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Abstract This article deals with the existence and stability results for a class of implicit frac-
tional differential equations involving the Caputo tempered fractional derivative with retarded
and advanced arguments. The results are based on Sadovskii’s fixed point theorem. Some exam-
ples are given to show the applicability of our results.

1 Introduction

In various fields of research, fractional calculus has recently emerged as a valuable tool for ad-
dressing complex issues. Fractional calculus is the extension of differentiation and integration
to non-integer orders, and its theory and applications have received significant attention. To gain
a comprehensive understanding, we suggest referring to the following resources: monographs
like [1-4, 8, 18,36, 39] and papers such as [5,10, 11, 15,31]. Over the past few years, there has
been a significant increase in research on fractional calculus, with authors investigating a wide
range of outcomes for various forms of fractional differential equations and inclusions under
different conditions. Further information can be found in papers such as [1, 14,22,23,34], as
well as their respective references.

In [26], the authors considered a class of problems for nonlinear Caputo tempered implicit
fractional differential equations with boundary conditions and delay:

§D57y(0) =¥ (0.0, D) 79(0)), € @:=[0,5,

y(0) =&(0), 0 € [-r,0],
61y(0) + day(s2) = 03,

where 0 < 8 < 1,v > 0, (? Dg "7 is the Caputo tempered fractional derivative, ¥ : ©® x
C([-~,0],R) x R is a continuous function, £ € C([—k,0],R), 0 < 3 < 400, d;, 02,83 are
real constants, and x > 0 is the time delay. Their arguments are based on Banach, Schauder and
Schaefer fixed point theorems.

One notable class of fractional calculus operators with analytic kernels that has garnered sig-
nificant attention in recent years is tempered fractional calculus. This class serves as a means of
generalizing various types of fractional calculus and is regarded as an extension of the latter due
to its capacity to describe the transition between normal and anomalous diffusion. Buschman’s
pioneering work [13] established the definitions of fractional integration with weak singular and
exponential kernels. Further elaboration on this topic can be found in [6,12,16,21,27-30,33,37].
Additionally, the Caputo tempered fractional derivative is a subject that has not been widely ex-
plored in literature, providing us with an opportunity to make a significant contribution to this
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field. Our objective is to deepen our understanding of the characteristics and potential applica-
tions of this unique mathematical concept through the study of the Caputo tempered fractional
derivative. By doing so, we can play a valuable role in advancing the development of fractional
calculus.

In many instances, finding the exact solutions to differential equations is challenging, if not
impossible. In such cases, it is common practice to explore approximate solutions. However,
it is crucial to note that only stable approximations are considered valid. Consequently, various
stability analysis techniques are employed. The issue of stability in functional equations was first
introduced by mathematician S. M. Ulam during a 1940 lecture at the University of Wisconsin.
In his presentation, Ulam posed the following question: "Under what conditions does an addi-
tive mapping exist near an approximately additive mapping?" [38]. The following year, Hyers
provided a solution to Ulam’s problem for additive functions defined on Banach spaces [20]. In
1978, Rassias extended Hyers’ work by proving the existence of unique linear mappings near
approximate additive mappings [32]. Since then, numerous studies have investigated the sta-
bility of various differential and integral equations. Readers seeking further information can
consult [23,24,35] and the references therein.

In this paper, we study the existence and stability results for the following implicit problem
in a Banach space:

§Dgec(0) = (0,¢°, §Dgec(0)), 6€®:=[0,5], (1.1)
5(9) = Al(g)a 0 e [*’W,O}, (12)
&(0) = A2(0), 0 €[5 x+4], (1.3)

where ((f Dg"g represents the Caputo tempered fractional derivative of order o € (0,1), o > 0,
w,d >0, ¥ : 0 x C([-w,d],E) x E — Eis a given function, A; € C([-w,0],E), and
Az € C([5, 3 + 6], E). We denote by ¢9 the element of C([—w, 6], E) defined by

¢ =¢0+0):0€[-w,d.

The structure of this paper is as follows: Section 2 presents certain notations and preliminar-
ies about the tempered fractional derivatives used throughout this manuscript. In Section 3, we
present an existence result for the problem (1.1)-(1.3) that are based on Sadovskii’s fixed point
theorem. The Ulam stability is discussed in section 4. Finally, in the last section, illustrative
examples are provided in support of the obtained results.

2 Preliminaries

In this section, we recall some notations, definitions and previous results which are used through-
out this paper. We denote by C'(®, E), where ® := [0, 5], the Banach space of all continuous
functions from @® into & with the norm

1€lloc = sup{[I(O)]| : 6 € ©}.

Let C([—w,0], ) the Banach space with the norm

1€l[-.0) = sup{[I€(O)]| - 0 € [~ 0]}

Consider C/([s, > + 6], E) the Banach space with the norm

||€||[%,%+6] = Sup{||§(9)|| RS [%a 7+ 6]}’

and C'([~w, §], E) the Banach space with the norm

1€ 11— .01 = sup{lI€(O)] : 0 € [—e=, 6]}
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Let
Yz={¢:[-w o+ = E:&|p. €C(O,E) & wg € C([-=,0],E)
and €| 0] € C([52, 7 + 6], E) }.

We note that Y= is a Banach space with the norm

I€ll= = sup [IE(O)]]-

0€[—w,3+6]

Definition 2.1 (The Riemann-Liouville tempered fractional integral [27, 33, 37]). Suppose that
the function ¥ € C(®, E), ¢ > 0. Then, the Riemann-Liouville tempered fractional integral of
order « is defined by

0 —o(6—0)
ol ?W(0) = e oIg (e2”W(0)) = F(la) /o e(; — g)llp(g) do, 2.1)

where (/g denotes the Riemann-Liouville fractional integral [25], defined by

0
olg (0)_F(1a) /0 G ?S:;)lada. (2.2)

Obviously, the tempered fractional integral (2.1) reduces to the Riemann-Liouville fractional
integral (2.2) if p = 0.

Definition 2.2 (The Riemann-Liouville tempered fractional derivative [27,33]). For j— 1 < o <
757 € Ny o > 0. The Riemann-Liouville tempered fractional derivative is defined by

—e0 @ [0 eer(g)
DXW(9) = e~ DY (2P -_° 7/ —_—
09 (9) € 0g (e (9)) F(] Oz) dos 0 (9 U)a7]+1dg’

where oDy (699‘1’(0)) denotes the Riemann-Liouville fractional derivative [25], given by

7 7 0 000 -

Definition 2.3 (The Caputo tempered fractional derivative [27,37]). For j — 1 < a < 3; 5 €
N, o > 0. The Caputo tempered fractional derivative is defined as

—af o 1 d? (e2”¥ (o))
S D (9) = e~ §Dg (2’ W(0)) = — / d
o D¢ ®(0) = e D (e2”¥(0)) TO—a) )y (6—o)ril do? 7

where §' D¢ (e2?%(6)) denotes the Caputo fractional derivative [25], given by

o oy = L[ e,
o Dg (e?”¥(0)) = F(ya)/o (0 — o)a—stl do? i

Lemma 2.4 ( [27]). For a constant C,
0D ?C = Ce™\Dge?, §DFeC = Ce® §Dge.

Obviously, Dy °(C) # §Dg°(C). And, § Dy °(C) is no longer equal to zero, being different
from § Dg(C) = 0.

Lemma 2.5 ([27,37]). Let ¥ € C9(®,E) and 3— 1 < a < 3; 7 € N. Then, the Caputo tempered
fractional derivative and the Riemann-Liouville tempered fractional integral have the composite
properties
J—1 k k (00
ok | d¥ (e2®¥(9))
a0 [C o, _ —06
olg 2 [§ Dye®(0)] = P(0) — I;Je 5 [d@k s

and
§ DS [LI3eW(0)] = W(6), for o € (0,1).
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2.1 Measure of Noncompactness

Definition 2.6 ( [9]). Let / be a Banach space and let Ag be the family of bounded subsets of
F . The Kuratowski measure of noncompactness is the map ¢ : Ar — [0, c0) defined by

(Q) =inf {5 >0:QC OQj,diam(Qj) < E},

j=1
where Q € Ay .
The map ( satisfies the following properties:
« ((Q) =0 < Qis compact (Q is relatively compact);
- ((Q) = ((Q);
* Q) C Q= ((Q) < (();
* C(Q1 + Q) < ((Q1) +¢(22);
* ((cQ) = [cl¢(R), c € R;
- ((conv@) = ().
Lemma 2.7 ([19]). Let B C Yz be a bounded and equicontinuous set. Then

a) The function 0 — ((B(0)) is continuous, and
(r(B) = sup  ((B(0)).
0€[—w,3c+6]
" : - . wh
b) g(/o £(o)do: € B) g/o C(B(0))do, where
B(9) = {¢(6): € B}, 9 € ©.

Definition 2.8 ( [9]). Let F be a Banach space and H : /' — F a continuous mapping. # is said
to be a condensing mapping if for each bounded set B with {(B) # 0, we have

((H(B)) <((B).
Theorem 2.9 (Sadovskii’s fixed point Theorem [17]). Let D be a non-empty, closed, bounded
and convex subset of a Banach space |, and let H : D — D be a condensing mapping. Then H
has a fixed point in D.

3 Existence Results

Consider the following fractional differential problem:

6 Dyee(0) = pu0), if0€0 0<a<l,p>0, 3.1)
£0) =A(0), if0¢€[-w,0], w>0, (3.2)
€(0) = Ay(0), if0€[s,%2+6],6>0, (3.3)

where p : ® — E is a continuous function, A; € C([—w,0],E) and A, € C([5, > + 4], E).

Lemma 3.1. Let o € (0,1) and pu : ® — E be continuous. Then, the problem (3.1)-(3.3) has a
unique solution given by:

1 6
A1 (0)e=2 + r(a)/o e 0=9) (9 — 5)* " y(o)do, 0 € O,

=9 a0,  oel-wo0, (3.4)

A2 (0), 0 € [, 2+ ).
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Proof. Suppose that ¢ satisfies (3.1)-(3.3). Then, by applying the Riemann-Liouville tempered
fractional integral of order « and by Lemma 2.5, we get

oI § D 2€(0) = ol 2u(0).

This implies that

Then,

/]
£(0) = £(0)e " + r(la) /0 e=20=2) (9 — ) 1u(5)do.

Finally, we have
0 1 ? (6—0) 1
£(0) = A (0)e™ 9 + /e_g 0 —0)* " u(o)do.
0) =8O + 5 | (0~ )" (o)

Conversely, we can easily show by Definition 2.3, Lemma 2.4 and Lemma 2.5 that if £ verifies
(3.4), then it satisfied the problem (3.1)-(3.3). O

Definition 3.2. By a solution of problem (1.1)-(1.3), we mean a function £ € Yz that satisfies
the equation (1.1) and the conditions (1.2)-(1.3).

Lemma 3.3. Let ¥ : © X C([—w,0],E) x E — E be a continuous function. Then, the problem
(1.1)-(1.3) is equivalent to the following integral equation:

%
MO+ s [t — o) o, glo))do. i 0 €0,
0

()
€0 =9 a0, if 0 € [~=,0],
As(6), if 0 € [3,3+ 6],

where g € C (0O, E) satisfies the following functional equation
9(0) =¥(6.¢°, 9(9)).

Let us set the following assumptions:

—

(AI) The function ¥ : ® x C([—w,d],E) x E — E is continuous.
(A2) There exist constants A > 0 and 0 < X < 1 such that
(0,7, 0) = (0.7, ) <Al = [—w.5 + Allo — 6,
for any v,5 € C([~w,8],E), p, ¢ € Eand 0 € B.

(A3) For each 6 € © and bounded sets B; C C([—w,d],E), B, C E, we have

C(Y(0,B1,B2)) <A sup  ((Bi(0)) + A(By).

c€[—w,d]

Remark 3.4 ([7]). It is worth noting that the hypotheses (A2) and (A3) are equivalent.

We are now in a position to prove the existence result of the problem (1.1)-(1.3) based on
Sadovskii’s fixed point theorem.
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Theorem 3.5. Assume that the hypotheses (A1)-(A2) are verified. If

:\L <1, 3.5
(1-AN(a+1)

then the problem (1.1)-(1.3) has at least one solution.

Proof. Transform problem (1.1)-(1.3) into a fixed point problem by considering the operator
A TE — YE by

[
Ar(0)e—0 + L/ 0= (9 _ 5)o-\g(o)do,  if O €O,
0

I['(a)
ALO) =9 A, (0), if € [~w,0],
As(9), if 0 €[5, + 4]

This proof will be given in several steps.

Step 1: The operator k : Y= — Yz is continuous.
Let {&,},en be a sequence such that §, — £ in Yz. If § € [—w,0] or 6 € 3, 3¢ + 4], then

ke, (6) — ke(6)]) = 0.
If 6 € ®, we have

ke, (6) — ke©) | < F(la) / e=0=2) (9 — 0)2=1||g, (o) — g(0) | do,

where g, and g are two functions satisfying the following functional equations:
93(0) = IP(H)E]Q? 91(9))7
and
9(0) =¥(6,¢%, 9(6)).
By (A2), we have
19,(60) = g(O)[| = [I¥(6, 7, 9,(0)) — ¥(6,£%, 9(6))|
< ME — € + Algy(0) — 9O

Thus,
19,(6) — 9(8)]] < —2 €% — €|
J —1_X J) [—w,6]"
Then,
)\ 0
ke, (0) — k(O - —e0=9) (g _ 5)o11¢9 _ ¢o||__ <do.
i, (0) — ke >||s(1_w(a)/oe (0~ 0)* 1€ — € |-y

By applying the Lebesgue dominated convergence theorem, we get
kg, () —k§(O)| — 0 as 5 — oo,
which implies that
k&, —ké|ly, — 0 as j— oo.

Hence, the operator k is continuous.
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Let 5 > 0 such that

qp =
AL (0)] + =

1 —Ml(a+1
B > max ( )\%a> ( ) ; HAIH[fw,O]v HAZH[%,%Jré] )

=

(1-N(a+1)
where W, (6) = ||¥(6,0,0)|, with ¥; € C(0, E), such that

Y, " = sup ¥ (0).
0c®

Define the ball
Qs ={£ec Xz |||y < B}

It is clear that Qg is a bounded, closed and convex subset of Tz.

Step 2: k(Qﬁ) - QB'
Let ¢ € Qp. If 6 € [—w, 0], then

KE@) < [Aill[—,0) < B,

and if 6 € [5, ¢ + ¢], then

For each 6 € ©®, we have

0
k5w><|Amonww—%FémLA e=20=2)(9 — 5)o||g(o) |do.

From hypothesis (A2), we have

lg(0)1 = (6, €%, 9(0))
<(0) + M€ 0 + A9 (O)]
<+ A€ + Allg(9)]
<Y AB+ A9 (8)]).
Then,

"+ A8
0 < - = -
lo(0)] < ===

Finally, we have
* 6
KO < A1 O]}~ + m | e o -0 ao
- a) Jo

< ||A1(O)|| + w
(1-NT(a+1)

<g.
Thus, for each 6 € [—w, 3¢ + ¢, ||k&(0)|| < B, which implies that
[kly: < 8.

Consequently, k(Qg) C Qg.



8 W. Rahou, A. Salim, J. E. Lazreg and M. Benchohra

Step 3: k is condensing.
Let B be an equicontinuous subset of Q. If 6 € [—w, 0], then

C(k(B(6))) = ¢{ke(6), € < B}
= ({Ai(0), €€ B}
-0,
and if 6 € [5, ¢ + ¢|, then

C(k(B(6))) = ({ke(®), €€ B}
= ¢{A2(0), €€ B}
=0.

For each 0 € ®, we have

C(k(B(0))) = ¢{k&(0), €€ B}

9
= ({Al (0)e=2” + l—‘(loz)/o e 0= (9 — 5)*g(0)do, €€ B}

0
<¢{Ai(0)e"?, ¢e B} + C{/ e 0= — ) ly(0)do, €€ B}

() Jo

1 [ ol
< o / (0 — o)1 {¢(g(0))do, € € BY.

We have by condition (A3)

C(g(0)) = ¢(¥(0,£%, 9(0))
<A sup C(€7) +NC(g(6))

0€[—w,d]
<A sup o C(E(9)) + AC(9(9)).
0€|—w,+6]
Thus,
A
C(g(0)) < ——= sup  ((&(9)).
1 — X oe[—w,5e+6]
Then,
A 0 a—1
CuBE) <= [ (0= s ((elo)do. ¢ B)
1—-XJo o€[—w,»+0)
A
—(v.(B).
= (1—A)r(a+1)m( )
Therefore,

r. (k(B)) < [ i

m (r=(B) < (r=(B).

Then, we have (v, (k(B)) < ¢y, (B), which implies that k is a condensing operator. As a con-
sequence of Sadovskii’s fixed point theorem, the operator k has at least one fixed point which is
solution of the problem (1.1)-(1.3). i
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4 Ulam-Hyers Stability

In this section, we will establish the Ulam stability for the problem (1.1)-(1.3). For this, we take
inspiration from the following publications [1,2,22,23,34], and the references therein.

Definition 4.1 ( [1]). Problem (1.1)-(1.3) is Ulam-Hyers stable if there exists a real number
Cy > 0 such that for each € > 0 and for each solution £ € Yz of the inequality

1§ Dgee(0) — W (0,€°, §Dge¢(9))|| <e, 6€O, 4.1)
there exists a solution £ € Yz of the problem (1.1)-(1.3) with
15(0) = £(0)]| < Cye, O €O

Definition 4.2 ( [1]). Problem (1.1)-(1.3) is generalized Ulam-Hyers stable if there exists Ajy €
C(R4,Ry), A1w(0) = 0 such that for each solution § € Yz of the inequality (4.1) there exists a
solution £ € Yz of the problem (1.1)-(1.3) with

1€(0) = E(O)]| < Arge, 0 €O,

Remark 4.3. A function £ € Y is a solution of the inequality (4.1) if and only if there exists a
function ¢ € C'(@, E) (which depend on &) such that

) [[4(0)|| <e, foreachf < ®.
(i) §Dy2¢(0) =W (0,¢9, Dy e€(0)) + (), foreach b € O.
Lemma 4.4. The solution of the following perturbed problem
6 Dg°6(0) =¥ (0,7, §Dgc(0)) + (), 6€®:=10,5,
§(0) = Mi(0),  0€[-w0],
£(0) = A(0), 0€ [+,

is given by
1 6
— 00 - —o0(60—0) — o a—1 o)do
m(ol)e + | =0 g(ona
+=— [ e —0)*Y(o)do  ife®,
o= ' l
Al (9)7 Zf e [—W,O],
Ay (0), if 0€ [xx+4].

Moreover; the solution satisfies the following inequality

£0) ~ 0 — o [ o0 optgoyan| <
I(a) Jo " la+1)
Proof. The proof can be done in the same steps as in Lemma 3.1. Thus, we omit it. O

Theorem 4.5. Assume that the conditions (A1)-(A2) hold and that the condition (3.5) is verified.
Then the problem (1.1)-(1.3) is Ulam-Hyers stable.

Proof. Let & € Yz be a solution of the inequality (4.1) and £ € Yz the solution of the problem
(1.1)-(1.3). Then,

n%e 1

- 9 —
I60) ~ €01 < 5o + i ), 0= late) — h(o)le
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where g and h are two functions satisfying the following functional equations:

9(0) ="P(0,¢°,9(9)),
and
h(8) ="¥(6,&%, h(0)).
From hypothesis (A2), we have
l9(8) — h(O)]l = [¥(6. €%, 9(6)) — P(8,€°, 1(8))l|
S ME” = &l =em.s) + Mg (8) ~ h(O)]]

which implies that

by _
0) — h(6 —Z 1€ =& 5.
lg(0) ()IISI_AIIS § Ni—w.s)

Then,
- »%e A o -
9 — 9 — 79(0*0) 0_ a—1 o _ ¢o B d
I6) ~ €01 < Frgy + _Wa)/o 0= (g — o) Ve — || do
n%e A _
ST+ " (1=N(a+1) €=l
Thus,
_ e
= r 1
=g < — D e

C(1-M(a+1)

Consequently, the problem (1.1)-(1.3) is Ulam-Hyers stable. If we take Ajy(e) = Cye and
A1y (0) = 0, then we get the generalized Ulam-Hyers stability of the problem (1.1)-(1.3). O

5 Examples

Set

S:ll = {é':(517527"')€j7"')7z|£ﬂ| <OO}’

1=1
o0
where E is a Banach space with the norm ||¢|| = Z €, 1.
=1

Example 5.1. Consider the following implicit problem:

§0;'e(0) = (0.6, §D;"€(0)) 0 € 0,1), 5.1)
£O)=A(0), 6el]-1,0] 5.2
§6) = Maf0), 01,2, (53)
where Ay € C([-1,0],E) and A, € C([1,2], E).

Set
7+ €% e + |§ D5 '6,(6)]

90672 (1+ ¢/l + [§257'0)]|)

w, (0,67, §057'6,(0)) =
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for € [0,1], £ € C([-1,1],E), where
52(51762)"'75‘]7"'))

Y= (P, P, ),

and

1 1 1 1
C 2l C 2l C 2l C ry2l
D' = (Fpi'a. §0i "6, §D5 60

Clearly, ¥ is a continuous function, then the hypothesis (A1) is satisfied.
Forany 7,5 € C([-1,1],E), p, o € Eand 0 € [0, 1], we have

- 1 - _
(0,7, 0) =¥(0,% 0 < oz (17 = Ao + 0 = SlI] -
Then, the hypothesis (A2) is satisfied with A = N = ﬁ. Also we have
A - ﬁ

(1=N(a+1)  (1-45) 4
B 2
~ (90e2 — 1)/7
~ 0.0016993277019224
<1,

for ¢ = 1, a = . It follows from Theorem 3.5 that the problem (5.1)-(5.3) has at least one
solution. Moreover, it verifies the Ulam-Hyers stability.

Example 5.2. Consider the following implicit problem:

§Di¢0) = (6.6, §D;7c0)), 6 0,1), (5.4)
6(9):[\1(0)7 0 e [_1a0]a (55)

where A; € C([-1,0],E) and A, € C([1,2],E).
Set

. 12
4sin(0) + 1€ . + & | D5 °6,(6)]
183¢ Vo2 ’

12
IPJ (975393 (?Dé €J(G)> =
for6 € [0,1], € € C([~w,d],E), where

EZ (§17£2)"'a§77"'))

Y= (PP, P, ),

and

1 1 1 1
C 32 C 32 C 32 C 32
$D; g:(OD; & .50 ,...,§D; gj,...).

Obviously, ¥ is a continuous function, then the hypothesis (A1) is satisfied.
For any 7,5 € C([~w, 4], &), p, 9 € Eand § € [0, 1], we have

”\P(gv s @) - ly(gv ¥ @)” <

L +H|—w@
1836\/§ ’y ,y [—w,é] 2 p p N



12 W. Rahou, A. Salim, J. E. Lazreg and M. Benchohra

Then, the hypothesis (A2) is satisfied with A = —L— and X = —L_. Also we have

183¢ V2 366eV2"
Ax? _ 18316~/?
— 5\ 1 ™
(1-N(a+1) (1 - W) Va
4

(366eV2 — 1)/
~ 0.00150005575210831
<1,

for 2 = 1, a = §. By Theorem 3.5, the problem (5.4)-(5.6) has at least one solution. Moreover,
it verifies the Ulam-Hyers stability.

6 Conclusion

In this paper, we have made a substantial contribution to the study of certain classes of im-
plicit fractional differential equations involving the Caputo tempered fractional derivative with
retarded and advanced arguments. The methodologies utilized are primarily Sadovskii’s fixed
point theorem as well as the technique of measure of noncompactness. We have investigated
Ulam’s stability of the problem, advancing the understanding of fractional differential equations
under various conditions. In future research, we aim to explore additional classes of fractional
differential equations and inclusions, including problems with infinite delays, as well as impul-
sive problems, focusing on both instantaneous and non-instantaneous impulses.
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