′ of defined by (0, 1)T ′ = ar and (0, 1)T ′ = br′ is a linear mapping also.

Proof.

(x1, x2) = (1, 0)x1 + (0, 1)x2

(x1, x2)T
′ = arx1 + br′x2 = (rx1, r

′x2)T

((x1, x2) + (x′
1, x

′
2))T

′ = (x1 + x′
1, x2 + x′

2)T
′

= (r(x1 + x′
1), r

′(x2 + x′
2))T

= (rx1, r
′x2)T + (rx′

1, r
′x′

2)T

= (x1, x2)T
′ + (x′

1, x
′
2)T

′

((x1, x2)T
′)λ = (rx1, r

′x2)Tλ

= (rx1λ, r
′x2λ)T

= (x1λ, x2λ)T
′

= (x1, x2)λT
′

We will define the representation matrix of a linear mapping as it is used in vector space, and
we see that for R2, the representation matrix of a linear mapping is has at most one non-zero
element in each row.

Next, we determine the normal linear mappings, and we find that their representation matrices
have at most one non-zero element in each row and each column. There are a total of 161 normal
linear mappings. We find that the number of linear mappings in R2 is 289.
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4.3 Generalization

Let R be a nearfield and n an integer. We will consider the near vector space Rn with a basis
X = {x1, . . . , xn}.

LetM be the set of all mappings of Rn to itself such that xiT = ai for i = 1, . . . , n where
ai is an element in R . For any element m of Rn such that m =

∑n
i=1 xiri, ri in R, we have

mT =
∑n

i=1 airi.
Such mapping can be represented as a matrix n×n over the nearfield R by setting as columns

the ai as it is in vector space. Let us first prove that the element ofM are homomorphisms of
the additive group (Rn,+).

Lemma 4.4. Let T be an element of M, then T is an homomorphism of the additive group
(Rn,+).

Proof. Let m1,m2 be in Rn,

m1T +m2T =
n∑

i=1

ai1ri1 +
n∑

i=1

ai2ri2

=
n∑

i=1

(ai1ri1 + ai2ri2) (Commutativity of the additive group)

=
n∑

i=1

ai1(ri1 + ri2) (Left distributivity)

= (m1 +m2)T

Now we want to see which of those mapping are linear. Then, let us denote M to be the
matrix representation of T .

Theorem 4.1. Let T be an element of M , then b T is linear if and only if the matrix representation
associated with T has at most one non-zero element in each row.

Proof. Let T be in , m =
∑n

i=1 xiri in Rn and r in R. Let M =


M11 . . . M1n

...
. . .

...
Mn1 . . . Mnn

.

Then,

mTr =


(
∑n

j=1 M1jrj)r
...

(
∑n

j=1 Mnjrj)r

 and mrT =


∑n

j=1 T1jrjr
...∑n

j=1 Tnjrjr


So by definition of linear mapping, T is linear if and only if, mMr = mrM which means∑n

j=1 Tijrjr = (
∑n

j=1 Tijrj)r for all i in {1, . . . , n}.
If the M has only one non-zero element, then it is obvious that the equality is true.
Conversely, let us suppose that T is a linear mapping, i.e

∑n
j=1 Tijrjr = (

∑n
j=1 Tijrj)r for

all i in {1, . . . , n} and there exist one row containing more than one element.
Let i be such row and let s, t the be the first two columns such that the component is not

0. We know that because of the lack of right distributivity, we have elements α, β and γ in R
satisfying (α+ β)γ ̸= αγ + βγ.

Let m be the element of Rn which component are 0 except at the sth and tth the component
which are are respectively rs = M−1

is α and rt = M−1
it β.

Then the ith component of (mT )γ is

((mT )γ)i =

 n∑
j=1

Mijrj

 γ

= (α+ β)γ



LINEAR MAPPINGS 209

since Mijrj = 0 for all j /∈ {s, t} by definition of m and we have

Misrs = MisM
−1
is α = α

Mitrt = MitM
−1
it β = β.

and the ith component of (mγT ) is

((mγT ))i =

 n∑
j=1

Mijrjγ


= (αγ + βγ)

since Mijrjγ = 0 for all j /∈ {s, t} by definition of m and we have

Misrsγ = MisM
−1
is αγ = αγ

Mitrtγ = MitM
−1
it βγ = βγ.

By the choice of α, β and γ, we have mγT ̸= (mT )γ which is a contradiction. So all rows have
at most one non-zero component.

Theorem 4.2. Let T be a linear mapping from Rn to Rn. Then T is normal if and only if, the
matrix representation M of T has at most one non-zero element in each row and column.

Proof. Let T be a linear mapping with matrix representation M =


M11 . . . M1n

...
. . .

...
Mn1 . . . Mnn

.

We know from ( Theorem 6.1, [7]) that all subspace of Rn are in form e1R× . . .×ukR where
ei have only one non-zero component which is 1.

Then RnT =
∑n

i=1 aiR and aiR ∩
∑

j ̸=i ajR = {0} since a row contains at most one non-
zero element.

Suppose that all ai has at most one non-zero component. Then the image of T is
⊕

aiR =⊕
ak ̸=(0,0,...,0)

ekR where ek is obtained by multiplying ak with the inverse of its non-zero compo-

nent. So RnT is clearly a subspace. Thus T is normal.
Conversely, let us suppose that RnT =

∑n
i=1 aiR is a subspace and suppose that the matrix

representation M of T has a column j with more than one non zero element say at position
j1, . . . , jk.

We know that ajR is an R-subgroup of Rn which is contained in the subspace A = ej1R +
. . .+ ejkR. where eji is a vector with only one non-zero components 1 in position ji . Then as
A is a subspace, it is a near vector space and ajR is a proper R-subgroup of A.

Hence, there exists a non-zero element m in A, a in ajR and r in R such that (m+ a)r−mr
is not in ajR.

But this element is not as well in
∑

i ̸=j aiR since ai has 0 as component in row jl for each l.
Thus, there is a contradiction and the column has at most one non-zero component.

The sets of normal linear mappings and linear mappings are not nearrings but are closed un-
der multiplication. In contrast to the theory of vector spaces and Andre near vector spaces, we
make the following observations. Let’s consider
L(Rn) = {T : Rn → Rn|T is normal linear mapping }, and Hom(Rn) = {T : Rn →
Rn|T is linear mapping }.

Proposition 4.5. We have

(1) L(Rn, Rn) and Hom(Rn) are not nearrings and do not form Beidleman near vector spaces

(2) L(Rn) and Hom(Rn) are closed under multiplication.
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Proof. (1) We take our example of DN(3, 2) and the normal linear mapping T and T ′ :

R2 → R2 defined by their respective matrices

(
0 0
0 1

)
and

(
0 0
1 0

)
, then the matrix of

T + T ′ will be

(
0 0
1 1

)
. So T + T ′ is not a linear mapping by our characterization in

Proposition 4.1. So L(Rn) and Hom(Rn) are not closed under addition. Hence they do not
form groups under addiction.

(2) Let M and M ′ be two representative matrices of linear mappings T and T ′.

We have (MM ′)ij =
∑n

k=1 MikM
′
kj , if the row i of M has only zero elements, then

(MM ′)ij = 0 for all j. If the row i of M has one non-zero element in column k, then
(MM ′)ij will be non-zero if the element of row k of column j is also non-zero but such a
situation occurs at most once since the row k of M ′ has at most one non zero elements.

So when we do the multiplication MM ′, we will always have at most one non-zero element
in each row. Hence T ◦ T ′ is a linear mapping.

Then, suppose they are both normal, if the column j has only zero elements, then (MM ′)ij =
0 for all i. if at most one row has non-zero element, then the product will be obviously nor-
mal. Let us suppose there are two rows i1, i2 with non-zero element at columns k1, k2. So
we have k1 ̸= k2. Else if the column j of T ′ has one non-zero element in column k, then
MM ′

ij will be non-zero if the element of column k of the row i of M is also non-zero
but such situation occurs at most once since the column k of M has at most one non zero
element.

5 Conclusion

In this paper, we provided representations of linear and normal linear maps between finite-
dimensional Beidleman near-vector spaces, and we derived algorithms for constructing seed
sets for such spaces.

Let R be a finite nearfield of size q. A rough upper bound on the size of LC2(v1, . . . , vk) is
qq

k

. We propose the following open questions:

Question 5.1. Does there exist any example of a near-vector space where I(v1, . . . , vk) > 2 for
some v1, . . . , vk?

More generally, can we find an explicit expression or at least some nontrivial bounds for
I(v1, . . . , vk)?

Acknowledgments This work was supported by the Council-funded from the Office of Re-
search Development funding at Nelson Mandela University.

6 Appendix

Note that the Algorithm 2 is a recursive version of Algorithm 1.
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Algorithm 2 Create a seed set Vm of Rm

Require: m ∈ N, R is a finite nearfield with unity 1
Ensure: Vm such that gen(Vm) = Rm

k ←
⌈

|R|+
√

|R|2+8 (|R|−2)m−8 |R|+16−4
2 (|R|−2)

⌉
{upper bound of the seed number of Rm}

if m=1 then

return (1)
else
K ← 0k×m { The array we will complete, a zero matrix of k rows and m columns. }
prevm ← ((|R|−2)(k−1−1)+2)(k−1)

2 {The biggest value of n which have a seed set of cardi-
nality k − 1. }
V ← Vprevm

for i in [1;k] do
K[i][i]← 1 {Copy the identity matrix in K in the first k columns.}

end for

for j in [k; prevm] do
for i in [1,k] do
K[i][j + 1]← V [i][j] {Copy the submatrix of Vprevm from the kth column in K in the
same row number but the column number shifted by 1. (just after the identity matrix)
}
K[k][j+1]← 0 { Add 0 element in the last rows from column k+1 to column prevm}

end for
end for
{Now I will complete the first row with 1}
S ← R {0, 1} {The non zero element of R different to 1}
counter=1
numcol← prevm+ 2 {The number of the column to be filled, note that we already fill the
first prevm+ 1 columns.}

if numcol=m+1 then

return K {We return K as matrix because we already completed the required number
of columns.}

end if

while counter < k do

for i in [numcol,m] do
K[counter][i]← 1 {Fill with 1 the row counter}

end for

for j in S do

for i in [counter ,k] do
K[i][numcol]← j { Put a copy of S}

end for
numcol← numcol+ 1 {Change the number of the column after setting all number in
the column}

if numcol = m+ 1 then

return K {We return K as matrix because, we manage to complete every columns
of our matrix K}

end if
end for
counter ← counter + 1

end while
end if
return K
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