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Abstract We give an exact enumeration of the unlabeled series-parallel posets according to
the number of ordinal terms and according to the number of direct terms of the posets. For every
n ≥ 2, we determine the number of n-element unlabeled connected (analogously, disconnected)
series-parallel posets by using the numbers of unlabeled disconnected (connected) series-parallel
posets up to (n − 1) elements. Here, we use the poset matrix to represent posets. We also give
algorithms to determine the values of the parameters involved in the enumeration formulas and to
compute the number of unlabeled series-parallel posets. We show that the enumeration algorithm
runs in time O(nm+4), where m+ 1 equals the number of ordinal terms of the connected posets.

1 Introduction

Due to the series and parallel constructions, the series-parallel posets are mostly computationally
tractable, and consequently, these are well-known as a class of completely decomposable posets,
see [15, 20]. Analogously, the notions of numerous combinatorial properties of mathematical
structures such as posets [6, 10] and graphs [2, 16] were repeatedly introduced and revealed
their significant applications in characterizing of these mathematical structures. Therefore, the
recognition and enumeration of series-parallel posets were considered by numerous authors.
Bayoumi et al. [1] computed SP (n), the number of n-element unlabeled series-parallel posets,
for n ≤ 12 by recalling the generating function given by Stanley [20]. Later on, El-Zahar et
al. [6] computed SP (n) for n ≤ 15 according to the height of posets by modifying the Stanley’s
generating function with the height as an additional parameter. Recently, SP (n) for n ≤ 1000
are included in the integer sequence A003430 in OEIS [19] and noted as computed by J. F.
Alcover and A. P. Heinz. In this article, we give an exact enumeration of the unlabeled series-
parallel posets according to the number of ordinal terms in the case of connected posets and
according to the number of direct terms in the case of disconnected posets.

The notions of several incidence matrices were frequently introduced and applied for cer-
tain computational aspects of the concerned structures, particularly see [1, 3, 18] for posets
and [7, 17] for graphs. We recall the notion of the poset matrix, a square (0, 1)-matrix intro-
duced by Mohammad and Talukder [9] to represent posets, where the authors obtained matrix
recognitions of the P -graphs, P -series, and series-parallel posets. Here, we recall these results
on the matrix recognitions of posets and obtain an exact enumeration of the unlabeled series-
parallel posets. We mainly generalize and use the criterion for the nonisomorphic ordinal sum
and nonisomorphic direct sum of the poset matrices introduced by Mohammad et al. [14] and
applied particularly for an exact enumeration of the unlabeled P -series. A more general setup of
the criteria for pairwise nonisomorphic unlabeled disconnected posets was given by Mohammad
et al. [11] and used to obtain an exact enumeration of the unlabeled disconnected posets.

https://oeis.org/A003430
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Direct algorithmic methods for the recognition and enumeration of some common classes
of posets were considered in several literature, see [2, 4, 8]. The algorithms used in most of
these cases for the recognition of pairwise nonisomorphic posets work like generate-one and
count-one. As a result, the running times of these algorithms grow more rapidly even though
the posets under consideration are significantly small in size. Mainly, the recursive process
in constructing pairwise nonisomorphic posets makes these algorithms highly time-complex.
Therefore, direct algorithmic methods for the enumeration of series-parallel posets were ignored
by some authors [6]. Let CSP (n) (analogously, DSP (n)) denote the number of n-element
unlabeled connected (analogously, disconnected) series-parallel posets. In the proposed exact
enumeration method, we use the numbers CSP (r), 1 ≤ r ≤ n− 1, to compute DSP (n), n ≥ 2,
according to the number of connected direct terms of posets. Conversely, we use the numbers
DSP (r), 1 ≤ r ≤ n− 1, to compute CSP (n), n ≥ 2, according to the number of ordinal terms
of posets that are either the singleton or disconnected. See the integer sequences A350772 and
A356558 that we contributed to OEIS [19]. Also, we give the algorithms to determine the values
of the parameters involved in the enumeration formulas as well as to compute SP (n), n ≥ 2,
which equals the sum of CSP (n) and DSP (n). We show that the overall enumeration algorithm
runs in polynomial time with complexity O(nm+4), where m + 1 equals the number of ordinal
terms (either the singleton or disconnected) of the connected posets.

In Section 2, we recall a few definitions and results related to the matrix recognition of series-
parallel posets. In Section 3, we establish the criteria for the lengths of the block of 1s (analo-
gously, block of 0s) satisfied by the poset matrices so that they represent pairwise nonisomorphic
connected (disconnected) posets. In Section 4, we give the results regarding the enumerations
of unlabeled connected and disconnected series-parallel posets. In Section 5, we provide the
enumeration algorithms and prove their time complexity. In Section 6, we briefly discuss the
implementations of the enumeration algorithms into the computer for numerical results. Here
we also include the data corresponding to CSP (n) for n ≤ 23 and DSP (n) for n ≤ 24.

2 Preliminaries

2.1 Posets

A poset (partially ordered set) is a structure S = ⟨S,⩽⟩ consisting of the nonempty set S with
the order relation ⩽ on S. A poset S is called finite if the underlying set S is finite. Throughout
this paper, we assume that every poset is finite. We use the notations 1 for the singleton poset,
Cn(n ≥ 1) for the n-element chain poset, and In(n ≥ 1) for the n-element antichain poset.
We write R + S and R ⊕ S, respectively, to mean the direct sum and the ordinal sum of the
posets R and S. Here R and S are called the direct terms of R + S and the ordinal terms of
R ⊕ S. We briefly write

∑n
i=1 Si for the direct sum and

⊕n
i=1 Si for the ordinal sum of the

posets Si, 1 ≤ i ≤ n. A poset having two or more direct terms is called disconnected, otherwise,
it is called connected. For every n ≥ 2, trivially the poset

⊕n
i=1 Si is connected and

∑n
i=1 Si

is disconnected. We write R ∼= S if R and S are order isomorphic. Also, by a collection of
isomorphic (analogously, nonisomorphic) posets, we mean that they are pairwise isomorphic
(nonisomorphic). Let the posets Ri, 1 ≤ i ≤ n, and Si, 1 ≤ i ≤ n, where n ≥ 2, be given. Then∑n

i=1 Ri
∼=

∑n
i=1 Si if Ri

∼= Si for all 1 ≤ i ≤ n. Since the direct sum of posets is commutative,
the converse of this result is not true. On the other hand, since the ordinal sum of posets is not
commutative,

⊕n
i=1 Ri

∼=
⊕n

i=1 Si if and only if Ri
∼= Si for all 1 ≤ i ≤ n. For further basics

of posets, we would like to refer the readers to the classical book by Davey and Priestley [5].
A poset P is called a P -graph if there exist the singleton or antichain posets Imi

, 1 ≤ i ≤ n,
such that P =

⊕n
i=1 Imi . Obviously, all the nontrivial P -graph, that is, P -graphs except the

antichains In, n ≥ 2, are connected. A poset S is called a P -series if there exist the P -graphs
Pi, 1 ≤ i ≤ n, such that S =

∑n
i=1 Pi. All the P -series except the nontrivial P -graphs are

disconnected. A poset R is called series-parallel if it can be decomposed into the singleton
posets by using only the direct sum and the ordinal sum of posets. For example, the posets
1 ⊕ (1 + C2) and (1 + C2) ⊕ 1 are series-parallel that are neither P -graphs nor P -series. In
particular, if there exist the P -series Si, 1 ≤ i ≤ n, such that R = S1 ∗ S2 ∗ · · · ∗ Sn, where ∗ is
either the direct sum or the ordinal sum of posets, then R is series-parallel.

https://oeis.org/A350772
https://oeis.org/A356558
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2.2 Poset matrix

Mohammad and Talukder [9] introduced the notion of the poset matrix. See [3, 10, 12, 13] for
some recent applications of the poset matrix. A square (0, 1)-matrix Mn = [aij ], 1 ≤ i, j ≤ n is
called a poset matrix if and only if the following conditions hold:

(i) Mn is reflexive: aii = 1 for all 1 ≤ i ≤ n,

(ii) Mn is antisymmetric: aij = 1 and aji = 1 imply i = j,

(iii) Mn is transitive: aij = 1 and ajk = 1 imply aik = 1.

To each poset matrix Mn = [aij ], 1 ≤ i, j ≤ n, a poset S = ⟨S,⩽⟩, where S = {s1, s2, . . . , sn}
and si corresponds the i-th row (or column) of Mn, is associated by defining the order relation
⩽ on S such that for all 1 ≤ i, j ≤ n, we have si ⩽ sj if and only if aij = 1. Then it is
said that Mn represents the poset S and vice versa. For some 1 ≤ i, j ≤ n, the interchanges of
i-th and j-th rows along with the interchanges of i-th and j-th columns in a poset matrix Mn is
called (i,j)-relabeling of Mn. It was shown in [9] that every poset matrix can be relabeled to an
upper (equivalently, lower) triangular matrix with 1s in the main diagonal by a finite number of
relabeling. From now on, by a poset matrix, we mean a poset matrix in upper triangular form.

Any two poset matrices Mn and M ′
n are called relabeling equivalent, or briefly equivalent,

if the matrix M ′
n can be obtained by some relabeling of the matrix Mn and vice versa. We

write Mn ∼ M ′
n if Mn and M ′

n are relabeling equivalent. Also, by a collection of equivalent
(analogously, nonequivalent) poset matrices, we mean that the matrices are pairwise equivalent
(nonequivalent). Note that if Mn ∼ M ′

n (analogously, Mn ≁ M ′
n) then the posets represented

by Mn and M ′
n are isomorphic (nonisomorphic).

2.3 Matrix recognition of series-parallel posets

We write Mm ⊕ Nn and Mm ⊞ Nn, respectively, for the direct sum and the ordinal sum of the
poset matrices Mm and Nn. Here we call Mm and Nn the direct terms of Mm ⊕ Nn and the
ordinal terms of Mm ⊞Nn. A poset matrix Mn = [aij ], 1 ≤ i, j ≤ n, has the property of block
of 0s (analogously, block of 1s) of length r, where 1 ≤ r < n, if and only if aij = 0 (aij = 1)
for all 1 ≤ i ≤ r and r + 1 ≤ j ≤ n, see [9] for details. Throughout this paper, we write In
to denote the identity matrix of order n and Cn to denote the matrix [cij ], 1 ≤ i, j ≤ n, where
cij = 1 for all i ≤ j and cij = 0 otherwise. Obviously, for every n ≥ 2, the matrices In and Cn

satisfy, respectively, the property of block of 0s and the property block of 1s of lengths equal to
any subcollection of 1, 2, . . . , n−1. Further, in Example 2.1 below, the matrices L and L′ satisfy
the block of 1s property of length 1 and length 2, respectively, and the matrix L′′ satisfies the
block of 0s property of length 2.

Example 2.1.

L =

 1 1 1
0 1 0
0 0 1

 L′ =

 1 0 1
0 1 1
0 0 1

 L′′ =

 1 1 0
0 1 0
0 0 1


Note that for any relabeling, a poset matrix Mn can satisfy either the property of block of

0s or the property of block of 1s at a time, but no poset matrix can satisfy both the properties
together. Observe here that L = 1 ⊞ I2, L′ = I2 ⊞ 1, and L′′ = C2 ⊕ 1. This result was proved
by Mohammad and Talukder [9] in general as follows:

Theorem 2.2. [9] Let Mn be any poset matrix. Then for n ≥ 2,

(i) Mn = Mn1 ⊕Mn2−n1 ⊕ · · · ⊕Mn−nm
if and only if Mn satisfies the block of 0s property of

lengths n1, n2, . . . , nm.

(ii) Mn = Mn1 ⊞Mn2−n1 ⊞ · · ·⊞Mn−nm if and only if Mn satisfies the block of 1s property of
lengths n1, n2, . . . , nm.

Then we have the following immediate results that give the matrix recognitions of connected
posets and disconnected posets.
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Theorem 2.3. Let Mn represent the poset S ≇ 1. Then

(i) S is connected if Mn can be relabeled in such a form that it satisfies the block of 1s property.

(ii) S is disconnected if and only if Mn can be relabeled in such a form that it satisfies the block
of 0s property.

Proof. The proof follows by Theorem 2.2 and the definitions of connected posets and discon-
nected posets.

Note that the converse of the result in the first part of Theorem 2.3 is not true in general.
Because, the 4-element N -shaped poset is connected but the poset matrix that represents this
poset does not satisfy the block of 1s property for any labeling. However, we find that the
converse of this result holds in the case of series-parallel posets. See Theorem 5.7 [9] for the
matrix recognition of the series-parallel posets. We use this result to give the matrix recognitions
of the connected and disconnected series-parallel posets as follows:

Theorem 2.4. Let Mn represent the poset S ≇ 1. Then

(i) S is connected series-parallel if and only if Mn can be relabeled in such a form that it
satisfies the block of 1s property and every ordinal term until 1 satisfies either the block of
0s property or the block of 1s property.

(ii) S is disconnected series-parallel if and only if Mn can be relabeled in such a form that it
satisfies the block of 0s property and every direct term until 1 satisfies either the block of 0s
property or the block of 1s property.

Proof. The proof follows by Theorem 2.3 and Theorem 5.7 [9].

3 Nonisomorphic sums and enumeration of posets

For n ≥ 2, suppose that there exist exactly t, where t ≥ 2, nonequivalent (pairwise) matrices
Mn, poset matrix of order n. Then we say that the matrix Mn can represent t nonisomorphic
(pairwise) posets. Since the direct sum of posets is commutative, matrices Mn that satisfy the
block of 0s property can represent isomorphic (pairwise) posets. In this section, we establish
mainly the criteria for the lengths of the block of 1s (analogously, block of 0s) satisfied by the
matrices Mn such that they represent only nonisomorphic connected (disconnected) posets. For
n ≥ 2, let the matrix Mn satisfy the block of 1s (analogously, block of 0s) property for certain
lengths. Here, we obtain the formulas giving an enumeration of the nonisomorphic connected
(analogously, disconnected) posets that can be represented by Mn.

3.1 Ordinal sum and enumeration of connected posets

For n ≥ 2, let the matrix Mn satisfy the block of 1s property for some lengths. Since the ordinal
sum of poset matrices is not commutative, all the posets represented by Mn are nonisomorphic if
the posets represented by every ordinal term of Mn are nonisomorphic. Here, we use this result
to find the formula that gives an enumeration of the nonisomorphic connected posets, that is, the
number of nonisomorphic posets that can be represented by Mn.

Theorem 3.1. For n ≥ 2 and 1 ≤ m ≤ n− 1, let the matrix Mn satisfy the property of block of
1s of lengths n1, n2, . . . , nm such that for every 1 ≤ i ≤ m + 1, an ordinal term Mri of Mn,
where ri = ni − ni−1 (with n0 = 0 and nm+1 = n), can represent P (ri) nonisomorphic posets.
Then Q(n), the number of nonisomorphic connected posets that can be represented by Mn, is
given as follows:

Q(n) =
m+1∏
i=1

P (ri), n ≥ 2. (3.1)

Proof. Since Mn satisfies the block of 1s property of lengths n1, n2, . . . , nm, by Theorem 2.3,
Mn represents connected posets and by Theorem 2.2, Mn = Mn1 ⊞ Mn2−n1 ⊞ · · · ⊞ Mn−nm

for some Mri = Mni−ni−1 , 1 ≤ i ≤ m + 1 (here, n0 = 0 and nm+1 = n) as the ordinal terms
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of Mn. Since ordinal sum of poset matrices is not commutative and, for every 1 ≤ i ≤ m + 1,
an ordinal term Mri can represent P (ri) nonisomorphic posets, matrix Mn can represent the
nonisomorphic posets having ordinal terms as a subcollection of m + 1 posets each of which
is to choose from one of m + 1 collections of P (ri) nonisomorphic posets. Therefore, Q(n)
equals the number of combinations of m+1 items each of which is to choose from one of m+1
collections of P (ri) distinct items. This gives Q(n) as follows:

Q(n) = P (r1)× P (r2)× · · · × P (rm+1) =
m+1∏
i=1

P (ri), n ≥ 2.

The following example illustrates the result obtained in Theorem 3.1.

Example 3.2. Consider the matrices M6 that satisfy the property of block of 1s of length 3,
lengths 1, 5, and lengths 1, 4. We enumerate the connected posets represented by M6 in each of
these cases as follows:

(i) Let M6 satisfy the property of block of 1s of length 3. Then M6 = M3 ⊞ M3. Since the
ordinal term M3 can represent 5 nonisomorphic posets, in this case, M6 can represent 5× 5
= 25 nonisomorphic posets all of which are connected.

(ii) Let M6 satisfy the property of block of 1s of lengths 1, 5. Then M6 = M1⊞M4⊞M1. Since
the ordinal terms M1 and M4 can represent 1 and 16 nonisomorphic posets, respectively, in
this case, M6 can represent 1 × 16 × 1 = 16 nonisomorphic connected posets.

(iii) Let M6 satisfy the property of block of 1s of lengths 1, 4. Then M6 = M1 ⊞ M3 ⊞ M2.
Since the ordinal terms M1, M2, and M3 can represent 1, 2, and 5 nonisomorphic posets,
respectively, in this case, M6 can represent 1×5×2 = 10 nonisomorphic connected posets.

3.2 Direct sum and enumeration of disconnected posets

For n ≥ 2, let the matrix Mn satisfy the block of 0s property for some lengths such that every
direct term of Mn represents nonisomorphic posets. Then, Mn represents a collection of discon-
nected posets. We observe that some of these posets can be isomorphic. In particular, we see
that M4 can satisfy the block of 0s property of length 1, length 2, length 3, lengths 1, 2, lengths
1, 3, lengths 2, 3, and lengths 1, 2, 3. Here, the matrices 1⊕1⊕C2 and 1⊕C2 ⊕1 (Example 3.3)
satisfy the block of 0s property of lengths 1, 2 and lengths 1, 3, respectively, and represent the
posets isomorphic to C2 + 1+ 1.

Example 3.3. Two M4 that represent the posets isomorphic to C2 + 1+ 1.

1 ⊕ 1 ⊕ C2 =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 1 ⊕ C2 ⊕ 1 =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1


Therefore, to represent nonisomorphic disconnected posets by Mn, we see that matrix Mn

must satisfy the block of 0s property of some nondecreasing inter-distant lengths defined as
follows:

Definition 3.4. For n ≥ 2 and 1 ≤ m ≤ n − 1, the lengths n1, n2, . . . , nm, chosen as a
subcollection of the integers 1, 2, . . ., n− 1 are called

(i) strictly increasing inter-distant (SIID) if n1 < n2 − n1 < · · · < n− nm,

(ii) equally inter-distant (EQID) if n1 = n2 − n1 = · · · = n− nm, and

(iii) nondecreasing inter-distant (NDID) if n1 ≤ n2 − n1 ≤ · · · ≤ n− nm.
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Table 1. All SIID, EQID, and NDID lengths l(m, j), 1 ≤ m ≤ 5, 1 ≤ j ≤ pm, for some
pm ≤ ( 5

m).

l(m, j)

m j SIID EQID NDID
1 1 1 3 1
1 2 2 – 2
1 3 – – 3
2 1 1, 3 2, 4 1, 2
2 2 – – 1, 3
2 3 – – 2, 4
3 1 – – 1, 2, 3
3 2 – – 1, 2, 4
4 1 – – 1, 2, 3, 4
5 1 – 1, 2, 3, 4, 5 1, 2, 3, 4, 5

For example, all SIID, SQID, and NDID lengths l(m, j), 1 ≤ m ≤ 5, 1 ≤ j ≤ pm, for some
pm ≤ ( 5

m), are given in Table 1.
Further, we see that the matrices 1⊕ I2 ⊕L′′ and I2 ⊕C2 ⊕ I2 (Example 3.5) satisfy the block

of 0s property of the nondecreasing inter-distant lengths 1, 3 and lengths 2, 4, respectively, and
represent the posets isomorphic to C2+I4. This happens because, in this case, some of the direct
terms M1, M2, and M3 of M6 represent disconnected posets.

Example 3.5. Two M6 that represent the posets isomorphic to C2 + I4.

1 ⊕ I2 ⊕ L′′ =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 1

 I2 ⊕ C2 ⊕ I2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Therefore, to represent nonisomorphic disconnected posets by Mn, we find that matrix Mn

must satisfy the block of 0s property of some nondecreasing inter-distant lengths such that every
direct term of Mn represent nonisomorphic connected posets only. In the following, we establish
this result in general.

Nonisomorphic direct sum criterion:

Theorem 3.6. For n ≥ 2, let the matrices Mn and M ′
n satisfy the block of 0s property of different

nondecreasing inter-distant lengths such that every direct term of Mn and M ′
n represents only

connected posets that are nonisomorphic. Then every pair of posets, where one is represented
by Mn and another is represented by M ′

n, are nonisomorphic.

Proof. For n ≥ 2 and 1 ≤ m,m′ ≤ n − 1, let Mn and M ′
n satisfy the block of 0s property

of the nondecreasing inter-distant lengths L = {n1, n2, . . ., nm} and L′ = {n′
1, n′

2, . . ., n′
m′},

respectively, such that L ̸= L′. Then we have two different cases as follows:

(i) m ̸= m′.
In this case, the posets represented by Mn and M ′

n have different numbers of direct terms.
Then, every pair of posets, where one is represented by Mn and the other is represented by
M ′

n, are nonisomorphic.

(ii) m = m′.
For all 0 ≤ i ≤ m, say ri = ni+1−ni and r′i = n′

i+1−n′
i, where we assign n0 = n′

0 = 0 and
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nm+1 = n′
m+1 = n. In this case, since both L and L′ contain nondecreasing inter-distant

lengths, there exist 0 ≤ s, t ≤ m, such that ri ̸= r′i for all s ≤ i ≤ t, and ri = r′i otherwise (in
the simplest case). Then, clearly, Mri ̸= Mr′i

for all s ≤ i ≤ t. Also, ri < rs and r′i < r′s for
all 0 ≤ i ≤ s− 1 (when s > 0); and ri > rt and r′i > r′t for all t+ 1 ≤ i ≤ m. These show
that every pair of posets, where one is represented by Mn and the other is represented by
M ′

n, has some direct terms of unequal orders. Therefore, these posets are nonisomorphic.

Therefore, in either case, we have every pair of posets, where one is represented by Mn and the
other represented by M ′

n, are nonisomorphic.

Enumeration formula in the case of SIID lengths:

Theorem 3.7. For n ≥ 2 and 1 ≤ t ≤ n − 1, let the matrix Mn satisfy the block of 0s property
of the strictly increasing inter-distant lengths n1, n2, . . . , nt such that for every 1 ≤ i ≤ t+ 1, a
direct term Mri of Mn, where ri = ni − ni−1 (with n0 = 0 and nt+1 = n), can represent Q(ri)
nonisomorphic connected posets. Then R̃(n), the number of nonisomorphic disconnected posets
can be represented by Mn, is given as follows:

R̃(n) =
t+1∏
i=1

Q(ri), n ≥ 2. (3.2)

Proof. Since Mn satisfies the block of 0s property of the strictly increasing inter-distant lengths
n1, n2, . . . , nt, by Theorem 2.3, Mn represents disconnected posets only and by Theorem 2.2,
Mn = Mn1 ⊕Mn2−n1 ⊕ · · · ⊕Mn−nt for some Mri = Mni−ni−1 , 1 ≤ i ≤ t+1 (here, n0 = 0 and
nt+1 = n) as the direct terms of Mn. Since n1 < n2−n1 < · · · < n−nt, for every 1 ≤ i ≤ t+1,
the direct term Mri represents nonisomorphic connected posets of distinct cardinalities. This
shows that Mn represents the nonisomorphic posets having direct terms as a subcollection of
t + 1 posets each of which is chosen from one of the t + 1 collections of Q(ri) nonisomorphic
posets. Therefore, R̃(n) equals the number of the combinations of t+ 1 items each of which is
chosen from one of the t+1 disjoint sets of Q(ri) distinct items. Then, we have R̃(n) as follows:

R̃(n) = Q(r1)×Q(r2)× · · · ×Q(rt+1) =
t+1∏
i=1

Q(ri), n ≥ 2.

Enumeration formula in the case of EQID lengths:

Theorem 3.8. For n ≥ 2 and 1 ≤ t ≤ n − 1, let the matrix Mn satisfy the block of 0s property
of equally inter-distant lengths n1, n2, . . . , nt such that for every 1 ≤ i ≤ t + 1, the direct
term Mr of Mn, where r = ni − ni−1 (with n0 = 0 and nm+1 = n), can represent Q(r)
nonisomorphic connected posets. Then R̄(n), the number of nonisomorphic disconnected posets
can be represented by Mn, is given as follows:

R̄(n) =

(
Q(r) + t

1 + t

)
, n ≥ 2. (3.3)

Proof. Since Mn satisfies the block of 0s property of equally inter-distant lengths n1, n2, . . . , nt,
by Theorem 2.3, Mn represents disconnected posets and by Theorem 2.2, Mn = Mn1 ⊕ Mn2−n1

⊕ · · · ⊕ Mn−nt
for some Mri = Mni−ni−1 , 1 ≤ i ≤ t + 1 (here, n0 = 0 and nt+1 = n) as the

direct terms of Mn. Since for all 1 ≤ i ≤ t + 1, we have ni − ni−1 = ri = r (say), all t + 1
direct terms Mr represent nonisomorphic connected posets of the same cardinality. This shows
that Mn represents the nonisomorphic posets having direct terms as a subcollection of t + 1
posets each of which is chosen from one of the same t + 1 collections of Q(r) nonisomorphic
posets. Therefore, R̄(n) equals the number of the combinations of t + 1 items chosen from
Q(r) + (t+ 1)− 1 distinct items. This gives R̄(n) as follows:

R̄(n) =

(
Q(r) + (t+ 1)− 1

t+ 1

)
=

(
Q(r) + t

1 + t

)
, n ≥ 2.
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Enumeration formula in the case of NDID lengths:

Theorem 3.9. For m ≥ 1 and n ≥ 2, let the matrix Mn satisfy the block of 0s property of
nondecreasing inter-distant lengths n1, n2, . . . , nm, m ≤ n−1 such that for every 1 ≤ i ≤ m+1,
the direct term Mri of Mn, where r = ni − ni−1 (with n0 = 0 and nm+1 = n), can represent
Q(ri) nonisomorphic connected posets. Then there exist rk, tk, 1 ≤ k ≤ q, where q ≤ m + 1
such that R(n), the number of nonisomorphic disconnected posets represented by Mn, is given
as follows:

R(n) =
q∏

k=1

(
Q(rk) + tk

1 + tk

)
, n ≥ 2. (3.4)

Proof. Since Mn satisfies the block of 0s property of the nondecreasing inter-distant lengths n1,
n2, . . . , nm, we have rk, tk, 1 ≤ k ≤ q, where q ≤ m+ 1 as follows:

r1 = n1 − n0 = n2 − n1 = · · · = nt1+1 − nt1 ,

r2 = nt1+2 − nt1+1 = · · · = nt1+t2+2 − nt1+t2+1,

...

rq = nt1+···+tq−1+q − nt1+···+tq−1+q−1 = · · · = n− nm.

Here, r1 < r2 < · · · < rq and m = t1 + · · ·+ tq + q − 1. Also, n0 = 0 and nm+1 = n. Then, we
have ni−ni−1 = ri = rk, where 1 ≤ k ≤ q and t1 + · · ·+ tk−1 +k ≤ i ≤ t1 + · · ·+ tk +k. This
shows that, for every 1 ≤ k ≤ q, all the tk+1 consecutive direct terms become equivalent to Mrk

that represents Q(rk) nonisomorphic connected posets of the same order. Then by Theorem 3.8,
for every 1 ≤ k ≤ q, we have R̄((tk + 1)rk), the number of nonisomorphic disconnected posets
represented by the poset matrix consisting of tk + 1 consecutive direct terms of order rk, as
follows:

R̄((tk + 1)rk) =
(
Q(rk) + tk

1 + tk

)
.

Therefore, since r1 < r2 < · · · < rq, by Theorem 3.7, we have R(n) as follows:

R(n) =
q∏

k=1

R̄((tk + 1)rk) =
q∏

k=1

(
Q(rk) + tk

1 + tk

)
, n ≥ 2.

The following example illustrates the result obtained in Theorem 3.9.

Example 3.10. Consider the matrices M6 that satisfy the block of 0s property of the nonde-
creasing inter-distant length 2, length 3, and lengths 1, 2, 4. We enumerate the nonisomorphic
disconnected posets represented by M6 in each of these cases as follows:

(i) Let M6 satisfy the block of 0s property of length 2. Then M6 = M2 ⊕M4. Since the direct
terms M2 and M4 represent 1 and 10 connected posets, respectively, in this case, M6 can
represent (1+0

1+0)× (10+0
1+0 ) = 1× 10 = 10 disconnected posets all of which are nonisomorphic.

(ii) Let M6 satisfy the block of 0s property of length 3. Then M6 = M3 ⊕M3. Since the direct
term M3 can represent 3 nonisomorphic connected posets, in this case, M6 can represent
(3+1

1+1) = 6 nonisomorphic disconnected posets.

(iii) Let M6 satisfy the block of 0s property of lengths 1, 2, 4. Then M6 = (M1⊕M1)⊕(M2⊕M2).
Since both the direct terms M1 and M2 represent only 1 connected poset, in this case, M6
can represent (1+1

1+1)× (1+1
1+1) = 1 disconnected poset only.

4 Exact enumeration of unlabeled series-parallel posets

For n ≥ 1, let CSP (n) be the number of unlabeled connected series-parallel posets and DSP (n)
be the number of unlabeled disconnected series-parallel posets represented by Mn, a poset matrix
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of order n. Since M1 represents the singleton poset 1 only, in particular, we have CSP (1) = 1
and DSP (1) = 0. For computational purposes, we assume DSP (1) = 1. Let n ≥ 2 be
given. Here, we give the enumeration formulas to determine the numbers CSP (n) and DSP (n)
provided that for all 1 ≤ r ≤ n − 1 the numbers CSP (r) and DSP (r) are given. By using
Theorem 2.4, we give the enumeration of n-element unlabeled series-parallel posets as follows:

(i) To determine CSP (n), we compute the number of nonequivalent matrices Mn that satisfy
the block of 1s property of all possible lengths such that for every length every ordinal
term of Mn represents nonisomorphic series-parallel posets that are either the singleton or
disconnected.

(ii) To determine DSP (n), we compute the number of nonequivalent matrices Mn that satisfy
the block of 0s property of all nondecreasing inter-distant lengths such that for every length
every direct term Mn represents nonisomorphic connected series-parallel posets.

4.1 Enumeration of connected series-parallel posets

Theorem 4.1. For n ≥ 2, let the matrix Mn satisfy the block of 1s property of all possible lengths
l(m, j), 1 ≤ m ≤ n − 1, 1 ≤ j ≤ (n−1

m ). Also let for every 1 ≤ m ≤ n − 1, 1 ≤ j ≤ (n−1
m ),

1 ≤ i ≤ m+ 1, the number DSP (rmji) (the number of unlabeled disconnected series-parallel
posets that can be represented by an ordinal term Mrmji ̸= M1 of Mn) be given. Then we have
CSP (n) as follows:

CSP (n) =
n−1∑
m=1

(n−1
m )∑
j=1

m+1∏
i=1

DSP (rmji), n ≥ 2. (4.1)

Proof. For every 1 ≤ m ≤ n− 1 and 1 ≤ j ≤ (n−1
m ), let S(m, j) be the number of Mn that satis-

fies the block of 1s property of lengths l(m, j): n1j , n2j , . . . , nmj and represents nonisomorphic
connected series-parallel posets. Let rmji = nij − n(i−1)j , 1 ≤ i ≤ m + 1, where we assume
n0j = 0 and n(m+1)j = n. Then the ordinal terms of Mn are the matrices Mrmji

, 1 ≤ i ≤ m+ 1.
By hypothesis, for every 1 ≤ i ≤ m+1, the matrix Mrmji represents DSP (rmji) nonisomorphic
disconnected series-parallel posets. Then by Theorem 3.1, we have S(m, j) as follows:

S(m, j) =
m+1∏
i=1

DSP (rmji). (4.2)

Since the equation (4.2) holds for all lengths l(m, j), 1 ≤ m ≤ n − 1, 1 ≤ j ≤ (n−1
m ), we have

CSP (n) as follows:

CSP (n) =
n−1∑
m=1

(n−1
m )∑
j=1

S(m, j) =
n−1∑
m=1

(n−1
m )∑
j=1

m+1∏
i=1

DSP (rmji), n ≥ 2.

The following example illustrates the result established in the above theorem.

Example 4.2. Enumeration of the 5-element unlabeled connected series-parallel posets, that is,
determination of CSP (5). We have DSP (r), 1 ≤ r ≤ 4, (the number of unlabeled disconnected
series-parallel posets up to r = 4 elements) as follows:

r 1 2 3 4

DSP (r) 1 1 2 6

For all 1 ≤ m ≤ 4 and 1 ≤ j ≤ pm, where pm = ( 4
m), we compute S(m, j) considering the

lengths l(m, j), as follows:

Number of 5-element unlabeled connected series-parallel posets with 2 disconnected ordinal
terms (possibly, including the singleton poset):
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m j l(m, j) rmj1, . . . , rmj(m+1) S(m, j)

1 1 1 1, 4 1 × 6 = 6

1 2 2 2, 3 1 × 2 = 2

1 3 3 3, 2 2 × 1 = 2

1 4 4 4, 1 6 × 1 = 6

Total: 16

Number of 5-element unlabeled connected series-parallel posets with 3 disconnected ordinal
terms (possibly, including the singleton poset):

m j l(m, j) rmj1, . . . , rmj(m+1) S(m, j)

2 1 1, 2 1, 1, 3 1 × 1 × 2 = 2

2 2 1, 3 1, 2, 2 1 × 1 × 1 = 1

2 3 1, 4 1, 3, 1 1 × 2 × 1 = 2

2 4 2, 3 2, 1, 2 1 × 1 × 1 = 1

2 5 2, 4 2, 2, 1 1 × 1 × 1 = 1

2 6 3, 4 3, 1, 1 2 × 1 × 1 = 2

Total: 9

Number of 5-element unlabeled connected series-parallel posets with 4 disconnected ordinal
terms (possibly, including the singleton poset):

m j l(m, j) rmj1, . . . , rmj(m+1) S(m, j)

3 1 1, 2, 3 1, 1, 1, 2 1

3 2 1, 2, 4 1, 1, 2, 1 1

3 3 1, 3, 4 1, 2, 1, 1 1

3 4 2, 3, 4 2, 1, 1, 1 1

Total: 4

Number of 5-element unlabeled connected series-parallel posets with 5 disconnected ordinal
terms (possibly, including the singleton poset):

m j l(m, j) rmj1, . . . , rmj(m+1) S(m, j)

4 1 1, 2, 3, 4 1, 1, 1, 1, 1 1

Total: 1

Thus, CSP (5) = 16 + 9 + 4 + 1 = 30.

4.2 Enumeration of disconnected series-parallel posets

Theorem 4.3. For n ≥ 2, let the matrix Mn satisfy the block of 0s property of nondecreasing
inter-distant lengths l(m, j), 1 ≤ m ≤ n − 1, 1 ≤ j ≤ pm for some pm ≤ (n−1

m ). Also let for
every 1 ≤ m ≤ n− 1, 1 ≤ j ≤ pm, 1 ≤ k ≤ qmj for some qmj ≤ m+ 1, the numbers tmjk (the
number of the k-th consecutive direct terms Mrmjk

of Mn) and CSP (rmjk) be given. Then we
have DSP (n) as follows:

DSP (n) =
n−1∑
m=1

pm∑
j=1

qmj∏
k=1

(
CSP (rmjk) + tmjk

1 + tmjk

)
, n ≥ 2. (4.3)

Proof. For every 1 ≤ m ≤ n − 1 and 1 ≤ j ≤ pm where pm ≤ (n−1
m ), let S(m, j) be the

number of nonisomorphic posets represented by Mn that satisfies the block of 0s property of



Enumeration of unlabeled series-parallel posets 227

the nondecreasing inter-distant lengths l(m, j): n1j , n2j , . . . , nmj and represents nonisomorphic
disconnected series-parallel posets. Then we have rmjk, tmjk, 1 ≤ k ≤ qmj , where qmj ≤ m+1
as follows:

rmj1 = nij − n(i−1)j , 1 ≤ i ≤ tmj1 + 1,

rmj2 = nij − n(i−1)j , tmj1 + 2 ≤ i ≤ tmj2 + 1,

...

rmjqmj = nij − n(i−1)j , tmj(qmj−1) + 2 ≤ i ≤ tmjqmj + 1.

Here, rmj1 < rmj2 < · · · < rmjqmj
and we assume n0j = 0 and n(m+1)j = n. Then the direct

terms of Mn are the matrices Mrmjk
, 1 ≤ i ≤ tmjk + 1, 1 ≤ k ≤ qmj . By hypothesis, for

every 1 ≤ i ≤ tmjk + 1 and 1 ≤ k ≤ qmj , matrix Mrmjk
represents CSP (rmjk) nonisomorphic

connected series-parallel posets. Then by Theorem 3.9, we have S(m, j) as follows:

S(m, j) =

qmj∏
k=1

(
CSP (rmjk) + tmjk

1 + tmjk

)
. (4.4)

Since the equation (4.4) holds for all nondecreasing inter-distant lengths l(m, j), 1 ≤ m ≤ n−1,
1 ≤ j ≤ pm, we have DSP (n) as follows:

DSP (n) =
n−1∑
m=1

pm∑
j=1

S(m, j) =
n−1∑
m=1

pm∑
j=1

qmj∏
k=1

(
CSP (rmjk) + tmjk

1 + tmjk

)
, n ≥ 2.

The following example illustrates the result established in the above theorem.

Example 4.4. In this example, we enumerate the 6-element unlabeled disconnected series-parallel
posets, that is, we determine the number DSP (6). We have CSP (r), 1 ≤ r ≤ 5, (the number of
unlabeled connected series-parallel posets up to r = 5 elements) as follows:

r 1 2 3 4 5

CSP (r) 1 1 3 9 30

We now compute S(m, j), as in Equation 4.4, by using the nondecreasing inter-distant lengths
l(m, j), as in Table 1, obtained for all 1 ≤ m ≤ 5 and 1 ≤ j ≤ pm, where pm ≤ ( 5

m). Recall that
we compute the number of unlabeled disconnected posets according to the number of connected
direct terms of the posets. Here m+ 1 equals the number of connected direct terms of a poset.
Number of 6-element unlabeled series-parallel posets with 2 connected direct terms:

m j l(m, j) rmj1, . . . , rmj(m+1) S(m, j)

1 1 1 1, 5 (1
1)(

30
1 ) = 30

1 2 2 2, 4 (1
1)(

9
1) = 9

1 3 3 3, 3 (3+1
1+1) = 6

Total: 45

Number of 6-element unlabeled series-parallel posets with 3 connected direct terms:

m j l(m, j) rmj1, . . . , rmj(m+1) S(m, j)

2 1 1, 2 1, 1, 4 (1+1
1+1)(

9
1) = 9

2 2 1, 3 1, 2, 3 (1
1)(

1
1)(

3
1) = 3

2 3 2, 4 2, 2, 2 (1+2
1+2) = 1

Total: 13
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Number of 6-element unlabeled series-parallel posets with 4 connected direct terms:

m j l(m, j) rmj1, . . . , rmj(m+1) S(m, j)

3 1 1, 2, 3 1, 1, 1, 3 (1+2
2+1)(

3
1) = 3

3 2 1, 2, 4 1, 1, 2, 2 (1+1
1+1)(

1+1
1+1) = 1

Total: 4

Number of 6-element unlabeled series-parallel posets with 5 connected direct terms:

m j l(m, j) rmj1, . . . , rmj(m+1) S(m, j)

4 1 1, 2, 3, 4 1, 1, 1, 1, 2 (1+3
1+3)(

1
1) = 1

Total: 1

Number of 6-element unlabeled series-parallel posets with 6 connected direct terms:

m j l(m, j) rmj1, . . . , rmj(m+1) S(m, j)

5 1 1, 2, 3, 4, 5 1, 1, 1, 1, 1, 1 (1+5
1+5) = 1

Total: 1

Thus, DSP (6) = 45 + 13 + 4 + 1 + 1 = 64.

5 Enumeration algorithms

Recall that we do not specify the values of the parameters pm, 1 ≤ m ≤ n − 1, and qmj ,
1 ≤ m ≤ n − 1, 1 ≤ j ≤ pm, as in the equation (4.3), explicitly. Therefore, for given n ≥ 2,
the computation of DSP (n) depends mainly on determining the values of these parameters.
By inspection, we have pm ≤ n2 ≤ (n−1

m ) for all n ≥ 2 and 1 ≤ m ≤ n − 1. We also
have qmj ≤ m + 1 for all 1 ≤ j ≤ pm. By using Algorithm 5.3 below, we determine the
aforementioned parameters and compute ultimately the numbers DSP (n), n ≥ 2. Also, we use
the equation (4.1) in Algorithm 5.1 to compute the numbers CSP (n), n ≥ 2. Finally, by using
Algorithm 5.5, for n ≥ 2 we compute SP (n), the number of unlabeled series-parallel posets
with n elements.

Algorithm 5.1. To compute CSP (n) for n ≥ 2.

1. Initialize CSP (n) as CSP (n) = 0.

2. Repeat (a) for m = 1 to n− 1.

a. Repeat (i) to (iv) up to p = (n−1
m ) times for every distinct lengths l(m, j) as is con-

structed in (i).

i. Construct j-th lengths l(m, j) consisting of m integers chosen from the integers
less than or equal to n− 1.

ii. Initialize S(m, j) as S(m, j) = 1 (the equation (4.2)).
iii. Compute tmjk and repeat (α) for every m+ 1 distinct rmjk in the lengths l(m, j)

(Theorem 4.1).
α. Update S(m, j) with S(m, j)×DSP (rmjk).

iv. Increase CSP (n) by S(m, j).

3. Return CSP (n).
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Lemma 5.2. Algorithm 5.1 runs in time O(nm+3), where m + 1 equals the number of ordinal
terms of the connected series-parallel posets.

Proof. The constructions of the lengths l(m, j) in the (i)-th step have complexity equal to m(n−
1). Since 1 ≤ tmjk ≤ m + 1, the computations of S(m, j) in the (iii)-th step have complexity
equal to m + 1. Then m ≤ n − 1 implies that the complexity m(n − 1) ≈ O(n(n − 1)) ≈
O(n2) and the complexity m + 1 ≈ O(n − 1 + 1) ≈ O(n). Since p = (n−1

m ) ≤ ( enm )m, the
repetitions in the step (a) increase the complexities to ( enm )m{O(n2)+O(n)} ≈O(nm)×O(n2)≈
O(nm+2). Finally, the repetitions in the step (2) increase the complexities to (n− 1){O(nm+2)}
≈ O(nm+3).

Algorithm 5.3. To compute DSP (n) for n ≥ 2.

1. Initialize DSP (n) as DSP (n) = 0.

2. Repeat (a) for m = 1 to n− 1.

a. Repeat (i) to (iv) for every distinct nondecreasing inter-distant lengths l(m, j) as is
constructed in (i). (Here, the total number of repetitions equals the parameter pm in
Theorem 4.3).

i. Construct j-th nondecreasing inter-distant lengths l(m, j) consisting of m integers
chosen from the integers less than or equal to n− 1.

ii. Initialize S(m, j) as S(m, j) = 1 (the equation (4.4)).
iii. Compute tmjk and repeat (α) for every distinct rmjk in the lengths l(m, j). (Here,

the total number of distinct rmjk equals the parameter qmj in Theorem 4.3).

α. Update S(m, j) with S(m, j)× (CSP (rmjk)+tmjk

1+tmjk
).

iv. Increase DSp(n) by S(m, j).

3. Return DSP (n).

Lemma 5.4. Algorithm 5.3 runs in time O(n5).

Proof. The constructions of the lengths l(m, j) in the (i)-th step have complexity equal to m(n−
1). Since 1 ≤ tmjk, q ≤ m + 1 and tmjk ∝ 1

q , the computations of S(m, j) in the step (iii)

have complexity equal to m + 1. Then m ≤ n − 1 implies that the complexity m(n − 1) ≈
O((n−1)(n−1))≈O(n2) and the complexity m+1 ≈O(n−1+1)≈O(n). Since 1 ≤ p ≤ n2,
the repetitions in the step (a) increase the complexity to n2{O(n2) + O(n)} ≈ O(n4). Finally,
the repetitions in the step (2) increase the complexity to (n− 1){O(n4)} ≈ O(n5).

Algorithm 5.5. To compute SP (n) for n ≥ 2.

1. Initialize the arrays CSP (n) and DSP (n) as CSP (1) = 1 and DSP (1) = 1.

2. Repeat (a) to (c) for r = 2 to n.

a. Compute CSP (r) as in Algorithm 5.1.

b. Compute DSP (r) as in Algorithm 5.3.

c. Preserve the numbers CSP (r) and DSP (r).

3. Return the sum of CSP (n) and DSP (n).

Lemma 5.6. Algorithm 5.5 runs in time O(nm+4), where m + 1 equals the number of ordinal
terms of the connected series-parallel posets.

Proof. The computations in the steps (a) and (b) have complexities equivalent to O(nm+3) and
O(n5), respectively (Lemma 5.2 and Lemma 5.4). Then, the repetitions in the step (2) increase
the complexity to n(O(nm+3)+O(n5)) ≈ O(nm+4) for all m ≥ 2.
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6 Numerical results

We implemented the enumeration algorithms on an Intel CORE-i7 (3.6 GHz) personal computer.
To determine SP (n), the machine took about 1 second for n ≤ 15, 1 minute for n ≤ 20, 1 hour
for n ≤ 26, and 1 day for n ≤ 33. The results for SP (n), n ≤ 33, agree the numerical results
obtained by El-Zahar and Khamis [6] and included in the integer sequences A003430, A007453,
and A007454 in OEIS [19]. We include the numerical results on CSP (n) for n ≤ 23 according
to the number of ordinal terms of posets and DSP (n) for n ≤ 24 according to the number of
direct terms of posets in the following Table 2, Table 3, Table 4, and Table 5. See also the integer
sequences A350772 and A356558 that we contributed to OEIS [19].

Table 2. CSP (n) for 2 ≤ n ≤ 16 according to the number of ordinal terms (singleton or
disconnected) t = m+ 1, where 2 ≤ t ≤ 16.

t ⧹ n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 2 5 16 52 188 690 2638 10272 40782 164114 668544 2750025 11409144 47678552
3 1 3 9 31 108 402 1523 5934 23505 94539 384732 1581819 6559179 27400899
4 1 4 14 52 193 744 2908 11580 46716 190664 785596 3263860 13656666
5 1 5 20 80 315 1261 5085 20730 85260 353525 1476257 6203590
6 1 6 27 116 483 2010 8363 34938 146616 618178 2618268
7 1 7 35 161 707 3059 13132 56253 241003 1033949
8 1 8 44 216 998 4488 19876 87328 382121
9 1 9 54 282 1368 6390 29187 131544

10 1 10 65 360 1830 8872 41780
11 1 11 77 451 2398 12056
12 1 12 90 556 3087
13 1 13 104 676
14 1 14 119
15 1 15
16 1

CSP (n) 1 3 9 30 103 375 1400 5380 21073 83950 338878 1383576 5702485 23696081 99163323

Table 3. CSP (n) for 17 ≤ n ≤ 23 according to the number of ordinal terms (singleton or
disconnected) t = m+ 1, where 2 ≤ t ≤ 23.

t ⧹n 17 18 19 20 21 22 23
2 200523288 848079588 3604696476 15389640287 65966258818 283779863972 1224797039140
3 115204380 487115119 2069995539 8835884304 37868209637 162882764373 702919507509
4 57499516 243423630 1035562696 4424662736 18979499816 81701017310 352832260716
5 26214600 111328615 474906920 2034031171 8743566945 37710179635 163133278430
6 11137278 47563411 203876406 876872208 3783262364 16370149059 71023158084
7 4444629 19149403 82698658 357984578 1553201218 6753847884 29430083844
8 1668912 7284896 31806528 138969836 607801416 2661416220 11668455336
9 588033 2615422 11597202 51332706 227004264 1003509306 4436346375

10 193150 882205 3996880 18008635 80836620 361931465 1617718520
11 58509 277420 1294722 5975926 27365635 124602578 564987973
12 16080 80384 390828 1863699 8764276 40796310 188459664
13 3913 21099 108589 541242 2636907 12634440 59786831
14 812 4893 27286 144501 738138 3673635 17933580
15 135 965 6045 34833 189710 992835 5046810
16 16 152 1136 7388 43952 246040 1318752
17 1 17 170 1326 8942 54876 315571
18 1 18 189 1536 10728 67860
19 1 19 209 1767 12768
20 1 20 230 2020
21 1 21 252
22 1 22
23 1

CSP (n) 417553252 1767827220 7520966100 32135955585 137849390424 593407692685 2562695780058

https://oeis.org/A003430
https://oeis.org/A007453
https://oeis.org/A007454
https://oeis.org/A350772
https://oeis.org/A356558
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Table 4. DSP (n) for 2 ≤ n ≤ 17 according to the number of direct terms (connected) d = m+1,
where 2 ≤ d ≤ 17.

d ⧹n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2 1 1 4 12 45 160 613 2354 9297 37118 150369 615092 2540061 10569575 44286415 186666608
3 1 1 4 13 48 175 680 2646 10566 42628 174190 718126 2985818 12499982 52657256
4 1 1 4 13 49 178 695 2713 10873 43987 180270 745092 3105499 13029939
5 1 1 4 13 49 179 698 2728 10940 44294 181650 751307 3133365
6 1 1 4 13 49 179 699 2731 10955 44361 181957 752687
7 1 1 4 13 49 179 699 2732 10958 44376 182024
8 1 1 4 13 49 179 699 2732 10959 44379
9 1 1 4 13 49 179 699 2732 10959
10 1 1 4 13 49 179 699 2732
11 1 1 4 13 49 179 699
12 1 1 4 13 49 179
13 1 1 4 13 49
14 1 1 4 13
15 1 1 4
16 1 1
17 1

DSP (n) 1 2 6 18 64 227 856 3280 12885 51342 207544 847886 3497384 14541132 60884173 256480895

Table 5. DSP (n) for 18 ≤ n ≤ 24 according to the number of direct terms (connected) d =
m+ 1, where 2 ≤ d ≤ 24.

d ⧹n 18 19 20 21 22 23 24
2 790997237 3367700038 14399128769 61801658911 266177276692 1150041480293 4983225458906
3 223021245 949144261 4056825706 17407092435 74953129228 323772409451 1402671363141
4 55003554 233403698 995091525 4260196175 18307596324 78942369641 341454986527
5 13154855 55562641 235904703 1006273218 4310176483 18530969703 79940691015
6 3139608 13182910 55688862 236471653 1008819448 4321606312 18582272604
7 752994 3140988 13189153 55716953 236598126 1009388183 4324163571
8 182039 753061 3141295 13190533 55723196 236626217 1009514701
9 44380 182042 753076 3141362 13190840 55724576 236632460
10 10959 44380 182043 753079 3141377 13190907 55724883
11 2732 10959 44380 182043 753080 3141380 13190922
12 699 2732 10959 44380 182043 753080 3141381
13 179 699 2732 10959 44380 182043 753080
14 49 179 699 2732 10959 44380 182043
15 13 49 179 699 2732 10959 44380
16 4 13 49 179 699 2732 10959
17 1 4 13 49 179 699 2732
18 1 1 4 13 49 179 699
19 1 1 4 13 49 179
20 1 1 4 13 49
21 1 1 4 13
22 1 1 4
23 1 1
24 1

DSP (n) 1086310549 4623128656 19759964149 84784735379 365066645854 1576927900803 6831518134251
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